Experimental and Calculated Frequencies (cm⁻¹), Raman Intensities^a and Assignments^b for Table S1. CX_3^+ and BX_3 (X = F, Cl, Br, I)

CF_3^+					
		6-310	G(2d)	cc-pV	/TZ
assgnts	expt ^c	HF	MP2	HF	MP2
$\nu_1(A_1'), \nu_s(C-F)$		1145(4)	1048(7)	1161(4)	1072(7)
$\nu_2(A_2''), \pi(C-F_3)$	798.1	912(0)	843(0)	895(0)	825(0)
$\nu_3(E'), \nu_{as}(C-F)$	1662.4	1835(<1)	1692(<1)	1847(<1)	1717(<0)
$\nu_4(E'), \delta_d(F-C-F)$		642(<1)	595(1)	648(<1)	601(1)
CCl_3^+					
		6-3	31G(2d)	cc-pV	ΤZ
assgnts	expt	HF	MP2	HF	MP2
$\nu_1(A_1'), \nu_s(C-Cl)$	554(28) ^a	574(8)	559(18)	579(8)	568(17)
$\nu_2(A_2''), \pi(C-Cl_3)$	-	566(0)	538(0)	571(0)	541(0)
$\nu_3(E'), \nu_{as}(C-Cl)$	1035, ^e 1037 ^r	1112(1)	1072(<1)	1114(1)	1086(<1)
$\nu_4(E'), \delta_d(Cl-C-Cl)$	326.9(9)	329(2)	318(4)	329(3)	317(4)
CD ⁺					
CBr ₃		6 210	2(24)		VT7
	F (0-310	J(20)	<u></u>	
assgnts	Expt	HF	MP2	HF	MP2
$v_{i}(\Lambda_{i}') v_{i}(C_{i}Br)$	321 4(27)	346(6)	341(13)	336(5)	340(13)
$v_1(A_1), v_s(C-B_1)$ $v_s(A_s''), \pi(C-B_r)$	521.1(27)	479(0)	461(0)	470(0)	454(0)
$v_2(R_2), n(C-DR_3)$		963(3)	932(3)	936(4)	931(2)
$v_3(E'), v_{as}(C-BI)$ $v_2(E'), \delta_2(Br_2(-Br))$	183 5(15)	198(1)	193(3)	190(2)	186(3)
$v_4(L), v_d(DI-C-DI)$	187.0(12)	1)0(1)	190(0)	1) ((-)	100(0)
CI_3^+					
	— a	(SDB-)c	c-pVTZ		
assgnts	Expt ^g	HF	MP2		
$v_1(A_1') v_2(C-I)$		231(3)	240(14)		
$v_1(II_1), v_3(C-I_2)$	339 w	395(0)	384(0)		
$v_2(E')$ $v_{-1}(C-I)$	739, vs	800(24)	807(10)		
$v_{as}(E'), v_{as}(C I)$,	128(2)	127(3)		
$v_4(L_2), v_d(1-C-1)$		(-)	(-)		
BF ₃					
			6-31G(2d)		cc-pVTZ
	.h				

+

		6-31	G(2d)	cc-pVTZ		
assgnts	expt ^h	HF	MP2	HF	MP2	
$v_1(A_1'), v_s(B-F)$	888.0	938(2)	883(4)	952(2)	895(4)	
$v_2(A_2''), \pi(B-F_3)$	691.5	760(0)	723(0)	741(0)	698(0)	
$v_3(E'), v_{as}(B-F)$	1453.5	1554(<1)	1475(<1)	1566(<1)	1484(<1)	
$v_4(E'), \delta_d(F-B-F)$	480.4	515(<1)	491(<1)	513(<1)	481(<1)	

Table S1. (continued ...)

BCl₃ cc-pVTZ 6-31G(2d) MP2 assgnts Exptⁱ HF HF MP2 467.3 487(7) 477(9) 489(6) 483(8) $v_1(A_1'), v_s(B-Cl)$ 447.3^j 481(0) 465(0) 482(0) 465(0) $v_2(A_2''), \pi(B-Cl_3)$ 931 989(<1) 970(<1) 989(<1) 984(<1) $v_3(E'), v_{as}(B-Cl)$ 254.5 267(2) 257(3) 268(2) 259(2) $v_4(E'), \delta_d(Cl-B-Cl)$

BBr₃

		6-3	1G(2d)	cc-p'	VTZ
assgnts	Expt ^k	HF	MP2	HF	MP2
$v_1(A_1'), v_s(B-Br)$	279.6	297(6)	292(7)	290(5)	292(6)
$v_2(A_2''), \pi(B-Br_3)$	377.3 ^j	425(0)	414(0)	409(0)	401(0)
$v_3(E'), v_{as}(B-Br)$	794.4	867(<1)	849(<1)	848(<1)	853(<1)
$v_4(E'), \delta_d(Br-B-Br)$	153.4	161(1)	155(1)	160(1)	157(2)

BI₃

		(SDB-)	(SDB-)cc-pVTZ					
assgnt.	expt. ^k	HF	MP2					
$v_1(A_1'), v_s(B-I)$	194.5	200(5)	203(6)					
$v_2(A_2''), \pi(B-I_3)$	307.9 ^j	346(0)	336(0)					
$v_3(E'), v_{as}(B-I)$	681.0	738(1)	741(<1)					
$v_4(E'), \delta_d(I-B-I)$	105.3	108(1)	106(2)					

^a Values in parentheses represent experimental uncorrected relative Raman intensities (see Table S3) or calculated Raman intensities (in Å⁴ amu⁻¹). ^b Frequencies have been calculated for D_{3h} symmetry and have been assigned under this symmetry. ^c From ref. 10. ^d The v₁ band is split as a result of the mass effect of the ³⁵Cl and ³⁷Cl isotopes: 554.1(100) (C³⁵Cl₃), 549.1(96) (C³⁵Cl₂³⁷Cl), 544.1(32) (C³⁵Cl³⁷Cl₂) and 538.8(3) (C³⁷Cl₃) cm⁻¹; the most intense band has been scaled to 100 (see Figure 4). ^e From ref. 6. ^f From ref. 4 and ref. 5. ^g From ref. 14. ^h From ref. 64. ⁱ From ref. 65. ^j Observed as $2v_2(A_2'')$. ^k From ref. 66.

			6-31G(2d	l)		cc-pV	ΤZ	
assignt.	expt. ^b	HF	MP2		HF	1	MP	2
$v_1(A_1), v_s$	908.4	995(5)	904(6)	1012	(4) 9	925	(5)
$v_2(E), \delta_s$	434.5	476(<1	l) 435(<1)	480(<1) 4	140	(<1)
$\nu_3(T_2), \nu_{as}$	1283.0	1435(1	1) 1295	5(<1)	1448	(1)	131	2(<1)
$v_4(T_2), \delta_{as}$	631.2	684(1)	626(1)	694(1) 6	540	(1)
CCl ₄								
			6-	31G(2d)		C	c-p	VTZ
assignt.	expt. ^c		HF	MP2		HF		MP2
$\nu_1(A_1), \nu_s$	459(100) ^a		494(18)	463(15)		496(17))	471
$v_2(E), \delta_s$	220(58)		238(2)	222(3)		237(3)		221
$\nu_3(T_2), \nu_{as}$	794(20), 761(16)	891(9)	796(3)		889(8)		810
$v_4(T_2), \delta_{as}$	317(68)		340(3)	321(3)		340(4)		321
CBr ₄								
			6-	31G(2d)		сс	-p\	/TZ
assignt.	expt. ^c		HF	MP2		HF		MP2
$\nu_1(A_1), \nu_s$	269(100)		302(16)	285		292(16))	282
ν ₂ (E), δ _s	128(33)		145(2)	135		138(2)		129
$\nu_3(T_2), \nu_{as}$	673(15), 664(15),	789(13)	713		770(17))	708
	658(10)							
$v_4(T_2), \delta_{as}$	182(41), 184(47)	208(2)	196		201(3)		190

Table S2. Experimental and Calculated Frequencies (cm⁻¹) and Intensities for CX₄ (T_d)^a

CI₄

CF₄

		(SDB-)cc-pVTZ					
assgnt.	expt. ^e	HF	MP2				
$\nu_1(A_1), \nu_s$	178(10)	201(16)	195				
$v_2(E), \delta_s$	90(4)	94(2)	87				
$\nu_3(T_2), \nu_{as}$	555, vs ^f	672(27)	618				
$v_4(T_2), \delta_{as}$	123(5)	137(3)	129				

^a Values in parentheses represent observed or calculated Raman intensities. ^b From R.J.H. Clark, D.M. Rippon *Chem. Commun.*, **1971**, 1295. ^c This work, pure solid compound (-120 °C). ^d The v₁ band is split as a result of the mass effect of the ³⁵Cl and ³⁷Cl isotopes: 462(95) (C³⁵Cl₃), 459(100) (C³⁵Cl₂³⁷Cl), 456(51) (C³⁵Cl³⁷Cl₂) and 453(19) (C³⁷Cl₃) cm⁻¹. ^e From H. Stammreich, Y. Tavares, D. Bassi *Spectrochim. Acta* **1961**, *17*, 661. ^f This band was only observed in the infrared spectrum; vs denotes very strong.

f	requencies (ci	n ⁻¹)			1	assgnts	
CCl ₃ ^{+ a,b}	CBr ₃ ^{+ c,d,e}	CBr ₃ ^{+ d,e,f}	CX3 ⁺	CBr ₄	OTeF5 ^g	non-coordinated SO ₂ ClF	coordinated SO ₂ CIF ^h
554(19) 549(19) 544(6) 520(<1)	321(33)	321(33)	$\nu_l(A_l')$				
339(<1)) 327(9)	188(48) 184(54)	$\left. \begin{array}{c} 187(15) \\ 184(18) \end{array} \right\}$	v ₄ (E')				
	$\left. \begin{array}{c} 673(24) \\ 668, \mathrm{sh} \\ 653, \mathrm{sh} \end{array} \right\}$	654(28)		v ₃ (F ₂)			
	188(48) 184(54) 269(93)	187(15) 184(18)		$v_4(F_2)$			
	128(36)			$\nu_1(A_1)$ $\nu_2(E)$		_	
	1454(2) 1449(3) 1095(2), br	}			v(CO) ⁱ		
	1444(4) 1433(14) 1427, sh	1433(18)				$\nu_{asym}(SO_2)$	
	1224(32) 1219(26)	1224(42) 1218(39)				$v_{sym}(SO_2)$	
	847(5) 839(6)					v(SF)	

Table S3. Raman Frequencies and Assignments for [CCl₃][Sb(OTeF₅)₆] and [CBr₃][Sb(OTeF₅)₆]·nSO₂ClF and Related Species

Table S3. (continued...)

CCl ₃ ^{+ a,b}	CBr ₃ ^{+ c,d,e}	CBr ₃ ^{+ d,e,f}	CX ₃ ⁺	CBr ₄	OTeF ₅ ^g	non-coordinated SO ₂ ClF	coordinated SO ₂ ClF ^h
	1415(4) 1407(4)	1415(11)					$v_{asym}(SO_2)$
	1166(8) 819, sh	1168(14)					v _{sym} (SO ₂) v(SF)
822(5) 751(3)	827(7), br 749(11)	830(10),br			j		
724(17)	745(11) 721(21)	745(21)			$v_8(E), v_{as}(TeF_4)$		
712(7)	717(21) 714(22)	716(32)			(\mathbf{A}) $(\mathbf{T}_{\mathbf{T}}\mathbf{E})$		
702(100)	703(67)	703(60)			$V_1(A_1), V(1er)$		
690(8)	693(24) 690. sh	693(25)			$v_s(TeO + XeO)^k$		
686(2)	682(9) 677(9)	685(18) 679(19)					
665(8) 659(40)	668, sh 663(100)	669(55) 663(100)			$v_2(A_1), v_s(TeF_4)$		
653(19)	653, sh	654(28)					
641(10)	648(24) 633(14)	648(26),br 635(18) br			$\nu_5(B_1), \nu_{as}(TeF_4)$		
519(<1)		515(6)			j		
505(<1)	503(13) 494(7) 485, sh	503(21) 495(10)			j		
	480(16) 476, sh	480(21)			$\nu_s(\text{TeO} + \text{XeO})^k$		
464(2)	460(5), br						

CCl ₃ ^{+ a,b}	CBr ₃ ^{+ c,d,e}	CBr ₃ ^{+ d,e,f}	CX ₃ ⁺	CBr ₄	OTeF ₅ ^g	non-coordinated SO ₂ ClF	coordinated SO ₂ ClF ^h
451(1)		2					
	$438(25)^{m}$	$440(14)^{m}$					
	$435(27)^{m}$						
	$432(26)^{m}$	$430(54).br^{m}$			$v_{a}(\Lambda_{a}) v(T_{a}\Omega) also$		
	$428(29)^{m}$				$v_3(A_1), v(100) also$		
	420(13)				coupled with $V_s(SD-O)$		
414(23)	413, sh	J					
395(5)	408(29)	409(31).br					
369(7)	367(11)	367(15)					
342(5)	341, sh	340(19)			$v_{0}(E)$, $\delta(FTeF_{4})$		
339(14)	333(20)	332(23)			.,(_), .(+)		
320(7)					$v_{10}(E), v(OTeF_5)$		
310(19)	309(26)	309(44)			$v_4(A_1) \delta_c(FTeF_4)$		
306(16)	$305. \text{ sh}^{n}$	$298(50)^{n}$			$v_7(B_2) \delta_{scies}(TeF_4)$		
	257(7)	258(13)			(22), 05055(2024)		
	253(9)	254(13)			$(\mathbf{E}) $ $(\mathbf{T}_{2}\mathbf{E})$		
246(9)	249(9)				$V_{11}(E), O_{as}(1EF_4)$		
243(6)	240(16)	240(18)					
231(4)	231, sh						
	228(6)	230(10)			δ (TeOSb) ¹		
	215(4)	215(8)					
	173(9)	173(14)			S(TT O)k		
	167, sh	<pre></pre>			o(FIeO) ²		
148(14)	145, sh	146(16)					
	141(19)	141(19) >			$\tau (\text{TeOSb})^{1}$		
137(10)	134(12)	136(14)					
123(7)	128(36)	· ·			δ(XeOTe) ^k		
118(3)	120(12)	121(15)			lattice meder		
100(1)	111(13)	110(14)			lattice modes		

Table S3.(continued...)

^a The Raman spectrum of the solid obtained from the reaction of excess CCl₄ with [XeOTeF₅][Sb(OTeF₅)₆] in SO₂ClF at -78 °C (eq 1). ^b Experimental Raman intensities are given in parentheses. ^c The Raman spectrum of the solid obtained from the reaction of excess CBr₄ with [XeOTeF₅][Sb(OTeF₅)₆] in SO₂ClF at -78 °C (eq 2-7). ^d Infrared intensities, in km mol⁻¹, are given in square brackets. ^e The symbol, sh, denotes a shoulder and br denotes a broad line. ^f The Raman spectrum of the solid obtained from the reaction of excess [XeOTeF₅][Sb(OTeF₅)₆] with CBr₄ in SO₂ClF at -78°C (eq 2-7). ^g The OTeF₅ group assignments for OTeF₅ derivatives resulting from the reactions of CBr₄ with [XeOTeF₅][Sb(OTeF₅)₆] are tentative due to overlap of their Raman bands. The vibrational modes of the OTeF₅ groups are assigned under C_{4v} symmetry (ref. 54). ^h Free SO₂ClF was observed, along with coordinated SO₂ClF, in sample mixtures that were incompletely pumped at -78 °C. ⁱ These modes are most likely assigned to the CBr_{3-n}(OTeF₅)_n⁺ cations (n = 1-3). ^j Unassigned modes. ^k These modes are most likely assigned to the Sb(OTeF₅)₆⁻ anion. ^m These bands may overlap with Pr₂ which occurs at 296.5 and 302.5 cm⁻¹.

Table S4. Experimental and Calculated Geometrical Parameters and NBO Study (MP2) for $CX_4(T_d)$

CF ₄							CCl ₄							
		6-31G(2	(d)		cc-pVTZ	Z				6-3	IG(2d)		cc-pVT	Ϋ́Ζ
	expt.	HF	MP2	HF	MP2	CCSD(T)		expt.		HF	MP2	HF	MP2	CCSD(T)
C-F	$1.315(3)^{d}$	1.296	1.323	1.296	1.319	1.319	C-Cl	1.77(6	$(5)^a$	1.768	1.781	1.764	1.768	1.777
								1.751	$(13)^{c}$					
F-C-F	$109.6(3)^{d}$						Cl-C-Cl							
$F \cdots F$	$2.148(4)^{d}$	2.117	2.161	2.116	2.154	2.154	$Cl \cdots Cl$	2.89(1	l 2) ^a	2.888	2.908	2.881	2.887	2.902
								2.859	$(6)^{c}$					
CBr ₄							CI ₄							
		6-3	31G(2d)		cc-pV	/TZ				(SDB-)cc	-pVTZ			
	expt.	HF	MP2	HF	MP2	CCSD(T)		expt. ^e	HF	MP2	CCSD(T)		
C-Br	$1.91(4)^{b}$	1.923	1.931	1.934	1.928	1.940	C-I	2.155(1)	2.131	2.127	2.137			
Br-C-Br							I-C-I	109.5(1)						
$\operatorname{Br}\cdots\operatorname{Br}$	$3.12(7)^{b}$	3.140	3.154	3.158	3.148	3.168	I … I	3.518(1)	3.480	3.473	3.489			
CF ₄		6-	-31G(2d)	cc-pVT2	Z	CCl ₄			6-31G(2	d) cc-	pVTZ			
charge	С		1.37	1.25		charge	С		-0.29	-0.	19			
	F		-0.34	-0.31			Cl	l	0.07	0.0)5			
valency	С		3.30	2.82		valency	С		3.36	3.5	6			
	F		0.75	0.61			Cl	l	0.71	0.7	6			
bond order	C-F		0.82	0.70		bond order	C·	-Cl	0.84	0.8	39			
	FF		-0.02	-0.03			Cl	Cl	-0.04	-0.	04			
CBr ₄		6-	-31G(2d)	cc-pVT2	Z	CI ₄		(5	SDB-)cc-p	oVTZ				
charge	С		-0.63	-0.55		charge		С	-1.19					
	Br		0.16	0.14				I	0.30					
valency	С		3.13	3.34		valency		С	3.16					
	Br		0.68	0.71				1	0.69					
bond order	C-Br		0.78	0.83		bond order		C-I	0.79					
	BrE	Sr ·	-0.03	-0.04				1I	-0.03					

^a Neutron diffraction from P. Jóvári, G. Mészáros, L. Pusztai, E. Sváb, *J. Chem. Phys.* **2001**, *114*, 8082. ^b X-ray diffraction M. More, F. Baert, J. Lefebvre *Acta Cryst.* **1977**, *B33*, 3681. (Phase I). ^c X-ray diffraction S. Cohen, R. Powers, R. Rudman, *Acta Cryst.* **1979**, *B35*, 1670. ^d A.N. Fitch, J.K. Cockcroft *Z. Kristallogr.* **1993**, *203*, 29. ^e S. Pohl *Z. Kristallogr.* **1982**, *159*, 211

$\mathbf{CX_3}^+(D_{3h})$		F	Cl	Br	Ι
natural Charge q	C (X)	1.37 (-0.12)	-0.09 (0.36)	-0.45 (0.48)	-1.10 (0.70)
bond order	C-X (X…X)	0.88 (-0.04)	1.09 (-0.05)	1.04 (-0.05)	0.99 (-0.06)
valency	C (X)	2.64 (0.81)	3.28 (0.99)	3.12 (0.93)	2.97 (0.88)
p_{π} populations	C (X)	0.59 (1.77)	0.91 (1.65)	1.00 (1.62)	1.13 (1.57)
σ donation (π donation) ^b	$C {\rightarrow} X (X {\rightarrow} C)$	0.32 (0.19)	-0.06 (0.31)	-0.15 (0.33)	-0.32 (0.38)
$\mathbf{CX_4}(T_d)$		F	Cl	Br	Ι
natural Charge q	C (X)	1.25 (-0.31)	-0.11 (0.03)	-0.56 (0.14)	-1.19 (0.30)
bond order	C-X (X…X)	0.70 (-0.03)	0.90 (-0.04)	0.83 (-0.04)	0.79 (-0.03)
valency	C (X)	2.82 (0.61)	3.61 (0.79)	3.34 (0.71)	3.16 (0.69)
$\mathbf{BX}_{3}\left(D_{3h}\right)$		F	Cl	Br	Ι
natural Charge q	B (X)	1.39 (-0.46)	0.34 (-0.11)	0.06 (-0.02)	-0.49 (0.16)
bond order	B-X (X…X)	0.86 (-0.02)	1.08 (-0.04)	1.09 (-0.04)	1.16 (-0.04)
valency	B (X)	2.58 (0.81)	3.24 (1.00)	3.27 (1.00)	3.47 (1.07)
p_{π} populations at	B (X)	0.32 (1.86)	0.48 (1.79)	0.53 (1.78)	0.63 (1.74)
σ donation (π donation) ^b	$B \rightarrow X (X \rightarrow B)$	0.57 (0.11)	0.27 (0.16)	0.20 (0.18)	0.04 (0.21)

Table S5. Calculated^a Natural Atomic Charges, Mayer Bond Orders and Mayer Natural Atomic Orbital Valencies, for CX_3^+ , CX_4 , and BX_3 (X = F, Cl, Br, I)

^a MP2/(SDB-)cc-pVTZ. ^b The value given is per bond; a negative sign indicates donation in reversed order.

$\overline{\mathrm{CX_3}^+}$		MP2/	cc-pVT	ΓZ		BX ₃		MP2/	MP2/cc-pVTZ				
		F	Ċl	Br	Ι			F	Ċl	Br	Ι		
<u>с</u>	S	0.67	1 1 1	1 23	1 37	B	S	0.40	0.75	0.85	1.01		
C	n	0.64	0.97	1.23	1.27	D	n	0.10	0.75	0.03	0.85		
	p_y	0.64	0.97	1.01	1.22		Py	0.10	0.67	0.72	0.85		
	p_x	0.59	0.91	1.01	1.13		p_x p_z	0.10	0.07	0.53	0.63		
	P 2	,					r 2						
X(1)	S	1.83	1.80	1.81	1.81	X(1)	S	1.84	1.81	1.81	1.78		
	p_{v}	1.54	1.19	1.08	0.90		p_{v}	1.76	1.49	1.42	1.30		
	p_x	1.90	1.88	1.89	1.89		p_x	1.92	1.89	1.89	1.88		
	p_z	1.77	1.65	1.62	1.57		p_z	1.86	1.79	1.78	1.74		
X(2)	S	1.83	1.80	1.81	1.81	X(2)	S	1.84	1.81	1.81	1.78		
	\mathcal{D}_{v}	1.81	1.71	1.69	1.64		$\mathcal{D}_{\mathcal{V}}$	1.88	1.79	1.78	1.74		
	$\frac{p_{y}}{p_{x}}$	1.63	1.36	1.28	1.14		$\frac{p_{y}}{p_{x}}$	1.80	1.59	1.54	1.42		
	p_z	1.77	1.65	1.62	1.57		p_z	1.86	1.79	1.78	1.74		
$\mathbf{V}(2)$	_	1.02	1.90	1 0 1	1 0 1	$\mathbf{V}(2)$	_	1.0.4	1 0 1	1 0 1	1 70		
л(3)	S	1.05	1.60	1.01	1.01	A(3)	S	1.04	1.01	1.01	1.70		
	p_y	1.01	1./1	1.09	1.04		p_y	1.00	1.79	1.70	1.74		
	p_x	1.05	1.30	1.28	1.14		p_x	1.80	1.59	1.54	1.42		
	p_z	1.//	1.05	1.02	1.57		p_z	1.80	1.79	1./8	1./4		
$\overline{\mathrm{CF_3}^+}$		HF/co	c-pVTZ			BF ₃		HF/co	c-pVTZ				
С	S	0.65				В	S	0.37					
	p_y	0.63					p_y	0.38					
	p_x	0.63					p_x	0.38					
	p_z	0.46					p_z	0.26					
F(1)	S	1.83				F(1)	S	1.85					
	p_{v}	1.57					p_{v}	1.79					
	p_x	1.94					p_x	1.95					
	p_z	1.83					p_z	1.91					
F(2)	S	1 83				F(2)	S	1.85					
- (2)	n	1.85				· (4)	n	1 91					
	P_y	1.65					P_y	1.91					
	P_x	1.83					Px	1 91					
	p_z	1.05					P_z	1.71					
	1 -												
F(3)	S	1.83				F(3)	S	1.85					
F(3)	$s p_y$	1.83 1.85				F(3)	$s p_y$	1.85 1.91					
F(3)	s p_y p_x	1.83 1.85 1.66				F(3)	$s \\ p_y \\ p_x$	1.85 1.91 1.83					

Table S6. Valence Natural Atomic Orbital (NAO) Populations in the Calculated Species

Table S6.(continued ...)

C(OTeF₅)₃⁺ HF/SDB-cc-pVTZ

B(OTeF₅)₃ HF/SDB-cc-pVTZ

C O Te	s p_y p_z s p_y p_z s p_y p_z s p_y p_z p_z	$\begin{array}{c} 0.65\\ 0.72\\ 0.72\\ 0.56\\ (1)\\ 1.67\\ 1.52\\ 1.85\\ 1.80\\ (1)\\ 0.72\\ 0.38\\ 0.37\\ 0.37\\ (1)\\ \end{array}$	(2) 1.67 1.72 1.65 1.80 (2) 0.72 0.37 0.37 0.37 (2)	 (3) 1.67 1.82 1.55 1.80 (3) 0.72 0.37 0.38 0.37 (3) 	(4)	B O Te	s p_y p_z p_z s p_y p_z p_z s p_y p_z p_y p_z p_z p_y p_z	$\begin{array}{c} 0.37\\ 0.43\\ 0.43\\ 0.27\\ (1)\\ 1.70\\ 1.70\\ 1.85\\ 1.88\\ (1)\\ 0.71\\ 0.38\\ 0.37\\ 0.37\\ (1) \end{array}$	(2) 1.70 1.74 1.81 1.88 (2) 0.71 0.37 0.37 0.37 (2)	 (3) 1.70 1.88 1.67 1.88 (3) 0.71 0.37 0.38 0.37 (3) 	(4)
F	s p_y p_x p_z	(1) 1.92 1.87 1.88 1.97 (5) 1.92	(2) 1.92 1.79 1.95 1.97 (6) 1.92	(.) 1.92 1.96 1.79 1.97 (7) 1.92	(1) 1.92 1.93 1.91 1.87 (8) 1.92	F	s p_y p_x p_z	(1) 1.92 1.87 1.90 1.97 (5) 1.92	(2) 1.92 1.81 1.96 1.97 (6) 1.92	(5) 1.92 1.97 1.80 1.97 (7) 1.92	1.92 1.93 1.92 1.88 (8) 1.92
F	p_y p_x p_z	1.92 1.96 1.89 1.87 (9) 1.92	1.92 1.88 1.97 1.87 (10) 1.92	1.92 1.92 1.93 1.88 (11) 1.92	1.92 1.97 1.88 1.88 (12) 1.92	F	p_y p_x p_z	1.92 1.97 1.89 1.88 (9) 1.92	1.92 1.89 1.97 1.88 (10) 1.92	1.92 1.94 1.92 1.88 (11) 1.92	1.92 1.96 1.90 1.88 (12) 1.92
F	p_y p_x p_z	1.92 1.89 1.96 1.88 (13) 1.92	1.92 1.93 1.91 1.87 (14) 1.92	1.92 1.96 1.89 1.87 (15) 1.92	1.88 1.97 1.87	F	p_y p_x p_z	1.89 1.97 1.88 (13) 1.92	1.92 1.93 1.92 1.88 (14) 1.92	1.92 1.97 1.89 1.88 (15) 1.92	1.89 1.97 1.88
	$p_y p_x p_z$	1.92 1.92 1.92 1.88	1.92 1.97 1.88 1.88	1.92 1.89 1.97 1.88		1	p_y p_x p_z	1.92 1.94 1.92 1.88	1.92 1.97 1.90 1.88	1.92 1.89 1.97 1.88	
CX4		MP2/ F	Cl	Z Br	Ι						
C	$s \\ p_y \\ p_x \\ p_z \\ p_z$	0.71 0.64 0.64 0.64	1.15 0.96 0.96 0.96	1.27 1.04 1.04 1.04	1.41 1.20 1.20 1.20						
X(all)	$s p_y p_x p_z p_z$	1.85 1.80 1.80 1.80	1.83 1.71 1.71 1.71	1.84 1.63 1.63 1.63	1.84 1.57 1.57 1.57						