The Use of Thiazoles in the Halogen Dance Reaction: Application to the Total Synthesis of WS75624 B

Supporting Info

Eric L. Stangeland and Tarek Sammakia,*
Department of Chemistry and Biochemistry, University of Colorado
Boulder, Colorado 80309-0215

General: All moisture sensitive reactions were conducted under a nitrogen atmosphere in oven-dried glassware using solvents purified according to standard procedures. ${ }^{1}{ }^{1} \mathrm{H}$ NMR spectra were obtained at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR spectra at 125 MHz with ${ }^{1} \mathrm{H}$ decoupling (WALTZ) in chloroform- d, with chemical shifts reported in parts per million referenced to residual chloroform (δ $=7.24$ for ${ }^{1} \mathrm{H}$ and 77.00 for ${ }^{13} \mathrm{C}$). Infrared spectra were recorded as thin films on NaCl plates. Melting points are uncorrected.

2-Triisopropylsilylthiazole (10). 2-Bromothiazole ($6,492 \mathrm{mg}, 3.0 \times 10^{-3} \mathrm{~mol}, 1$ equiv) was added dropwise to $n-\operatorname{BuLi}\left(2.26 \mathrm{~mL}, 1.46 \mathrm{M}\right.$ in hexanes, 1.1 equiv) in THF $(8 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The solution was allowed to stir for 1 hour, and then triisopropylsilyl triflate $\left(1.29 \mathrm{~mL}, 3.9 \times 10^{-3} \mathrm{~mol}\right.$, 1.3 equiv) was added dropwise over 1 minute. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour, and allowed to come to room temperature. The reaction was diluted with ethyl acetate, and washed with saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure. Purification by flash chromatography $\left(\mathrm{SiO}_{2}, 2 / 1\right.$ hexanes/chloroform) provided 2triisopropylthiazole (10) (480 mg, 66\%); $R f=0.5$ (10/1 hexanes/ethyl acetate); IR: 2945, 2867, $1463 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}), 1.44(\mathrm{sept}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 11.68,18.45$, 120.96, 145.38, 169.90. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NSSi} \mathrm{C}, 59.69$ H, 9.60; N, 5.80; S, 13.28. Found C, 59.73; H, 9.86; N, 5.68; S, 13.68.

5-Bromo-2-triisopropylsilyl Thiazole (11). $n-\operatorname{BuLi}(0.71 \mathrm{~mL}, 1.60 \mathrm{M}$ in hexanes, 1.6 equiv) was added dropwise to 2-triisopropylsilyl thiazole ($\mathbf{1 0}, 170 \mathrm{mg}, 7.0 \times 10-4 \mathrm{~mol}, 1$ equiv) in THF (8 $\mathrm{mL})$ at $-78^{\circ} \mathrm{C}$. The solution was allowed to stir for 2 hours, and then bromine ($108 \mu \mathrm{~L}, 2.1 \times 10^{-3}$ mol, 3 equiv) was added dropwise over 1 minute. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour, and then allowed to come to room temperature. The reaction was diluted with ethyl acetate, and washed with saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure. Purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes then 100/1 hexanes/ethyl acetate) provided 5-bromo-2-triisopropylthiazole (11) ($187 \mathrm{mg}, 83 \%$); $R f=0.8$ ($50 / 1$ hexanes/ethyl acetate); IR: 2949, 2867, 1462, $1444 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}), 1.39$ (sept, $J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $\left.3,125 \mathrm{MHz}\right) \delta 11.54,18.39,111.59,146.49,173.44$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22}$ BrNSSi C, 44.99; H, 6.92; N, 4.37. Found C, 44.94; H, 7.10; N, 4.28.

4-Bromo-2-Triisopropylsilylthiazole (14). 5-Bromo-2-triisopropylsilyl thiazole (11, 77 mg , $2.4 \times 10^{-4} \mathrm{~mol}$, 1 equiv) in THF (3 mL) was added dropwise to a solution of LDA in THF (5 mL) prepared from diisopropylamine ($50 \mathrm{~mL}, 3.6 \times 10^{-4} \mathrm{~mol}, 1.5$ equiv) and $n-\mathrm{BuLi}(0.18 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes, 1.2 equiv) at $-78^{\circ} \mathrm{C}$. The solution was allowed to stir for 3 hours, and then quenched with water. The reaction was diluted with ethyl acetate, and the organic layer was washed with saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure. Purification by flash chromatography (SiO 2 , hexanes then 100/1 hexanes/ethyl acetate) provided 4-bromo-2triisopropylthiazole (14) ($66 \mathrm{mg}, 86 \%$); $R f=0.9$ ($50 / 1$ hexanes/ethyl acetate); IR (neat): 2945, 2867, $1462,1443 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.11(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}), 1.43$ (sept, $J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 11.54,18.40,119.05,127.96,172.05$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{BrNSSi} \mathrm{C}, 44.99 ; \mathrm{H}, 6.92 ; \mathrm{N}, 4.37 ; \mathrm{S}, 10.01$. Found C, $45.28 ; \mathrm{H}, 7.18 ; \mathrm{N}, 3.97$; S, 10.01.

4-Bromo-5-triisopropylsilylthiazole (15). n - $\mathrm{BuLi}(0.85 \mathrm{~mL}, 1.58 \mathrm{M}$ in hexanes, 2.2 equiv) was added dropwise to diisopropylamine ($0.21 \mathrm{~mL}, 1.46 \times 10^{-3} \mathrm{~mol}, 2.4$ equiv) in THF (8 mL) at $0{ }^{\circ} \mathrm{C}$. After stirring for 15 minutes, the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Triisopropylsilyl chloride (0.14 $\mathrm{mL}, 6.7 \times 10^{-4} \mathrm{~mol}, 1.1$ equiv) was added to the vigorously stirring LDA solution via syringe followed by 2 -bromothiazole ($6,55 \mu \mathrm{~L}, 6.1 \times 10^{-4} \mathrm{~mol}$, 1 equiv) via syringe over 5 seconds. The light yellow solution was stirred for 2 hours at $-78^{\circ} \mathrm{C}$. The reaction was then quenched with water at $-78^{\circ} \mathrm{C}$, and allowed to come to room temperature. The reaction was diluted with ethyl acetate, and the organic layer was washed with $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$, saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure. Purification by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, 100/1 hexanes/diethyl ether) provided 4-bromo-5-triisopropylsilyl thiazole (15) ($166 \mathrm{mg}, 85 \%$ yield). $R f=0.6$ (10:1 hexanes/ethyl acetate); IR (neat): 2942, $1434 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ MHz) $\delta 1.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 18 \mathrm{H}), 1.56(\mathrm{sept}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 125 MHz) d 12.34, 18.59, 124.39, 133.15, 157.52.

(S)-4-Methyl- $\boldsymbol{\gamma}$-butyrolactone (21). ${ }^{2}$ Ethyl levulinate ($14.84 \mathrm{~g}, 0.103 \mathrm{~mol}, 1.0$ equiv), ethanol $(15 \mathrm{~mL})$, and $\mathrm{HCl}(512 \mu \mathrm{~L}, 1.0 \mathrm{M}$ aqueous, $0.5 \%)$ were degassed with nitrogen for 1 hour then transferred to a flask containing $\mathrm{RuCl}_{2}-(S)$-BINAP•Et3N $\left(46 \mathrm{mg}, 5.1 \times 10^{-5} \mathrm{~mol}, 0.05 \%\right)$. After the catalyst had dissolved, the solution was transferred via cannula under nitrogen atmosphere to a stainless steel bomb reactor equipped with a glass insert. The reactor was purged 3 x with hydrogen, and placed under 1400 psi hydrogen pressure and brought to $50{ }^{\circ} \mathrm{C}$ for 5 days, with occasional recharging of hydrogen pressure. After 5 days, the pressure was released and the reaction was concentrated to an oil. Kugelrhor distillation ($48{ }^{\circ} \mathrm{C}, 0.5 \mathrm{mmHg}$) provided (S) - 4 -methyl- γ-butyrolactone ($\mathbf{2 1}$) ($9.38 \mathrm{~g}, 9.37 \times 10^{-2} \mathrm{~mol}, 91 \%$ yield, $>98 \%$ ee by GC using Supleco β dex column). $[\alpha]_{\mathrm{D}}-35.03^{\circ}$ (c $15.3 \mathrm{mg} / \mathrm{mL}^{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): 2978, 1774, $1197 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.38(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 21.04,29.06,29.69,77.21,177.17$.

(S)-Ethyl-6-hydroxy-hept-2-enoate (22). (S)-4-Methyl- $\boldsymbol{\gamma}$-butyrolactone (21) (6.0 g, 6.0×10^{-2} mol, 1.0 equiv) was dissolved in THF (240 mL) under a nitrogen atmosphere and cooled to $-78{ }^{\circ} \mathrm{C}$. Diisobutylaluminum hydride ($63 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes, 1.05 equiv) was added dropwise over a period of 20 minutes, and the reaction was stirred an additional hour. To a separate flask containing a slurry of sodium hydride ($2.87 \mathrm{~g}, 1.2 \times 10^{-1} \mathrm{~mol}, 2.0$ equiv $)$ in THF $(400 \mathrm{~mL})$ under a nitrogen atmosphere, triethyl phosphonoactetate ($13.08 \mathrm{~mL}, 6.6 \times 10^{-2} \mathrm{~mol}, 1.2$ equiv) was added dropwise over a period of 1 hour with vigorous H_{2} evolution. This mixture was then transferred to the reaction flask via cannula over a period of 30 minutes. The reaction was allowed to come to room temperature and stirred for 18 hours or until the lactol was no longer observed by TLC (lactol: $R f=$ 0.5 , UV, product: $R f=0.6$, UV; 3:2 ethyl acetate/hexanes). The reaction was diluted with hexanes $(300 \mathrm{~mL})$ and $\mathrm{NaOH}(3 \mathrm{~mL}, 10 \mathrm{M})$ was added dropwise by pipet. The reaction was allowed to stir at room temperature for 1 hour at which time a large amount of aluminum salts had precipitated. The reaction mixture was dried with MgSO_{4}, filtered and washed with hexanes, and the filtrate concentrated under reduced pressure. Flash chromatography $\left(\mathrm{SiO}_{2}, 2 / 1\right.$ hexanes/ ethyl acetate) provied (S)-ethyl-6-hydroxy-hept-2-enoate (22) (6.59 g, 63%). $R f 0.6$ (4:6 hexanes/ ethyl acetate); $[\alpha]_{\mathrm{D}}+13.17^{\circ}$ (c $12.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $3436,2970,1718,1653,1204,1046 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{bs}, 1 \mathrm{H}), 1.58$ $(\mathrm{m}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 3.80($ sextet, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.95(\mathrm{dt}, J=6.9,15.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.24,23.62,28.46,37.25$, 60.18, 67.26, 121.55, 148.64, 166.63. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{C}, 62.77$; H, 9.36. Found: C, 63.13; H, 9.76

(S)-Ethyl-6-(triisopropylsiloxy)-hept-2-enoate (23). (S)-Ethyl-6-hydroxy-hept-2-enoate (22, $6.59 \mathrm{~g}, 3.82 \times 10^{-2} \mathrm{~mol}, 1.0$ equiv) and ethyl diisopropyl amine ($13.3 \mathrm{~mL}, 7.64 \times 10^{-2} \mathrm{~mol}, 2.0$ equiv) were dissolved in THF (200 mL). Triisopropylsilyl triflate ($10.79 \mathrm{~mL}, 4.01 \times 10^{-3} \mathrm{~mol}$, 1.05 equiv) was added dropwise over a period of 1 minute, and then stirred an additional hour. The reaction was quenched with water and diluted with ethyl acetate. The organic layer was washed with 1 M HCl , saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure. Flash chromatography $\left(\mathrm{SiO}_{2}, 3 / 1\right.$ hexanes/ethyl acetate) provided (S)-ethyl-6-(triisopropylsiloxy)-hept-2-enoate (23) (12.43 g, 99\%). Rf 0.6 (4:6 hexanes/ ethyl acetate); $[\alpha]_{\mathrm{D}}$ $+5.83^{\circ}$ (c $9.6 \mathrm{mg} / \mathrm{mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): 2942, 1724, 1655, 1463, 1205, $1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.03(\mathrm{~s}, 21 \mathrm{H}), 1.15(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H})$, $2.25(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.97$ (sextet, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.79(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.97(\mathrm{dt}, J=6.8,15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.48,14.28,18.12$, 23.36, 27.87, 37.92, 60.13, 67.74, 121.16, 149.39, 166.73; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}$; C, 65.80; H, 11.04. Found: C, 65.68; H, 10.82.

(S)-6-(triisopropylsiloxy)-hept-2-en-1-ol (24). Diisobutylaluminum hydride ($25.3 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes, 3.0 equiv) was added dropwise over a period of 10 minutes to a solution of (S)-ethyl-6-(triisopropylsiloxy)-hept-2-enoate ($23,2.77 \mathrm{~g}, 8.42 \times 10^{-3} \mathrm{~mol}, 1.0$ equiv) in THF (50 mL) at $0^{\circ} \mathrm{C}$, and then stirred for 1 hour. The reaction was quenched with water, stirred 1 hour, and then diluted with ethyl acetate. The organic layer was washed with 1 M HCl , saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure. Flash chromatography ($\mathrm{SiO}_{2}, 10 / 1$
hexanes/ethyl acetate) provided (S)-ethyl-6-(triisopropylsiloxy)-hept-2-enol (24) ($2.06 \mathrm{~g}, 85 \%$). $R f$ 0.2 (10:1 hexanes/ethyl acetate); $[\alpha]_{\mathrm{D}}+5.00^{\circ}\left(\mathrm{c} 8.3 \mathrm{mg} / \mathrm{mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (neat): 3323, 2962, 1463, $1012 \mathrm{~cm}^{-1} \mathrm{~F}^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.03(\mathrm{~s}, 21 \mathrm{H}), 1.14(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{bs}, 1 \mathrm{H})$, $1.53(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.93($ sextet, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.66$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.52,18.15,23.43,27.99,39.22,63.84,68.02,128.84$, 133.39; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si} ; \mathrm{C}, 67.07 ; \mathrm{H}, 11.96$. Found: C, $67.07 ; \mathrm{H}, 12.23$.

24

27
(S)-6-(triisopropylsiloxy)-hept-2-en-1-para-toluenesulfonate (27). n - $\mathrm{BuLi}(7.53 \mathrm{~mL}, 1.46$ M, 1.05 equiv) was added dropwise to a solution of (S)-ethyl-6-(triisopropylsiloxy)-hept-2-en-1-ol $\left(\mathbf{2 4}, 3.0 \mathrm{~g}, 1.05 \times 10^{-2} \mathrm{~mol}, 1.0\right.$ equiv) in THF $(45 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 5 minutes, the solution was transfered via cannula to a solution of p-toluenesulfonic anhydride $\left(3.76 \mathrm{~g}, 1.16 \times 10^{-3} \mathrm{~mol}, 1.1\right.$ equiv) in THF (45 mL) over a period of 10 minutes. After an additional 15 minutes of stirring, CuI ($54 \mathrm{mg}, 2.88 \times 10^{-3} \mathrm{~mol}, 0.1$ equiv) was added while purging with nitrogen, and the solution was cannulated directly to the following reaction mixture without isolation.

1-(4-Bromo-5-triethylsilyl-2-thiazolyl)-6-(S)-triisopropylsiloxy-hept-2-ene (29). n-BuLi ($25.8 \mathrm{~mL}, 1.46 \mathrm{M}$ in hexanes, 3.6 equiv) was added dropwise to diisopropylamine ($5.87 \mathrm{~mL}, 4.2 \mathrm{x}$ $10^{-2} \mathrm{~mol}, 4.0$ equiv) in THF (100 mL) at $0{ }^{\circ} \mathrm{C}$. After stirring for 15 minutes, the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. Triethylsilylchloride ($3.07 \mathrm{~mL}, 1.83 \times 10^{-3} \mathrm{~mol}, 1.75$ equiv) was added to the vigorously stirred LDA via syringe followed by 2-bromothiazole ($\mathbf{6}, 1.60 \mathrm{~mL}, 1.8 \times 10^{-2} \mathrm{~mol}, 1.7$ equiv) via syringe over a period of 5 seconds. The light yellow solution was stirred for 2 hours at $-78{ }^{\circ} \mathrm{C}$. The (S)-6-(triisopropylsiloxy)-hept-2-en-1-tosylate (27) solution as prepared above was then transferred via cannula to the reaction mixture and stirred for 18 hours at $-78{ }^{\circ} \mathrm{C}$. The reaction was quenched with water at $-78^{\circ} \mathrm{C}$, and allowed to come to room temperature. The reaction mixture was diluted with ethyl acetate, washed with $1 \mathrm{M} \mathrm{H}_{4} \mathrm{OH}$, saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure. Flash chromatography ($\mathrm{SiO}_{2}, 100 / 1$ hexanes/diethyl ether) provided 1-(4-bromo-5-triethylsilyl-2-thiazolyl)-6-(S)-triisopropylsiloxy-hept-2-ene (29) ($2.41 \mathrm{~g}, 42 \%$ yield from (S)-ethyl-6-(triisopropylsiloxy)-hept-2-enol, 24). Rf 0.4 ($50: 1$ Hexanes/Diethyl ether); $[\alpha]_{\mathrm{D}}+3.11^{\circ}$ (c $11.9 \mathrm{mg} / \mathrm{mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): 2956, 1465, 1016 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}^{2}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.88(\mathrm{~m}, 6 \mathrm{H}), 0.96(\mathrm{~m}, 9 \mathrm{H}), 1.04(\mathrm{~s}, 21 \mathrm{H}), 1.15(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 3 \mathrm{H}), 1.53(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.94$ (sextet, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 3.72,7.28,12.50,18.15,23.39,28.24,36.62,39.16$, 67.97, 124.38, 125.26, 130.48, 135.53, 175.61; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{48} \mathrm{BrNOSSi}_{2} ; \mathrm{C}, 54.91 ; \mathrm{H}$, 8.85; N, 2.56; S, 5.86. Found: C, 54.86; H, 8.73; N, 2.54; S, 5.75.

1-(4-Bromo-5-triethylsilyl-2-thiazolyl)-6-(S)-triisopropylsiloxy-heptane. 1-(4-Bromo-5-triethylsilyl-2-thiazolyl)-6-(S)-triisopropylsiloxy-hept-2-ene (29) ($1.50 \mathrm{~g}, 2.74 \times 10^{-3} \mathrm{~mol}, 1.0$ equiv) was placed in a round bottom flask with p-toluenesulfonohydrazine ($5.11 \mathrm{~g}, 2.74 \times 10^{-2} \mathrm{~mol}$, 10 equiv) and DME (50 mL). The solution was brought to reflux, then sodium acetate ($7.46 \mathrm{~g}, 5.5$ x $10^{-2} \mathrm{~mol}, 20$ equiv) in water (30 mL), was added dropwise over a period of 6 hours via cannula. The solution was heated to reflux for 18 hours, cooled, and diluted with ethyl acetate (50 mL). The
organic layer was washed with saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure. Flash chromatography ($\mathrm{SiO}_{2}, 100 / 1$ hexanes/diethyl ether) provided 1-(4-Bromo-5-triethylsilyl-2-thiazolyl)-6-(S)-triisopropylsiloxy-heptane ($1.40 \mathrm{~g}, 93 \%$). Rf 0.4 ($50: 1$ hexanes/diethyl ether); $[\alpha]_{\mathrm{D}}+1.73^{\circ}$ (c $11.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): 2940, $1463,1017 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.89(\mathrm{~m}, 6 \mathrm{H}), 0.96(\mathrm{~m}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 21 \mathrm{H}), 1.12(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.40(\mathrm{~m}, 6 \mathrm{H}), 1.76(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89$ (sextet, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 3.74,7.28,12.49,18.14,23.49,24.90,29.36,29.83,33.30,39.71,68.43$, 124.51, 130.28, 176.43; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{50} \mathrm{BrNOSSi}_{2} ; \mathrm{C}, 54.71 ; \mathrm{H}, 9.18$; N, 2.55; S, 5.84. Found: C, 54.89; H, 9.08; N, 2.39; S, 6.19.

30
1-(4-Bromo-2-thiazolyl)-6-(S)-triisopropylsiloxy-heptane. 1-(4-Bromo-5-triethylsilyl-2-thiazolyl)-6-(S)-triisopropylsiloxy-heptane ($1.33 \mathrm{~g}_{2} 2.42 \times 10^{-3} \mathrm{~mol}, 1.0$ equiv) was dissolved in 20 mL methanol and $10 \mathrm{M} \mathrm{NaOH}\left(2.4 \mathrm{~mL}, 2.4 \times 10^{-2} \mathrm{~mol}, 10\right.$ equiv) and stirred for 18 hours at room temperature. The reaction was diluted with 25 mL ethyl acetate and washed with saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure. Flash chromatography (SiO_{2}, 100/1 hexanes/diethyl ether) provided 1-(4-Bromo-2-thiazolyl)-6-(S)-triisopropylsiloxy-hept-2-ene ($1.01 \mathrm{~g}, 85 \%$). Rf 0.4 ($50: 1$ hexanes/diethyl Ether); $[\alpha]_{\mathrm{D}}-1.09^{\circ}$ (c $12.9 \mathrm{mg} / \mathrm{mL}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat): $2940,1482,1050,884 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $1.03(\mathrm{~s}, 21 \mathrm{H}), 1.12(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 6 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.89$ (sextet, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{2}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.49,18.15,23.50,24.89$, $29.23,29.84,33.56,39.70,68.41,115.62,124.11,172.73$; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{50} \mathrm{BrNOSSi}_{2} ; \mathrm{C}$, $52.51 ;$ H, 8.35 ; N, 3.22; S, 3.68. Found: C, 52.47; H, 8.22; N, 3.05; S, 7.69.

1-(4-Tributyltin-2-thiazolyl)-6-(S)-triisopropylsiloxy-heptane. t-BuLi $(981 \mu \mathrm{~L}, 1.7 \mathrm{M}$ in pentane, 1.1 equiv) was added dropwise to a solution of 1-(4-Bromo-2-thiazolyl)-6-(S)-triisopropylsiloxy-heptane ($\mathbf{3 0}, 659 \mathrm{mg}, 1.52 \times 10^{-3} \mathrm{~mol}, 1.0$ equiv) and tributyltin chloride (354 $\mu \mathrm{L}, 2.13 \times 10^{-3} \mathrm{~mol}, 1.4$ equiv) in THF $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution was stirred for 1 hour at $-78{ }^{\circ} \mathrm{C}$, and then allowed to come to room temperature. The reaction was diluted with ethyl acetate $(15 \mathrm{~mL})$ and stirred for 1 hour with saturated aqueous KF $(3 \mathrm{~mL})$. The organic layer was washed with saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure to provide 843 mg of crude 1-(4-tributyltin-2-thiazolyl)-6-(S)-triisopropylsiloxy-heptane (31) which was used without purification (attempted flash chromatography resulted in significant amounts of destannylation) in the following reaction.

6-(2-(6-(S)-Triisopropylsiloxy-heptane)-4-thiazolyl)-4,5-dimethoxy-2-pyridine
Carboxylic Acid N, N-Diisopropylamide (32). A solution of crude 1-(4-tributyltin-2-thiazolyl)-6-(S)-triisopropylsiloxy-heptane (31, 843 mg) and 6-iodo-4,5-dimethoxy-2-pyridine carboxylic acid N, N-diisopropylamide (5) ${ }^{3}\left(535 \mathrm{mg}, 1.37 \times 10^{-3} \mathrm{~mol}, 0.9\right.$ equiv) in dimethylacetamide (DMA) (15 mL) was added to tetrakistriphenylphosphine palladium (175 mg , $1.52 \times 10^{-4} \mathrm{~mol}, 0.1$ equiv), $\mathrm{CuI}\left(29 \mathrm{mg}, 1.52 \times 10^{-4} \mathrm{~mol}, 0.1\right.$ equiv), and $\mathrm{LiCl}\left(128 \mathrm{mg}, 3.04 \times 10^{-}\right.$
$3 \mathrm{~mol}, 2.0$ equiv) under nitrogen. The solution was brought to $70{ }^{\circ} \mathrm{C}$ for 24 hours in an oil bath. Upon cooling, the DMA was distilled off under reduced pressure. The residue was dissolved in ethyl acetate (10 mL), and stirred for 1 hour with saturateed aqueous KF $(15 \mathrm{~mL})$. The organic layer was washed with saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure. Flash chromatography $\left(\mathrm{SiO}_{2}, 9 / 1\right.$ chloroform/ethyl acetate) provided 6-(2-(6-(S)-triisopropylsiloxy-heptane)-4-thiazolyl)-4,5-dimethoxy-2-pyridine carboxylic acid N, N diisopropylamide (32, $447 \mathrm{mg}, 6 \times 10^{-4} \mathrm{~mol}, 53 \%$). Rf 0.2 ($9 / 1$ chloroform/ethyl acetate); $[\alpha]_{\mathrm{D}}$ -1.58° (c $13.9 \mathrm{mg} / \mathrm{mL}$, chloroform); ${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.03(\mathrm{~s}, 21 \mathrm{H}), 1.13(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.34-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.53(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) 1.84(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.55$ (septet, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.55$ (sextet, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}), 4.30$ (septet, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $12.49,18.15,20.60,20.94,23.52,25.06,29.39,29.80,33.56,39.79,46.30,50.78,56.07,60.89$, $68.50,106.94,119.40,143.78,144.60,151.68,152.35,160.21,168.07,170.21$. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{SSi}: \mathrm{C}, 63.93 ; \mathrm{H}, 9.27 ; \mathrm{N}, 6.78 ; \mathrm{S}, 5.17$. Found: C, $64.11 ; \mathrm{H}, 9.44 ; \mathrm{N}, 6.46 ; \mathrm{S}, 5.11$.

6-(2-(6-(S)-Triisopropylsiloxy-heptane)-4-thiazolyl)-4,5-dimethoxy-2-pyridine
Carboxaldehyde. Diisobutylaluminum hydride ($778 \mu \mathrm{~L}, 1.0 \mathrm{M}$ in hexanes, 1.3 equiv) was added to a solution of 6-(2-(6-(S)-triisopropylsiloxy-heptane)-4-thiazolyl)-4,5-dimethoxy-2-pyridine carboxylic acid N, N-diisopropylamide (32, 371 mg, $6.0 \times 10^{-4} \mathrm{~mol}, 1.0$ equiv) in THF (10 mL) at 0 ${ }^{\circ} \mathrm{C}$, and then stirred for 1 hour. The reaction was diluted with hexanes (3 mL) and $\mathrm{NaOH}(600 \mu \mathrm{~L}$, $10 \mathrm{M})$ was added dropwise by syringe. The reaction was allowed to stir at room temperature for 1 hour at which time a large amount of aluminum salts had precipitated. The reaction mixture was dried with MgSO_{4}, filtered and concentrated under reduced pressure to provide 6-(2-(6-(S)-triisopropylsiloxy-heptane)-4-thiazolyl)-4,5-dimethoxy-2-pyridine carboxaldehyde ($295 \mathrm{mg}, 95 \%$) which was used without purification. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.03(\mathrm{~s}, 21 \mathrm{H}), 1.13(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.52(\mathrm{~m}, 6 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H})$, $4.01(\mathrm{~s}, 3 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 10.09(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 12.52$, $18.15,23.43,27.99,39.22,63.84,68.02,128.84,133.39$.

6-(2-(6-(S)-Triisopropylsiloxy-heptane)-4-thiazolyl)-4,5-dimethoxy-2-pyridine
Carboxylic Acid. 6-(2-(6-(S)-Triisopropylsiloxy-heptane)-4-thiazolyl)-4,5-dimethoxy-2-pyridine carboxaldehyde ($167 \mathrm{mg}, 3.2 \times 10^{-4}$ mol, 1.0 equiv), and $\mathrm{NaH}_{2} \mathrm{PO} 4$ ($192 \mathrm{mg}, 1.6 \times 10^{-4} \mathrm{~mol}, 5.0$ equiv) were dissolved in t - $\mathrm{BuOH}(2 \mathrm{~mL}$), water (2 mL) and 2-methyl-2-butene (4 mL). Sodium chlorite ($192 \mathrm{mg}, 1.6 \times 10^{-4} \mathrm{~mol}, 5.0$ equiv) was added in three portions over a period of one minute. The reaction was allowed to stir at room temperature for 2 hours, and then diluted with ethyl acetate. The organic layer was washed with saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure. The crude product was used without purification in the following reaction.

(+)-(S)-WS75624 B, 2b
(+)-(S)-WS75624 B (2b). 6-(2-(6-(S)-Triisopropylsiloxy-heptane)-4-thiazolyl)-4,5-dimethoxy-2-pyridine carboxylic acid ($3.2 \times 10^{-4} \mathrm{~mol}, 1.0$ equiv) and tetrabutylamonium flouride ($251 \mathrm{mg}, 9.6$ $\mathrm{x} 10^{-4} \mathrm{~mol}, 3.0$ equiv) were dissolved in THF (5 mL) and allowed to stir at room temperature overnight. The reaction mixture was diluted with ethyl acetate, and the organic layer was washed with saturated NaHCO_{3}, and brine, dried over MgSO_{4}, and concentrated under reduced pressure. The resulting solid was then recrystallized from hot ethyl acetate to obtain (+)-(S)-WS75624B (2b) (85 mg , 70% yield from 6-(2-(6-((S)-triisopropylsiloxy-heptane)-4-thiazolyl)-4,5-dimethoxy-2pyridine carboxaldehyde) $[\alpha]_{\mathrm{D}}+3.1^{\circ}\left(\mathrm{c} 8.0 \mathrm{mg} / \mathrm{mL}, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta$ $1.13(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.86(\mathrm{pent}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 3.70 (sextet, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 23.52,26.53,30.21,31.34,34.00,39.98,57.44,61.02,68.44,109.17$, $123.83142 .89,144.75,147.36,148.36,163.37,166.63,173.55$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ C, 56.82 ; H, 6.36 ; N, 7.36; S, 8.43. Found: C, 56.46 ; H, 6.23 ; N, 7.18; S, 8.47. The spectral properties for $\mathbf{2 b}$ are identical to those reported in the literature. ${ }^{4}$

[^0]
[^0]: 1 Perrin, D. D. ; Armarego, W. L. F. Purification of Laboratory Chemicals Pergamon: Oxford, 1988.
 2 Ohkuma, T.; Kitamura, M.; Noyori, R. Tetrahedron Lett. 1990, 31, 5509.
 3 For the synthesis of this compound, see: Sammakia, T.; Stangeland, E. L.; Whitcomb, M. C. Org. Lett. 2002; 4; 2385
 4 Yoshimura, S.; Tsurumi, T.; Takase, S.; Okuhara, M. J. Antibiotics 1995, 48, 1073.

