## Supporting Information for

## **Coexistence of Magnetization- and Dielectric Relaxations in A**

## **Single-Chain Magnet**

Yue-Ling Bai, Jun Tao, Wolfgang Wernsdorfer, Osamu Sato, Rong-Bin Huang, and Lan-Sun Zheng

Synthesis of [Mn<sup>III</sup><sub>3</sub>O(Meppz)<sub>3</sub>(EtOH)<sub>4</sub>(OAc)] (1)

**Method A:** Ammonium or sodium acetate (0.1 mmol) was added to the ethanol-acetonitril (2:1) solution of  $[Mn^{III}_{3}O(Meppz)_{3}(EtOH)_{5}Cl]$  (**2**, 0.1 mmol), the mixture was stirred until the acetate salts completely dissolved. The solution was filtered and filtrate was left undisturbed, and dark blue block crystals of 1 crystallized in one week. Yield: > 90%.

**Method B:** An ethanol solution (15 mL) containing H<sub>2</sub>Meppz (0.1 mmol),  $Mn(OAc)_2 \cdot 4H_2O$  (0.1 mmol) and NaOEt (0.2 mmol) was stirred for 15 min, then acetone (5 mL) was added to the turbid solution. The solution was stirred for another 5 min and then filtered, the filtrate was left undisturbed and slow evaporation of solvents gave crystals of **1** in yield of ~ 50%.

**Method C:** H<sub>2</sub>Meppz (0.1 mmol) and NaOEt (0.2 mmol) were dissolved in ethanol solution (8 mL) and put in one arm of H-tube, another ethanol solution (8 mL) containing  $Mn(OAc)_2 \cdot 4H_2O$  (0.1 mmol) was put in another arm of the H-tube. Pure Ethanol was carefully added to the H-tube. Large dark blue block crystals of **1** crystallized in one month at the middle tunnel. Yield: ~ 50%.

Synthesis of [Mn<sup>III</sup><sub>3</sub>O(Meppz)<sub>3</sub>(EtOH)<sub>5</sub>Cl] (2)

An ethanol solution (15 mL) containing  $H_2Meppz$  (0.1 mmol),  $MnCl_2 \cdot 4H_2O$  (0.1 mmol) and NaOEt (0.2 mmol) was stirred for 15 min. The solution was filtered and the filtrate was left undisturbed, slow evaporation of solvent gave dark blue crystals of **2** in yield of ~ 70%.



Figure S1 Coordination environments of manganese ions in **1** and the hydrogen bonds between acetate group and ethanol molecules.



Figure S2 Three-dimensional arrays of the chain of 1 viewed along the c axis.



Figure S3 The structure of 2 showing the trinuclear units were connected with each other through  $O-H\cdots Cl$  hydrogen bonds.



Figure S4 The  $\chi_{\rm M}T$  and  $\chi_{\rm M}^{-1} \sim T$  plots of **1**.



Figure S5 The  $\chi_M T \sim T$  plots of **1** at 1 Hz (**n**), 10 Hz (**o**) and 50 Hz (**A**).



Figure S6 The  $\chi_{M}T \sim T$  plots of **2** at 1 Hz (**•**), 10 Hz (**•**) and 50 Hz (**△**).



Figure S7 The in-phase  $(\chi_M')$  AC susceptibility signal of **1**.



Figure S8 The Vogel-Fulcher fit for complex **1**.