Supporting Information

Concise Synthesis of Anti HIV-1 Active (+)-Inophyllum B and (+)-Calanolide A by Application of (-)-Quinine-Catalyzed Intramolecular Oxo-Michael Addition

Etsuko Sekino, Takuya Kumamoto, Tomohiro Tanaka, Tomoko Ikeda, and Tsutomu Ishikawa* Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi, Inage, Chiba

263-8522, Japan

LIST OF CONTENTS

1. EXPERIMENTAL: General Procedures.	S2
2. Preparation of 5,7-Dihydroxy-4-phenylcoumarin	S2
3. Preparation of 5,7-Dimethoxy-4-phenylcoumarin (15)	S2
4. Preparation of 5,7-Dimethoxy-4-phenyl-8-tigloylcoumarin	S 3
5. Preparation of 7-Hydroxy-5-methoxy-4-phenyl-8-tigloylcoumarin (16)	S 3
6. Preparation of 5,7-Dihydroxy-4-propylcoumarin	S 4
7. Preparation of 5,7-Dimethoxy-4-propylcoumarin (7)	S4
8. Preparation of 5,7-Dimethoxy-4-propyl-8-tigloylcoumarin	S5
9. Preparation of 7-Hydroxy-5-methoxy-4-propyl-8-tigloylcoumarin (8)	S5
10. Conditions for Chiral HPLC	S 6

EXPERIMENTAL

General Procedures. All melting points were measured on a micro melting-point hot stage and are uncorrected. IR spectra were recorded in nujol. ¹H and ¹³C NMR spectra were recorded in CDCl₃, and tetramethylsilane (0.00 ppm) and the middle resonance of CDCl₃ (77.0 ppm) were used as an internal standard, respectively. FABMS and HRFABMS were recorded with *m*-nitrobenzyl alcohol as a matrix.

5,7-Dihydroxy-4-phenylcoumarin. To an ice-cooled and stirred trifluorosufonic acid (14.7 mL, 0.17 M) were mutually and portionwise (five times) added 1,3,5-trihydroxybenzene (10.0 g, 0.079 mM) and ethyl 3-phenyl-3-oxopropionic acid (14.0 mL, 0.082mM), and then the whole was stirred at room temperature (rt) for 17 h. After addition of water (125 mL) the aqueous mixture was triturated with glass rod and separated solid was filtered and washed with warm water (40-50 °C) to give dihydroxycoumarin as pale yellow powder (20 g, quant.), which was used to next step without purification. A part of solid was recrystallized from ethyl acetate to give pale yellow prisms, mp 236-238 °C (lit. mp 246-247 °C).

Lit. L, L, Wood, L. L.; Sopp, J. J. Org. Chem. 1962, 27, 3703-3705.

5,7-Dimethoxy-4-phenylcoumarin (**15**). A mixture of 5,7-dihydroxy-4-phenylcoumarin (1.0 g, 3.93 mM), dimethyl sulfate (1.0 mL, 10.6 mM), and K₂CO₃ (1.34 g, 9.66 mM) in acetone (100 mL) was stirred at rt for 20 h. After adition of 10% NH₄OH aq (20 mL) the whole was stirred at rt for 0.5 h and extracted with ethyl acetate (20 mLx3). The organic solution was washed with water (20 mLx3) and brine (20mL), dried over MgSO₄, and evaporated. Recrystallization of the residue from EtOH afforded colorless needles (0.77 g, 69%), mp 169-170 °C (lit. mp 164-165 °C). Lit. Trost, B. M.; Toste, F. D. *J. Am. Chem. Soc.* **1996**, *118*, 6305-6306.

5,7-Dimethoxy-4-phenyl-8-tigloylcoumarin. A solution of tin (IV) chloride (5.0 mL, 42.7 mM) in CH₂Cl₂ (2.5 mL) was slowly added to a solution of **15** (2.78 g, 10.7 mM) and tigloyl chloride (2.78 g, 21.3 mM) in CH₂Cl₂ (15 mL) under -10 °C, and then the whole was stirred at 8 °C for 3 days. After quenched with water (100 mL) the mixture was extracted with CHCl₃ (150 mLx3). The organic solution was successively washed with sat NaHCO₃ aq (300 mL), water (300 mL), and brine (300 mL), dried over MgSO₄, and evaporated . Washing the residue with Et₂O followed by recrystallization from MeOH afforded pale yellow prisms (1.83 g, 47%), mp 171-175 °C. After evaporation of combined washings and mother liquor the residue was purified by column chromatography on SiO₂ (benzene : ethyl acetate=20 : 1) gave an additional coumarin (0.773 g, 20%; total 2.603 g, 67%), mp 178-179 °C. IR 1735, 1655 cm⁻¹; ¹H NMR δ 1.87 (3H, dif. d, *J*=6.8 Hz, 3'-Me), 1.98 (3H, dif. s, 2'-Me), 3.48 (3H, s, OMe), 3.84 (3H, s., OMe), 5.97 (1H, s, 3-H), 6.25 (1H, s, 6-H), 6.50 (1H, dif. q, *J*=6.8 Hz, 3'-H), 7.25-7.26 (2H, m, ArH), 7.37-7.38 (3H, m, ArH); ¹³C NMR δ 10.6, 15.1, 55.6, 56.1, 91.4, 106.1, 111.0, 113.1, 126.9, 127.4, 127.9, 139.6, 139.7, 143.2, 152. 9, 155.1, 158.7, 159.8, 156.0, 194.0; EIMS *m/z* 364 (M⁺, 35%), 309 (100%); Anal. Calcd for C₂₂H₂₀O₅: C, 72.51; H, 5.53. Found: C, 72.14; H, 5.52.

7-Hydroxy-5-methoxy-4-phenyl-8-tigloylcoumarin (16). A suspension of the tigloylcoumarin (5. 59 g, 15.3 mM), MgI₂ (4.63 g, 15.3 mM), and K₂CO₃ (2.12 g, 15.3 mM) in dry benzene (500 mL) was refluxed for 4 days under argon. After quenched with 10% HCl aq (500 mL) under ice-cooling the mixture was extracted with ethyl acetate (500 mLx3). The organic solution was washed with water (500 mL) and brine (500 mL), dried over MgSO₄, and evaporated. Washing the residue with Et₂O gave pale yellow powder (4.51 g, 84%), a part of which was purified by column chromatography on SiO₂ (benzene : ethyl acetate=20 : 1) to give colorless prisms, mp 190-195 °C (During the mp measurement the crystal forms were changed at 130-134 °C and TLC showed cyclization to **17**). IR 3199, 1734 cm⁻¹; ¹H NMR δ 1.88 (3H, dq, *J*=6.8, 1.2 Hz, 3'-Me), 1.98 (3H,

dq, *J*=1.2, 1.2 Hz, 2'-Me), 3.47 (3H, s, OMe), 5.99 (1H, s, 3-H), 6.21 (1H, dq, *J*=6.8, 1.2 Hz 37H), 6.26 (1H, s, 6-H), 7.23-7.26 (2H, m, ArH), 7.37-7.39 (3H, m, ArH); ¹³C NMR δ 13.1, 14.3, 55.6, 96.1, 102.6, 104.3, 112.5, 126.9, 127.5, 128.0, 134.7, 139.6, 139.7, 155.6, 156.5, 159.0, 161.8, 166.6, 200.6; EIMS *m*/*z* 350 (M⁺, 47%); HRFABMS *m*/*z* 351.1214, calcd for C₂₁H₁₉O₅ 351.1233.

5,7-Dihydroxy-4-propylcoumarin. To an ice-cooled and stirred trifluorosufonic acid (1.5 mL, 17 mM) were mutually and portionwise (five times) added 1,3,5-trihydroxybenzene (1.00 g, 7.93 mM) and ethyl 3-propyl-3-oxopropionic acid (1.3 mL, 8.12mM), and then the whole was stirred at rt for 12 h. After addition of ice-water (10 mL) the aqueous mixture was triturated with glass rod and separated solid was filtered and washed with hexane to give dihydroxycoumarin as pale yellow powder (1.49 g, 86%), which was used to next step without purification. A part of solid was recrystallized from ethyl acetate to give pale yellow powder, mp 244 °C (lit. mp 236-238 °C).

Lit. Chenera, B.; West, M. L.; Finkelstein, J. A.; Dreyer, G. B. J. Org. Chem. 1993, 58, 5605-5606

5,7-Dimethoxy-4-propylcoumarin (7). A mixture of dihydroxycoumarin (3.08 g, 14 mM), dimethyl sulfate (3.3 mL, 34.9 mM), and K₂CO₃ (4.85 g, 2.51 mM) in DMF (60 mL) was stirred at rt for 1 h. After adition of 10% NH₄OH aq (200 mL) the whole was stirred at rt for 1 h and extracted with ethyl acetate (200 mLx3). The organic solution was washed with water (200 mLx3) and brine (200 mL), dried over MgSO₄, and evaporated. Washings the residue with hexane afforded colorless solid (3.03 g, 87%), mp 119-120 °C; IR 1707 cm⁻¹; ¹H NMR δ 1.01 (3H, t, *J*=7.3 Hz, CH₂*Me*), 1.53-1.66 (2H, m, CH₂*CH*₂Me), 2.86 (2H, t, *J*=7.6 Hz, CCH₂CH₂), 3.85 (3H, s, OMe), 3.87 (3H, s, OMe), 5.98 (1H, s, 3-H), 6.31 (1H, d, *J*=2.5 Hz, 8-H), 6.46 (1H, d, *J*=2.5 Hz, 6-H); EIMS *m*/z 248 (M⁺, 100%); Anal. Calcd for C₁₄H₁₆O₄: C, 67.73; H, 6.50. Found: C, 67.71; H, 6.49.

5,7-Dimethoxy-4-propyl-8-tigloylcoumarin. A solution of tin (IV) chloride (2.0 mL, 17.1 mM) in CH_2Cl_2 (2.5 mL) was slowly added to a solution of **7** (1.01 g, 4.08 mM) and tigloyl chloride (1.19 g, 10.1 mM) in CH_2Cl_2 (5 mL) under -10 °C, and then the whole was stirred under ice-cooling

for 7 days. After quenched with ice-water (10 mL) the mixture was evaporated. to dryness. Washing the residue with EtOH afforded colorless prisms (0.613 g, 46%), mp 145-149 °C. After evaporation of washings the residue was purified by column chromatography (benzene : ethyl acetate=20 : 1) followed by recrystallization from EtOH gave an additional coumarin as colorless prisms (0.377 g, 26%; total 1.00g, 72%). IR 1718, 1654 cm⁻¹; ¹H NMR δ 1.02 (3H, t, *J*=7.3 Hz, CH₂Me), 1.62 (2H, tq, J=7.3, 7.3 Hz, CH₂CH₂Me), 1.84 (3H, d, *J*=7.1 Hz, 3'-Me), 1.95 (3H, s, 2'-Me), 2.85 (2H, t, J=7.5 Hz, (C)CH₂CH₂), 3.85 (3H, s, OMe), 3.95 (3H, s, OMe), 5.95 (1H, s, 3-H), 6.33 (1H, s, 6-H), 6.43 (1H, qq, *J*=7.1, 1.3 Hz, 3'-H); ¹³C NMR δ 10.6, 14.1, 15.1, 22.8, 38.6, 56.0, 56.1, 91.1, 103.8, 111.0, 111.2, 139.6, 143.1, 153.1, 157.6, 159.1, 159.2, 160.2, 194.3; Anal. Calcd for C₁₉H₂₂O₅: C, 69.07; H, 6.71. Found: C, 68.95; H, 6.80.

7-Hydroxy-5-methoxy-4-propyl-8-tigloylcoumarin (8). A suspension of the tigloylcoumarin (6.47 g, 19.6 mM), MgI₂ (5.56 g, 19.6 mM), and K₂CO₃ (3.70 g, 26.8 mM) in dry benzene (500 mL) was refluxed for 4 days under argon. After quenched with 10% HCl aq (300 mL) under ice-cooling the mixture was extracted with ethyl acetate (300 mLx3). The organic solution was washed with water (300 mL) and brine (300 mL), dried over MgSO₄, and evaporated. Washing the residue with Et₂O gave pale yellow powder (5.63 g, 91%), mp 122-124 °C (After measurement of mp TLC showed cyclization to **9**). IR 3199, 1734 cm⁻¹; ¹H NMR δ 1.02 (3H, t, *J*=7.3 Hz, CH₂<u>Me</u>), 1.62 (2H, dif.tq, *J*=7.3 Hz, CH₂C<u>H</u>₂Me), 1.84 (3H, dd, *J*=7.0, 1.2 Hz, 3'-Me), 1.98 (3H, d, *J*=1.1 Hz, 2'-Me), 2.86 (2H, t, J=7.5 Hz, (C)C<u>H</u>₂CH₂), 3.94 (3H, s, OMe), 5.98 (1H, s, 3-H), 6.16 (1H, qq, *J*=7.0, 1.2 Hz 37H), 6.36 (1H, s, 6-H); ¹³C NMR δ13.0, 14.1, 14.4, 22.8, 38.8, 56.2, 96.1, 103.5, 104.7, 110.7, 134.9, 139.4, 156.3, 158.1, 159.4, 162.3, 165.5, 200.5; EIMS *m*/*z* 316 (M⁺, 47%); HRFABMS *m*/*z* 317.1361, calcd for C₁₈H₂₁O₅ 317.1389.

Conditions for Chiral HPLC

(8*S*,9*S*)-8,9-Dihydro-8,9-dimethyl-5-methoxy-4-phenyl-2*H*,10*H*-benzo[1,2-*b*;5,6-*b*']dipyran -2,10-dione [*trans*-(-)-17]. DAICEL CHIRALPAK AD-RH (MeOH: 1 mL/min, 254 nm): 9.6 and 13.2 min, 47% ee of the former peak.

(8*R*,9*S*)-8,9-Dihydro-8,9-dimethyl-5-methoxy-4-phenyl-2*H*,10*H*-benzo[1,2-*b*;5,6-*b*']dipyran -2,10-dione [*cis*-(+)-17]. DAICEL CHIRALPAK AD-RH (MeOH: 0.2 mL/min, 254 nm): 42.9 and 46.2 min, 97% ee of the latter peak.

(10*R*,11*R*)-10,11-Dihydro-4-phenyl-6,6'10,11-tetramethyl-2*H*,6*H*,12*H*-benzo[1,2-*b*;3,4-*b*';5, 6-*b*'']tripyran-2,12-dione [(+)-Inophyllum C] [*trans*-(+)-19] DAICEL CHIRALPAK AD-RH (MeOH: 1 mL/min, 254 nm): 4.6 and 5.9 min, 88% ee of the latter peak.

(10*R*,11*S*)-10,11-Dihydro-4-phenyl-6,6'10,11-tetramethyl-2*H*,6*H*,12*H*-benzo[1,2-*b*;3,4-*b*';5, 6-*b*'']tripyran-2,12-dione [(+)-Inophyllum E] [*cis*-(+)-19]: DAICEL CHIRALPAK AD-RH (MeOH: 0.1 mL/min, 254 nm): 45.9 and 51.9 min, 84% ee of the former peak.

(8S,9S)-8,9-Dihydro-8,9-dimethyl-5-methoxy-4-propyl-2*H*,10*H*-benzo[1,2-*b*;5,6-*b*']dipyran -2,10-dione [*trans*-(-)-9]: DAICEL CHIRALPAK AD-RH (MeOH: 0.2 mL/min, 254 nm): 20.3 and 22.3 min, 39% ee of the former peak.

(8*R*,9*S*)-8,9-Dihydro-8,9-dimethyl-5-methoxy-4-propyl-2*H*,10*H*-benzo[1,2-*b*;5,6-*b*']dipyran -2,10-dione [*cis*-(+)-9]: DAICEL CHIRALPAK AD-RH (MeOH: 0.2 mL/min, 254 nm): 17.9 and 19.3 min, 98% ee of the former peak.

(10*R*,11*R*)-10,11-Dihydro-4-propyl-6,6'10,11-tetramethyl-2*H*,6*H*,12*H*-benzo[1,2-*b*;3,4-*b*';5, 6-*b*'']tripyran-2,12-dione [*trans*-(+)-13]: DAICEL CHIRALPAK AD-RH (MeOH: 0.2 mL/min, 254 nm) 14.0 and 15.1 min, 90% ee of the latter peak.