Supporting Information for

Coexistence of Magnetization- and Dielectric Relaxations in A

Single-Chain Magnet

Yue-Ling Bai, Jun Tao, Wolfgang Wernsdorfer, Osamu Sato, Rong-Bin Huang, and Lan-Sun Zheng

Synthesis of $\left[\mathrm{Mn}^{\mathrm{III}}{ }_{3} \mathrm{O}(\mathrm{Meppz})_{3}(\mathrm{EtOH})_{4}(\mathrm{OAc})\right]$ (1)

Method A: Ammonium or sodium acetate (0.1 mmol) was added to the ethanol-acetonitril (2:1) solution of $\left[\mathrm{Mn}^{\mathrm{III}}{ }_{3} \mathrm{O}(\mathrm{Meppz})_{3}(\mathrm{EtOH})_{5} \mathrm{Cl}\right]$ (2, 0.1 mmol$)$, the mixture was stirred until the acetate salts completely dissolved. The solution was filtered and filtrate was left undisturbed, and dark blue block crystals of 1 crystallized in one week. Yield: > 90%.

Method B: An ethanol solution (15 mL) containing $\mathrm{H}_{2} \mathrm{Meppz}$ (0.1 mmol), $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol})$ and $\mathrm{NaOEt}(0.2 \mathrm{mmol})$ was stirred for 15 min , then acetone (5 mL) was added to the turbid solution. The solution was stirred for another 5 min and then filtered, the filtrate was left undisturbed and slow evaporation of solvents gave crystals of $\mathbf{1}$ in yield of $\sim 50 \%$.

Method C: $\mathrm{H}_{2} \mathrm{Meppz}(0.1 \mathrm{mmol})$ and $\mathrm{NaOEt}(0.2 \mathrm{mmol})$ were dissolved in ethanol solution (8 mL) and put in one arm of H-tube, another ethanol solution (8 mL) containing $\mathrm{Mn}(\mathrm{OAc})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol})$ was put in another arm of the H -tube. Pure Ethanol was carefully added to the H-tube. Large dark blue block crystals of $\mathbf{1}$ crystallized in one month at the middle tunnel. Yield: $\sim 50 \%$.

Synthesis of $\left[\mathrm{Mn}^{\mathrm{III}}{ }_{3} \mathrm{O}(\mathrm{Meppz})_{3}(\mathrm{EtOH})_{5} \mathrm{Cl}\right]$ (2)
An ethanol solution $(15 \mathrm{~mL})$ containing $\mathrm{H}_{2} \mathrm{Meppz}(0.1 \mathrm{mmol}), \mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.1$ $\mathrm{mmol})$ and $\mathrm{NaOEt}(0.2 \mathrm{mmol})$ was stirred for 15 min . The solution was filtered and the filtrate was left undisturbed, slow evaporation of solvent gave dark blue crystals of 2 in yield of $\sim 70 \%$.

Figure S1 Coordination environments of manganese ions in $\mathbf{1}$ and the hydrogen bonds between acetate group and ethanol molecules.

Figure S2 Three-dimensional arrays of the chain of $\mathbf{1}$ viewed along the c axis.

Figure S3 The structure of $\mathbf{2}$ showing the trinuclear units were connected with each other through $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Figure S4 The $\chi_{\mathrm{M}} T$ and $\chi_{\mathrm{M}}{ }^{-1} \sim T$ plots of $\mathbf{1}$.

Figure S5 The $\chi_{\mathrm{M}}{ }^{\prime} T \sim T$ plots of $\mathbf{1}$ at $1 \mathrm{~Hz}(■), 10 \mathrm{~Hz}(\circ)$ and $50 \mathrm{~Hz}(\mathbf{\Delta})$.

Figure S 6 The $\chi_{\mathrm{M}^{\prime}}{ }^{\prime} T \sim T$ plots of 2 at $1 \mathrm{~Hz}(\boldsymbol{■}), 10 \mathrm{~Hz}(\circ)$ and $50 \mathrm{~Hz}(\mathbf{\Delta})$.

Figure S 7 The in-phase $\left(\chi_{\mathrm{M}}{ }^{\prime}\right)$ AC susceptibility signal of $\mathbf{1}$.

Figure S8 The Vogel-Fulcher fit for complex 1.

