A Flexible Approach to (S)-5-Alkyl-tetramic acid Derivatives: Application to the Asymmetric Synthesis of (+)-Preussin and Protected (3S, 4S)-AHPPA

Pei-Qiang Huang,* Tian-Jun Wu and Yuan-Ping Ruan
Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, P. R. China
E-mail: (pqhuang@xmu.edu.cn)

General Information

Optical rotations were recorded on a Perkin-Elmer 341 automatic polarimeter. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on Varian unity +500 spectrometer. Unless otherwise noted, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were registered in CDCl_{3}, and chemical shifts are expressed in parts per million (δ) relative to internal $\mathrm{Me}_{4} \mathrm{Si}$. IR spectra were recorded on a Nicolet Avatar 360 FT-IR spectrophotometer. Mass spectra were recorded by Bruker Dalton Esquire 3000 plus and Finnigan Mat-LCQ (ESI direct injection). HRFABMS spectra were recorded on a Bruker APEX-FTMS apparatus. Elemental analyses were performed using a Vario RL analyzer. Melting points were determined on a Yanaco MP-500 melting point apparatus and are uncorrected.
Tetrahydrofuran was distilled prior to use from sodium benzophenone ketyl. Methylene chloride was distilled from phosphorus pentoxide. Silica gel (zhifu, 300-400 mesh) from Yantai silica gel factory (China) was used for column chromatography, eluting (unless otherwise stated) with ethyl acetate/petroleum ether (PE) $\left(60-90^{\circ} \mathrm{C}\right)$ mixture.

4-Methoxy-1-(4-methoxybenzyl)-2,5-dihydro-1H-2-azolone (11) MeO

PMB
To a refluxing solution of 4-methoxybenzylamine ($4.68 \mathrm{~g}, 34.2 \mathrm{mmol}$) in MeCN (17.5 mL) were added dropwise methyl (E)-4-chloro-3-methoxy-2-butenoate 10 ($4.5 \mathrm{~g}, 27.4$ $\mathrm{mmol})$ in $\mathrm{MeCN}(17.5 \mathrm{~mL})$ and a solution of $\mathrm{Et}_{3} \mathrm{~N}(3.06 \mathrm{~g}, 30.25 \mathrm{mmol})$ in MeCN $(3.0 \mathrm{~mL})$ in parallel. After completed the additions, the reflux was maintained for 4 h . The mixture was then chilled with an ice-bath, and the precipitate was filtered. The residue was washed with $\mathrm{MeCN}(30 \mathrm{~mL})$, and the combined filtrates were concentrated under reduced pressure. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, acidified with conc. HCl until pH 3 . The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were concentrated under reduced pressure to give a residue, which was subjected to column chromatography on silica gel (EtOAc $/ \mathrm{PE}=3 / 1$) to provided $11(4.524 \mathrm{~g}, 75.4 \%)$ as a white solid. $\mathrm{Mp} 63-65{ }^{\circ} \mathrm{C}$; IR (KBr) $v_{\text {max }}$: 2936, 1682, 1513, 1455, 1353, $1264 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.68$ ($\mathrm{s}, 2 \mathrm{H}$), 3.77 (s, 3H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 173.35,171.99,158.93,129.42,129.23$, 114.00, $94.19,58.04,55.22,49.72,44.70 ; \mathrm{MS}(\mathrm{m} / \mathrm{z}): 256.0\left(\mathrm{M}+\mathrm{Na}^{+}, 100\right), 234.0$
$\left(\mathrm{M}+\mathrm{H}^{+}, 23\right)$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}$: C, 66.94; H, 6.48; $\mathrm{N}, 6.00$. Found: $\mathrm{C}, 67.15$; H, 6.62; N, 5.90.

1-(4-Methoxybenzyl)-pyrrolidine-2,4-dione (12)

0

To 500 mg (2.09 mmol) of finely pulverized $\mathbf{1 1}$ was added a $37 \% \mathrm{HCl}$ solution (5 mL). The resulting solution was stirred at rt for 5 h , then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude was purified by chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1 / 1$) to give $12(432 \mathrm{mg}, 75 \%)$ as a pale yellow oil. IR (KBr) $v_{\text {max }}$: 2921, $1774,1692,1514,1248,1177,1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 3.09(\mathrm{~s}$, $2 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 203.3,168.6,159.5,129.8,127.0,114.3$, 56.6, 55.3, 45.4, 41.7; MS (m/z): $242\left(\mathrm{M}+\mathrm{Na}^{+}, 44\right), 220\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}: \mathrm{C}, 65.74 ; \mathrm{H}, 5.98 ; \mathrm{N}, 6.39$. Found: C, $65.92 ; \mathrm{H}, 6.09 ; \mathrm{N}, 6.55$.

4-[(S)-2-(1-Methoxy-1-ethylpropyl)pyrrolidin-1-yl]-1-(4-methoxybenzyl)-2,5-dihy dro-1H-2-azolone (9)

A solution of $\mathbf{1 2}$ ($470 \mathrm{mg}, 2.29 \mathrm{mmol}$), ((S)-2-(1-methoxy-1-ethylpropyl)-pyrrolidine $13(392 \mathrm{mg}, 2.29 \mathrm{mmol})$, and a catalytic amount of PPTS in benzene (5 mL) was heated to reflux for 24 h with continuing elimination of water using a Dean-Stark apparatus. After removal of the solvent under reduced pressure, the resulting residue was purified by column chromatography on silica gel ($\mathrm{EtOAc}: \mathrm{PE}=3: 1$) to give 9 $(427 \mathrm{mg}, 50.1 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-27.8\left(c 1.2, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\text {max }}$: 2971, 2936, 1666, 1596, 1512, 1457, 1393, 1246, 1174, 1081, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.9\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40-2.02\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 3.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.11-3.16 (m, 1H), 3.22-3.28 (m, 1H), 3.62 (m, 1H), $3.68(\mathrm{~d}, \mathrm{~J}=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 4.00(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 174.2,162.7,158.7$, 130.4, 129.1, 113.9, 90.4, 81.5, 65.8, 55.2, 50.7, 49.3, 44.9, 27.0, 26.2, 23.9, 8.1, 7.4; HRMS (ESI) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 373.2486$; found: 373.2480.

Representative procedure for the alkylation of (\mathbf{S})-9.

To a solution of $(S)-\mathbf{9}(120 \mathrm{mg}, 0.323 \mathrm{mmol})$ in THF [5.5 mL , containing 0.28 mL (1.62 mmol) of HMPA as a co-solvent] was added dropwise t-BuLi $\quad(0.26 \mathrm{~mL}, 0.39$ $\mathrm{mmol}, 1.5 \mathrm{M}$ in pentane) at $-78^{\circ} \mathrm{C}$. After being stirred for 1 h , methyl iodide $(0.2 \mathrm{~mL}$, 3.23 mmol) was added and the stirring continued for an additional 7 h . The reaction was quenched by saturated ammonium chloride (2 mL). The resulting mixture was extracted with ether, and the organic layers were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude was purified by column chromatography on silica gel to give 14b ($109 \mathrm{mg}, 87.4 \%$) as a single regio and diastereomer.

(5RS)-4-[(S)-2-(1-Methoxy-1-ethylpropyl)pyrrolidin-1-yl]-1-(4-methoxybenzyl)-5 -deutero-2,5-dihydro-1H-2-azolone (14a)

14a: Colorless oil. Yield: $78 \% .[\alpha]_{\mathrm{D}}{ }^{20}-26.1\left(c 2.0, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\text {max }}$: 2928, 1665, $1590,1512,1392,1245,1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.83(\mathrm{~m}, 6 \mathrm{H})$, $1.40-2.10(\mathrm{~m}, 8 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.64(\mathrm{~m}$, $1 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.18 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 174.3,162.7,158.7,130.5$, 129.2, 113.9, $90.5,81.5,65.8,55.3,50.6,49.4,44.9,27.0,26.2,24.0,8.2,7.5$; MS $(\mathrm{m} / \mathrm{z}): 396\left(\mathrm{M}+\mathrm{Na}^{+}, 20\right), 374\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; HRMS calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{DN}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$: 374.2548; found: 374.2539 .
(5S)-4-[(S)-2-(1-Methoxy-1-ethylpropyl)pyrrolidin-1-yl]-1-(4-methoxybenzyl)-5-methyl-2,5-dihydro-1H-2-azolone (14b)

14b: Colorless oil. Yield: $87.4 \% .[\alpha]_{D}{ }^{20}+30.2\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\text {max }}$: 2932, 1666, 1592, 1511, 1388, 1245, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.85(\mathrm{~m}$, $6 \mathrm{H}), 1.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-2.08(\mathrm{~m}, 8 \mathrm{H}), 3.10-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.2(\mathrm{~s}, 3 \mathrm{H})$, $3.26-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 172.6,168.4,158.7,130.3,129.1,113.9$, 91.4, 81.5, 66.1, 55.7, 55.2, 51.2, 50.2, 42.2, 26.6, 25.8, 24.7, 17.0, 8.4, 7.8; HRMS (ESI) calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 387.2642$; found: 387.2635.
(5S)-4-[(S)-2-(1-Methoxy-1-ethylpropyl)-1-pyrrolidinyl]-1-(4-methoxybenzyl)-5-

14c: Colorless oil. Yield: $71 \% .[\alpha]_{\mathrm{D}}{ }^{20}+29.7\left(c 1.1, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr}) v_{\text {max }}$: 2957, 2922, 1663, 1591, 1509, 1407, 1242, $1026 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.85(\mathrm{~m}$, $9 \mathrm{H}), 1.08-2.06(\mathrm{~m}, 14 \mathrm{H}), 3.13-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.35(\mathrm{~m}, 1 \mathrm{H})$, $3.64-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H})$, $5.11(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 173.4,166.6,158.8,130.3,129.2,113.9,93.1,81.5,66.4,59.4$, $55.3,51.7,50.1,42.53,28.4,26.6,25.7,24.9,24.7,24.0,22.6,14.0,8.4,7.8$; HRMS (ESI) calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}$: 429.2642; found: 429.2635; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 72.86; H, 9.41; N, 6.54. Found: C, 73.06; H, 9.42; N, 6.60.
(5S)-4-[(S)-2-(1-Methoxy-1-ethylpropyl)pyrrolidin-1-yl]-1-(4-methoxybenzyl)-5-methyl-2,5-dihydro-1H-2-azolone (14d)

14d: Colorless oil. Yield: 69 \%. $[\alpha]_{\mathrm{D}}{ }^{20}+38.8\left(c 1.9, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\text {max }}$: 2931, 1667, 1593, 1512, 1382, 1246, 1174, $1090 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 0.85$ $(\mathrm{m}, 9 \mathrm{H}), 1.08-2.06(\mathrm{~m}, 18 \mathrm{H}), 3.12-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.34(\mathrm{~m}, 1 \mathrm{H})$, 3.63-3.70 (m, 1H), $3.8(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.94(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~s}$, $1 \mathrm{H}), 5.09(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 173.3,166.6,158.7,130.3,129.3,113.9,93.2,81.5$, 66.4, 59.4, 55.3, 51.7, 50.2, 42.5, 31.8, 29.2, 28.7, 26.7, 25.7, 25.0, 24.7, 22.5, 21.8, 14.1, 8.5, 7.8; Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 73.64; H, 9.71; N, 6.13. Found: C, 73.28; H, 9.74; N, 6.38.
(5S)-4-[(S)-2-(1-Methoxy-1-ethylpropyl)pyrrolidin-1-yl]-1-(4-methoxybenzyl)-5-allyl-2,5-dihydro-1H-2-azolone (14e)

14e: Pale yellow oil. Yield: 77%. $[\alpha]_{\mathrm{D}}{ }^{20}+39.9$ (c 1.2, CHCl_{3}); IR (KBr) $v_{\text {max }}$: 2929, 1667, 1592, 1512, 1379, 1246, $1175 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.86(\mathrm{~m}$,
$6 \mathrm{H}), 1.20-2.10(\mathrm{~m}, 8 \mathrm{H}), 2.38-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.70(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~s}$, $3 \mathrm{H}), 3.64-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=15.3 \mathrm{~Hz}, \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~s}$, $1 \mathrm{H}), 5.10(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.18 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 173.1,166.3,158.7,157.3$, $138.9,131.4,129.2,118.7,113.9,110.9,93.0,92.8,86.0,81.6,66.5,58.8,58.8,56.4$, $55.2,51.6,50.5,42.5,41.9,33.5,26.6,25.7,24.9,24.5,8.5,7.8 ; \mathrm{MS}(\mathrm{m} / \mathrm{z}): 435$ $\left(\mathrm{M}+\mathrm{Na}^{+}, 16\right), 413\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; HRMS calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 413.2799$; found: 413.2797.
(5S)-4-[(S)-2-(1-Methoxy-1-ethylpropyl)pyrrolidin-1-yl]-1-(4-methoxybenzyl)-5-ethyoxylcarboxylethyl-2,5-dihydro-1H-2-azolone (14f)

14f: Pale yellow oil. Yield: 84.2%. $[\alpha]_{\mathrm{D}}{ }^{20}+11.8\left(c 0.7, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\text {max }}$ 2925, 1733, 1671, 1596, 1377, 1246, 1174, $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, two rotamers, M: $\mathrm{m}=11: 1) \delta: 0.85(\mathrm{~m}, 6 \mathrm{H}), 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-2.08(\mathrm{~m}, 8 \mathrm{H})$, $2.42-2.52(\mathrm{dd}, J=15.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{M}), 2.54-2.60(\mathrm{dd}, J=15.5,8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{m})$, 2.65-2.71 (dd, $J=15.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{m}), 2.76-2.84(\mathrm{~d}, \operatorname{brd}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{M})$, $3.16-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{M}$ and m overlapped), $4.98(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (two rotamers): 173.2, 170.7, 166.5, 158.7, 130.4, $129.1,114.0,113.8,93.9,92.9,81.6,66.3,61.2,61.0,60.4,58.3,57.3,56.5,55.2$, $53.4,51.5,50.4,43.4,43.0,38.1,35.6,26.6,25.9,24.9,24.7,14.2,14.1,8.6,7.9$; HRMS (ESI) calcd for $\left[\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{H}\right]^{+}: 459.2853$; found: 459.2853.
(5S)-4-[(S)-2-(1-Methoxy-1-ethylpropyl)pyrrolidin-1-yl]-1-(4-methoxybenzyl)-5-benzyl-2,5-dihydro-1H-2-azolone (14g)

PMB
14g: Colorless oil. Yield: 85.4 \%. $[\alpha]_{\mathrm{D}}{ }^{20}+66.8$ (c 1.1, CHCl_{3}); IR (KBr) $v_{\text {max }}$ 2926, 2856, 1698, 1512, 1248, $1113 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, two rotamers, M: $\mathrm{m}=2.1: 1) \delta: 0.85(\mathrm{~m}, 6 \mathrm{H}), 1.20-2.10(\mathrm{~m}, 8 \mathrm{H}), 2.66-2.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{m}), 2.75(\mathrm{dd}, J=$ $15.1,7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{M}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.34(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$,
CDCl_{3}) δ (two rotamers): 173.5, 167.1, 158.6, 136.9, 129.9, 129.2, 128.5, 126.9, 113.7, 93.1, 81.6, 66.4, 60.3, 55.1, 51.6, 50.6, 43.2, 38.0, 26.5, 25.6, 24.8, 24.2, 8.6, 7.8; MS $(\mathrm{m} / \mathrm{z}): 485\left(\mathrm{M}+\mathrm{Na}^{+}, 22\right), 463\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; HRMS calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 463.2955$; found: 463.2960.

(5S)-4-[(S)-2-(1-Methoxy-1-ethylpropyl)pyrrolidin-1-yl]-1-(4-methoxybenzyl)-5-trimethylsilyl-2,5-dihydro-1H-2-azolone (14h)

14h: Pale yellow oil. Yield: 45%. $[\alpha]_{D}{ }^{20}-13.1$ (c $0.8, \mathrm{CHCl}_{3}$); IR (KBr) $v_{\max }$: 2920, 1652, 1597, 1463, 1398, 1239, 1090, 836 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $0.22(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~m}, 6 \mathrm{H}), 1.40-2.10(\mathrm{~m}, 8 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.18(\mathrm{~m}, 1 \mathrm{H})$, 3.22-3.29 (m, 1H), 3.60-3.66 (m, 1 H), 3.70 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.50$ (dd, $J=15.9 \mathrm{~Hz}, 2 \mathrm{H}$), $4.79(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 174.2,163.6,162.8,134.6,130.5,129.9,127.9,109.7$, $90.6,81.5,65.8,55.1,50.8,50.7,49.4,45.2,29.7,27.0,26.3,26.2,24.0,8.2,7.5,-1.0$; MS (m/z): $445\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; HRMS calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{SiN}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}: 445.2881$; found: 445.2879.

(4S, 5S)-5-Benzyl-4-hydroxy-1-(4-methoxybenzyl)-2-pyrrolidinone (16)

PMB
To a solution of $\mathbf{1 4 g}(727 \mathrm{mg}, 1.57 \mathrm{mmol})$ in THF (50 mL) was added a solution of 10 $\% \mathrm{HCl}(20 \mathrm{~mL})$. After stirred at $30^{\circ} \mathrm{C}$ for 26 h , the mixture was extracted with ethyl acetate and the combined extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was dissolved in a mixed solvent system $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 11.5 \mathrm{~mL}\right.$; $\left.\mathrm{AcOH}, 1.2 \mathrm{~mL}\right)$, then cooled to $0{ }^{\circ} \mathrm{C}$ and stirred vigorously, into which was added portion-wise NaBH_{4} ($141 \mathrm{mg}, 3.7 \mathrm{mmol}$). After stirred for 3.5 h , a cold saturated solution of $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ was added. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The crude was purified by column chromatography on silica gel (EtOAc / PE=1/1) to give ($4 S$, $5 S)$-16 (400 mg, 82%) and ($4 R, 5 S$)-16 as an un-separable mixture in a ratio of 20:1 (deduced from 17). ($4 S, 5 S$)-16: White solid. Mp 144.5-145.5 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-75.7$ (c 0.7, CHCl_{3}) ; IR (KBr) $v_{\text {max }}$: 2926, 2856, 1698, 1512, $1248,1113 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{CN}$) $\delta: 2.28(\mathrm{dd}, J=16.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=16.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}$,
$J=13.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=13.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 3.70 (ddd, $J=9.2,6.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (s, 3 H), 3.97 (d, $J=15.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.20-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 173.4,159.0,137.4$, $129.2,129.2,128.7,128.4,126.7,114.1,66.1,62.8,55.3,43.6,40.3,32.9 ; \mathrm{MS}(\mathrm{m} / \mathrm{z})$: $334\left(\mathrm{M}+\mathrm{Na}^{+}, 100\right), 311\left(\mathrm{M}+\mathrm{H}^{+}, 19\right)$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}, 73.31 ; \mathrm{H}, 6.75 ; \mathrm{N}$, 4.50. Found: C, 73.24 ; H, 6.80; N, 4.67.

(4S, 5S)-5-Benzyl-4-(tert-butyldimethylsilyoxy)-1-(4-methoxybenzyl)-2-pyrrolidinone (17)

To a mixture of $\mathbf{1 6}(400 \mathrm{mg}, 1.29 \mathrm{mmol})$, imidazole ($175 \mathrm{mg}, 2.57 \mathrm{mmol}$) and a catalytic amount of DMAP in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added a solution of tert-butyldimethylchlorosilane ($387 \mathrm{mg}, 2.57 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. After being stirred at rt overnight, an aqueous solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added. The organic layer was separated, and washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude was purified by column chromatography on silica gel (EtOAc / PE=1/5) to give $17(514 \mathrm{mg}, 90 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-31.6$ (c 1.0, CHCl_{3}); IR (KBr) $v_{\text {max }}: 2926,2856,1698,1512,1248,1113 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:-0.03(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 2.37(\mathrm{dd}, J=16.3,7.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.49 (dd, $J=16.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (dd, $J=14.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (dd, $J=$ $14.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (ddd, $J=7.1,7.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (s, 3 H), 4.32 (ddd, $J=7.4,7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (d, $J=14.9 \mathrm{~Hz} 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.35(\mathrm{~m}, 5 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $172.3,158.9,138.4,129.4,129.2,128.6,128.5,126.5,113.9,67.9,62.3,55.2,43.8$, $39.5,33.8,25.7,18.0,-4.5,-5.1$; MS (m/z): $426\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; HRMS calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}+\mathrm{H}\right]^{+}: 426.2459$; found: 426.2457 .
(4S, 5S)-5-Benzyl-4-(tert-butyldimethylsilyloxy)-2-pyrrolidinone (18)

To a solution of $\mathbf{1 7}(389 \mathrm{mg}, 0.915 \mathrm{mmol})$ in a mixed $\mathrm{CH}_{3} \mathrm{CN}(11.4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(3.8$ mL) solvent system was added ceric ammonium nitrate ($2.0 \mathrm{~g}, 3.66 \mathrm{mmol}$) in one portion. After stirred at rt for $25 \mathrm{~min} ., \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic layers were washed successively with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL} \times 3)$ and brine $(5 \mathrm{~mL})$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and concentrated. The crude was purified by chromatography on silica gel (EtOAc / $\mathrm{PE}=1 / 1$) to give $\mathbf{1 8}$
(202 mg, 74.6%) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-64\left(c 1.1, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\text {max }}: 3389$, 2927, 1702, 1255, 1149, $1082 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.95$ (s, 9H), 2.34 (dd, $J=16.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=16.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=$ $13.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.89-2.96 (dd, $J=13.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (ddd, $J=10.8,5.4,3.7$ $\mathrm{H}, 1 \mathrm{H}$), 4.56 (ddd, $J=6.6,5.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.40 ($\mathrm{s}, 1 \mathrm{H}$), 7.18-7.35 (m, 5 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 174.8,138.2,129.0,128.9,126.7,69.3,60.7,40.3$, 36.2, 25.7, 18.1, $-4.6,-5.0$; MS (m/z): $306\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{SiNO}_{2}$: C, 66.84; H, 8.91; N, 4.59. Found: C, 67.11; H, 9.11; N, 4.76.

(4S, 5S)-5-Benzyl-4-(tert-butyldimethylsilyloxy)-1-(tert-butyloxycarbonyl)-2pyrrolidinone (19)

Boc
To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 8}(202 \mathrm{mg}, 0.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ were added successively a catalytic amount of DMAP, $\mathrm{Et}_{3} \mathrm{~N}(0.18 \mathrm{~mL}, 1.32 \mathrm{mmol})$, and di(tert-butyl)dicarbonate ($289 \mathrm{mg}, 1.32 \mathrm{mmol}$). The mixture was allowed to stirr at rt overnight. After being diluted with $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$, the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried, filtered and concentrated. The crude was purified by chromatography on silica gel (EtOAc / $\mathrm{PE}=1 / 10)$ to give $\mathbf{1 9}(261 \mathrm{mg}, 97.3 \%)$ as a white solid. $\mathrm{Mp} 82.5-84.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+34.3$ (c $1.0, \mathrm{CHCl}_{3}$); IR (KBr) $v_{\text {max }}: 2956,2930,1791,1758,1715,1357,1295,1150 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.02(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 2.25$ (dd, $J=$ $16.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.44(\mathrm{dd}, J=16.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=14.1,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.18 (dd, $J=14.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.42-4.47 (ddd, $J=7.5,5.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.55$ (ddd, $J=10.3,7.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.15-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 171.0, 149.6, 137.7, 130.1, 128.3, 126.5, 83.0, 66.9, 62.2, 40.4, 34.0, 27.9, 25.8, 18.1, $-4.8,-5.0 ; \mathrm{MS}(\mathrm{m} / \mathrm{z}): 348(88), 391(100), 404\left(\mathrm{M}+\mathrm{H}^{+}, 51\right), 426$ (19); Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Si}: \mathrm{C}, 65.19$; H, 8.64; N, 3.46. Found: C, 65.35 ; H, 8.74; N, 3.70.
(2S, 3S, 5R)-2-Benzyl-3-(tert-butyldimethylsilyloxy)-1-(tert-butyloxycarbonyl)-5(n-nonyl)-pyrrolidine (20)

The transformation of $\mathbf{1 9}$ to $\mathbf{2 0}$ was achieved by reported procedure, ${ }^{2,3}$ which afforded $20(48 \mathrm{mg}, 75 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-48.6\left(c 1.1, \mathrm{CHCl}_{3}\right)$. IR (KBr) $v_{\max }$ 2927, $2856,1693,1454,1388,1141,1090 \mathrm{~cm}^{-1}$; ${ }^{1}$ H-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two rotamers) $\delta:-0.06-0.10(\mathrm{~m}, 6 \mathrm{H}), 0.84-0.96(\mathrm{~m}, 12 \mathrm{H}), 1.06-1.52(\mathrm{~m}, 23 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 2 \mathrm{H})$, $1.97(\mathrm{~m}, 2 \mathrm{H}$, rotamer 1), 2.12-2.32 (m, 2 H , rotamer 2), 2.46-2.60 (m, 1 H$), 2.70-2.82$ (m, 2 H , rotamer 1), $3.00(\mathrm{dd}, J=13.6,4.7 \mathrm{~Hz}, 2 \mathrm{H}$, rotamer 2), 3.48-3.71(m, 1 H$)$,
3.96-4.08 (m, 1H), 4.12-4.20 (m, 2 H), $4.25(\mathrm{dd}, J=16.7,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.30(\mathrm{~m}$, 5 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, two rotamers) $\delta: 154.9, \quad 140.1, \quad 129.9,128.0$, 125.6, 78.9, 71.4, 62.3, 55.7, 38.0, 37.2, 35.9, 31.9, 29.7, 29.5, 29.3, 28.0, 26.5, 25.85, 22.7, 18.1, 14.1, -4.7, -5.0; MS (ESI): $540\left(\mathrm{M}_{+}+\mathrm{Na}^{+}, 74\right), 518\left(\mathrm{M}+\mathrm{H}^{+}, 100\right), 404(83)$.

(2S, 3S, 5R)- 2-Benzyl-1-methyl-5-(n-nonyl)-3-pyrrolidinol (Preussin, 5)

To a solution of $\mathbf{2 0}(34 \mathrm{mg}, 0.084 \mathrm{mmol})$ in dry THF (0.85 mL) was added LiAlH_{4} (32 $\mathrm{mg}, 0.84 \mathrm{mmol})$ in one portion. The resulting reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 28 h . After being diluted with 2 mL of $\mathrm{Et}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ was added to quench the reaction. After filtration and removal of the solvent under reduced pressure, the crude was purified by chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1 / 5$) to give preussin (5) $(24 \mathrm{mg}, 90 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}+21.9\left(c 1.3, \mathrm{CHCl}_{3}\right)\left[\right.$ natural $5,[\alpha]^{25}{ }_{\mathrm{D}}+22.0$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$]; IR (KBr) $v_{\max }: 3435,2925,2854,1455,1457,1391,1174 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.88(\mathrm{t}, J=6.91 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.38(\mathrm{~m}, 15 \mathrm{H})$, $1.38-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 2.80-2.92(\mathrm{~m}, 2 \mathrm{H}), 3.8(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 139.5,129.4,128.4,126.1,73.5,70.5,65.7,39.3,38.7,35.1,33.7,31.9$, 29.9, 29.6, 29.6, 29.3, 26.3, 22.7, 14.1; MS (m/z): $318\left(\mathrm{M}+\mathrm{H}^{+}, 100\right)$; HRMS calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}+\mathrm{H}\right]^{+}: 318.2791$; found: 318.2786.
(3S, 4S)-4-tert-Butyloxycarbonylamino-3-hydroxy-5-phenylpentanoic acid ethyl ester (21)

To a solution of $\mathbf{1 9}(10 \mathrm{mg}, 0.025 \mathrm{mmol})$ in dry THF $(0.1 \mathrm{~mL})$ was added a catalytic amount of potassium cyanide and $\operatorname{EtOH}(0.1 \mathrm{~mL})$. The mixture was stirred at rt for 16 h. The solvent was removed under reduced pressure and the crude was purified by column chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{PE}=1 / 12$) to give $21(6 \mathrm{mg}, 91 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{20}-23.4$ (c 0.7, MeOH); IR (KBr) $v_{\text {max }}$: 2956, 2930, 2857, 1737, 1703, 1366, 1253, $1174 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, two rotamers, M and m) δ : $0.02(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 2.47(\mathrm{dd}$, $J=15.9,6.0 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{M}), 2.51-2.59(\mathrm{dd}, J=15.9,6.0 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{m}), 2.68-2.77(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{m}), 2.78-2.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{M}), 3.80-3.87$ (m, 1H, m), 3.92-3.99 (m, 1H, M), 4.12 (q, $J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{M}), 4.18-4.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{m}), 4.55$ (brs, $1 \mathrm{H}, \mathrm{m}), 4.62-4.68(\mathrm{~m}, 1 \mathrm{H}, \mathrm{M})$, 7.15-7.35 (m, 5 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, two rotamers) $\delta: 171.2,155.5$, $138.2,129.1,128.3,126.2,79.1,69.8,60.5,55.4,39.9,38.5,28.3,25.9,18.1,14.1$,
-4.4, -4.7; HRMS calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}+\mathrm{H}\right]^{+}: 318.2827$; found: 318.2829. \quad S10

