Supporting Information

A novel alternative for the $N-N$ bond formation through a PIFA-mediated oxidative cyclization and its application to the synthesis of indazol-3-ones
Arkaitz Correa, Imanol Tellitu,* Esther Domínguez,* and Raul SanMartin
Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco - Euskal Herriko Unibertsitatea
P. O. Box 644, 48080 Bilbao, Spain.
imanol.tellitu@ehu.es

Supporting Information Available. Experimental details for compounds 2a-o and ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds are included

General remarks S1
Typical reaction procedure 1 S2
Spectroscopic data of compounds 2a-e, h-k, m-o S2
Typical reaction procedure 2 S8
Spectroscopic data of compounds $\mathbf{2 f - g}$ S8
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S10

General Methods and Materials. All reagents were purchased and used as received. Melting points were measured using open glass capillaries and are uncorrected. Infrared spectra were recorded as KBr plates or as thin films and peaks are reported in cm^{-1}. Only representative absorptions are given. NMR spectra were recorded on a 250 instrument (250 MHz for ${ }^{1} \mathrm{H}$ and 62.83 MHz for ${ }^{13} \mathrm{C}$) at $20^{\circ} \mathrm{C}$. Chemical shifts (δ) were
measured in ppm relative to chloroform ($\delta=7.26$ for ${ }^{1} \mathrm{H}$ or 77.00 for ${ }^{13} \mathrm{C}$) as internal standard. Coupling constants, J, are reported in hertz. DEPT experiments were used to assist with the assignation of the signals. HRMS spectra were recorded at the University of Vigo.

Typical procedure 1 for the synthesis of benzamides $2 a-e, h-k, ~ m-o . ~ S y n t h e s i s ~ o f ~ N-~$ (4-methoxyphenyl)-2-methylaminobenzamide (2a). ${ }^{1}$ A solution of AlMe_{3} (9.0 mmol , 2.0 M in toluene) was added dropwise to a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of p-anisidine (2.23 $\mathrm{g}, 18.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. When the addition was complete, the reaction mixture was allowed to warm to room temperature and was stirred for 45 minutes until the gas evolution ceased. Then, a solution of commercially available methyl N methylanthranilate (1a) ($1.32 \mathrm{~mL}, 9.0 \mathrm{mmol}$) was added and the mixture was heated under reflux overnight. The reaction mixture was cooled to room temperature and was carefully quenched with 5% aq $\mathrm{HCl}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$. Then, the organic layer was dried over sodium sulfate, filtered and the solvent was evaporated at reduced pressure. The resulting residue was purified by crystallization from $\mathrm{Et}_{2} \mathrm{O}$ to afford amide 2a as a white solid (69% yield).

2a

Mp 127-128 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)\left(\right.$ lit. $\left.{ }^{1} \mathrm{mp} 122-123{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ $2.86(\mathrm{~s}, 3 \mathrm{H}) 3.81(\mathrm{~s}$, $3 \mathrm{H})$, 6.60-6.72 (m, 2H), $6.90(\mathrm{~d}, J=8.7,2 \mathrm{H}), 7.33-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.66(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right)$ _ $29.6,55.4,111.2,114.0,114.5,115.2,122.6,127.2,130.7,133.0,150.6$, 156.5, 168.1; IR (KBr) 3378, $1631 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%) 256\left(\mathrm{M}^{+}, 29\right), 134$ (100), 123 (88), 77 (25); HRMS calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2} 256.1212$, found 256.1208.

[^0]2-Allylamino- \boldsymbol{N}-(4-methoxyphenyl)benzamide (2b). According to the general procedure 1 benzamide 2b was obtained as a white solid from methyl N allylanthranilate (1b) ${ }^{2}$ in 77% yield after purification by crystallization from $\mathrm{Et}_{2} \mathrm{O}$.

Mp 107-108 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ $3.80-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 5.13-5.33$ $(\mathrm{m}, 2 \mathrm{H}), 5.86-6.00(\mathrm{~m}, 1 \mathrm{H}), 6.61-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.91(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.29(\mathrm{~m}, 1 \mathrm{H})$, 7.32-7.29 (m, 3H), $7.62(\mathrm{bs}, 1 \mathrm{H}), 7.71(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ 45.4, 55.4, 112.0, 114.0, 114.8, 115.3, 116.0, 122.7, 127.3, 130.7, 132.9, 134.6 149.5, 156.5, 168.1; IR (KBr) 3342, $1631 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%) 282 (M+, 2), 280 (26), 254 (29), 251 (24), 123 (24), 121 (100), 92 (27), 77 (67); HRMS calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ 282.1368, found 282.1362.

2-Benzylamino- N -(4-methoxyphenyl)benzamide (2c). According to the general procedure 1 benzamide 2c was obtained as a white solid from commercially available methyl N-benzylanthranilate (1c) in 67% yield after purification by crystallization from $\mathrm{Et}_{2} \mathrm{O}$.

2c

Mp 112-114 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) _3.81(\mathrm{~s}, 3 \mathrm{H}), 4.41(\mathrm{~d}, J=5.5,2 \mathrm{H}), 6.60-6.71$ (m, 2H), 6.90 (d, J=8.7, 2H), 7.29-7.94 (m, 9H), 7.97 (bs, 1H), 7.99 (bs, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right)$ _ $47.2,55.3,112.0,114.0,115.0,115.2,122.7,126.9,127.0,127.3,128.4$, 130.6, 132.9, 138.8, 149.5, 156.4, 168.1; IR (KBr) 3343, $1637 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%) $332\left(\mathrm{M}^{+}, 6\right), 253$ (11), 210 (34), 208 (30), 180 (10), 132 (25), 123 (100), 91 (36); HRMS calc. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} 332.1525$, found 332.1523 .

[^1]\boldsymbol{N}-(4-methoxyphenyl)-2-phenylaminobenzamide (2d). According to the general procedure 1 benzamide $2 d$ was obtained as a white solid from methyl N phenylanthranilate $(\mathbf{1 d})^{3}$ in 68% yield after purification by crystallization from $\mathrm{Et}_{2} \mathrm{O}$.

Mp 140-142 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ $3.80(\mathrm{~s}, 3 \mathrm{H}), 6.79-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.98-7.04$ $(\mathrm{m}, 1 \mathrm{H}), 7.17-7.47(\mathrm{~m}, 8 \mathrm{H}), 7.55-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{bs}, 1 \mathrm{H}), 9.16(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right)$ _ 55.3, 114.0, 115.6, 118.1, 118.7, 120.5, 122.3, 122.8, 127.6, 129.2, 129.3, 132.3, 141.3, 145.3, 156.7, 167.8; IR (KBr) 3308, $1584 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%) 318\left(\mathrm{M}^{+}\right.$, 34), 196 (87), 195 (44), 167 (42), 123 (100); HRMS calc. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} 318.1368$, found 318.1371 .
N-(4-methoxyphenyl)benzamide (2e). ${ }^{4}$ According to the general procedure 1 benzamide 2e was obtained as a white solid from commercially available methyl anthranilate (1e) in 71% yield after purification by crystallization from $\mathrm{Et}_{2} \mathrm{O}$.

$2 e$

Mp 122-123 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)\left(\right.$ lit. $\left.{ }^{4} 123-125{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ 3.79 (s, 3H), 5.32 (bs, 2H), 6.63-6.70 (m, 2H), 6.87 (d, J=8.7, 2H), 7.19-7.26 (m, 1H), 7.41-7.45 (m, 3H), 7.80 (bs, 1H); ${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right)$ _ 55.4, 114.1, 116.2, 116.7, 117.4, 122.6, 127.1, 130.7, $132.5,149.0,156.5,167.5$; IR (KBr) 3283, $1637 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%) 242\left(\mathrm{M}^{+}, 45\right)$, 123 (82), 120 (100), 92 (33); HRMS calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} 242.1055$, found 242.1054.

[^2]2-Methylaminobenzanilide (2h). ${ }^{5}$ According to the general procedure 1 benzanilide $\mathbf{2 h}$ was obtained as a white solid from commercially available methyl N -methylanthranilate (1a) and aniline in 88% yield after purification by crystallization from $\mathrm{Et}_{2} \mathrm{O}$.

Mp 121-122 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)\left(\mathrm{lit.}^{5}{ }^{124-125}{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ $2.87(\mathrm{~s}, 3 \mathrm{H}), 6.62-6.74$ $(\mathrm{m}, 2 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.57(\mathrm{~m}, 6 \mathrm{H}), 7.76(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ 29.5, 111.1, 114.4, 115.0, 120.5, 124.2, 127.3, 128.8, 133.1, 137.7, 150.6, 168.2; IR (KBr) 3367, $1637 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%) 226$ (M ${ }^{+}$, 33), 134 (100), 93 (32), 77 (21); HRMS calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ 226.1106, found 226.1105 .

2-Methylamino- N -(1-naphthyl)benzamide (2i). According to the general procedure 1 benzamide $2 \mathbf{i}$ was obtained as a white solid from commercially available methyl N methylanthranilate (1a) and 1-naphthylamine in 91% yield after purification by crystallization from $\mathrm{Et}_{2} \mathrm{O}$.
$2 i$

Mp 185-187 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ $2.88(\mathrm{~d}, J=4.8,3 \mathrm{H}), 6.68-6.77(\mathrm{~m}, 2 \mathrm{H})$, 7.40-7.54 (m, 5H), 7.66-7.77 (m, 2H), 7.84-7.92 (m, 3H), 8.11 (bs, 1H), ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right)$ _ 29.6, 111.5, 114.6, 121.1, 121.7, 125.6, 126.1, 126.2, 126.4, 127.4, 128.0, 128.7, 132.5, 133.5, 134.2, 151.1, 168.8; IR (KBr) $3300,1627 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%)$ $276\left(\mathrm{M}^{+}, 11\right), 143(45), 134$ (100), 77 (26); HRMS calc. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} 276.1263$, found 276.1262.
N-(4-ethylphenyl)-2-methylaminobenzamide (2j). According to the general procedure 1 benzamide $2 \mathbf{j}$ was obtained as a white solid from commercially available methyl N -

[^3]methylanthranilate (1a) and 4-ethylaniline in 89% yield after purification by crystallization from $\mathrm{Et}_{2} \mathrm{O}$.

2j

Mp 120-121 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \quad 1.25(\mathrm{t}, J=7.5,3 \mathrm{H}), 2.65(\mathrm{q}, J=7.5,2 \mathrm{H})$, $2.85(\mathrm{~s}, 3 \mathrm{H}), 6.59-6.72(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.9,2 \mathrm{H}), 7.18-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.82(\mathrm{bs}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ 15.6, 28.2, 29.5, 111.1, 114.5, 115.2, 120.8, 127.2, 128.2, 133.1, $135.3,140.4,150.6,168.1$; IR (KBr) 3354, $1637 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%) 254\left(\mathrm{M}^{+}, 27\right)$, 134 (100), 121 (48), 106 (25), 77 (21); HRMS calc. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ 254.1419, found 254.1423.
N-(4-bromophenyl)-2-methylaminobenzamide (2k). According to the general procedure 1 benzamide $\mathbf{2 k}$ was obtained as a white solid from commercially available methyl N -methylanthranilate (1a) and 4-bromoaniline in 22% yield after purification by crystallization from $\mathrm{Et}_{2} \mathrm{O}$.

2k

Mp 130-132 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ $2.84(\mathrm{~s}, 3 \mathrm{H}), 6.57-6.70(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.49$ (m, 7H), $7.89(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) ~$ _ 29.6, 111.3, 114.6, 116.9, 122.0, 127.2, 131.8, 133.4, 136.9, 150.7, 168.1; IR (KBr) 3350, $1637 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%) 306 ($\mathrm{M}+2,12$), $304\left(\mathrm{M}^{+}, 11\right), 134$ (100), 91 (14), 79 (13), 77 (27); HRMS calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}$ 304.0211, found 304.0217.
N-benzyl-2-methylaminobenzamide (2m). According to the general procedure 1 benzamide $\mathbf{2 m}$ was obtained as a white solid from commercially available methyl N methylanthranilate (1a) and benzylamine in 88% yield after purification by crystallization from $\mathrm{Et}_{2} \mathrm{O}$.

2m

Mp 93-95 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) _2.86(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{~d}, J=5.5,2 \mathrm{H}), 6.39(\mathrm{bs}$, $1 \mathrm{H}), 6.53-6.70(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.60(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ 29.3, 43.1, 110.7, 114.2, 114.5, 127.0, 127.2, 127.3, 128.3, 132.6, 138.2, 150.3, 169.6; IR (KBr) 3354, $1631 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%) 240\left(\mathrm{M}^{+}, 61\right), 134$ (34), 132 (32), 106 (100), 91 (39), 77 (25) ; HRMS calc. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} 240.1263$, found 240.1264.
N-allyl-2-(methylamino)benzamide (2n). According to the general procedure 1 benzamide $\mathbf{2 n}$ was obtained as a white solid from commercially available methyl N methylanthranilate (1a) and allylamine in 65% yield after purification by crystallization from $\mathrm{Et}_{2} \mathrm{O}$.

2n

Mp 75-76 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)\left(\right.$ lit. $\left.{ }^{6} 70-73{ }^{\circ} \mathrm{C}\right)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) ~ _2.85(\mathrm{~s}, 3 \mathrm{H}), ~ 4.01-4.02(\mathrm{~m}$, $2 \mathrm{H}), 5.25-5.28(\mathrm{~m}, 2 \mathrm{H}), 5.84-5.99(\mathrm{~m}, 1 \mathrm{H}), 6.16(\mathrm{bs}, 1 \mathrm{H}), 6.55-6.69(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.36$ $(\mathrm{m}, 2 \mathrm{H}), 7.53(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ 29.4, 41.7, 110.8, 114.2, 114.7, 115.8, 127.1, 132.5, 134.1, 150.2, 169.6; IR (KBr) 3354, $1631 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%) 190\left(\mathrm{M}^{+}\right.$, 83), 134 (100), 132 (38), 106 (25), 105 (69), 104 (53), 78 (22), 77 (52); HRMS calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ 190.1106, found 190.1109.
N-methoxy-2-methylaminobenzamide (20) According to the general procedure 1 benzamide 20 was obtained as a white solid from commercially available methyl N methylanthranilate (1a) and $\mathrm{NH}_{2} \mathrm{OMe} \cdot \mathrm{HCl}$ in 18% yield after purification by crystallization from $\mathrm{Et}_{2} \mathrm{O}$.

[^4]

Mp 90-91 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ $2.81(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.47-6.86(\mathrm{~m}, 2 \mathrm{H})$, 7.29-7.39 (m, 2H), $9.35(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ 29.5, 64.2, 110.9, 111.7, 114.4, 127.3, 133.2, 150.4, 169.0; IR (KBr) 3367, $1637 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%) 180\left(\mathrm{M}^{+}, 25\right)$, 150 (93), 148 (38), 134 (100), 133 (78), 105 (98), 77 (68); HRMS calc. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ 180.0899 , found 180.0894 .

Typical procedure 2 for the synthesis of benzamides $\mathbf{2 f - g}$. Synthesis of 2-ethoxycarbonylamino- N -(4-methoxyphenyl)benzamide (2f). $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (658 mg , 15.7 mmol) was added to a solution of methyl N-ethoxycarbonylanthranilate ${ }^{7}$ (1f) (700 $\mathrm{mg}, 3.14 \mathrm{mmol}$) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL}, 4 / 1)$. The mixture was stirred at rt until conversion was complete. Then, the solution was treated with HCl ($5 \% \mathrm{aq}$.) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The organic extracts were dried over sodium sulfate and the solvent was evaporated under reduced pressure. The resulting residue, p-anisidine ($423 \mathrm{mg}, 3.44 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(0.6 \mathrm{~mL}, 4.31 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (11 $\mathrm{mL})$. Then, the obtained suspension was treated with a solution of EDC $\cdot \mathrm{HCl}(826 \mathrm{mg}$, $4.31 \mathrm{mmol})$ and $\mathrm{HOBt}(543 \mathrm{mg}, 4.02 \mathrm{mmol})$ in the same solvent $(5 \mathrm{~mL})$. The mixture was cooled $\left(0^{\circ} \mathrm{C}\right)$ and $\mathrm{Et}_{3} \mathrm{~N}(0.48 \mathrm{~mL}, 3.44 \mathrm{mmol})$ was added dropwise. After stirring for 2 h , temperature was raised to rt and stirring was continued until the conversion was complete. Then, the solution was washed with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, dried over sodium sulfate, and the solvent was evaporated at reduced pressure. The resulting residue was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to afford benzamide $\mathbf{2 f}$ as a white solid in 85% yield.
$2 f$

Mp 62-63 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ $1.29(\mathrm{t}, J=7.1,3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{t}, J=$ $7.1,2 H), 6.81-7.00(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.55(\mathrm{~m}, 4 \mathrm{H}), 8.25-8.28(\mathrm{~m}, 1 \mathrm{H}), 8.37(\mathrm{bs}, 1 \mathrm{H}), 10.09$

[^5](bs, 1 H$) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ 14.4, 55.4, 61.1, 114.1, 119.9, 120.7, 121.7, 122.6, 127.0, 130.6, 132.3, 139.4, 154.0, 167.2; IR (KBr) 3308, 1737, $1630 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%)$ 314 ($\mathrm{M}^{+}, 2$), 269 (11), 268 (98), 149 (15), 146 (100), 123 (45), 119 (76), 92 (38), 64 (13); HRMS calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ 314.1267, found 314.1276.
\boldsymbol{N}-(4-methoxyphenyl)-2-(methylphenylsulfonyl)benzamide (2g). According to the general procedure 2 benzamide $\mathbf{2 g}$ was obtained as a white solid from methyl N tosylanthranilate ${ }^{8}(\mathbf{1 g})$ in 86% yield after purification by crystallization from $\mathrm{Et}_{2} \mathrm{O}$.

Mp 150-151 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ _ $2.33(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 6.68-6.93(\mathrm{~m}$, $3 \mathrm{H}), 7.09-7.88(\mathrm{~m}, 9 \mathrm{H}), 9.14(\mathrm{bs}, 1 \mathrm{H}), 10.3(\mathrm{bs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ _ 20.0, $54.3,113.3,120.8,122.3,123.5,126.4,127.6,128.9,129.1,130.7,131.9,135.9,138.2$, 143.4, 156.3, 166.3; IR (KBr) 3343, $1643 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%) 396$ (M ${ }^{+}$, 16), 123 (100), 92 (20), 91 (30), 65 (12); HRMS calc. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ 396.1144, found 396.1148.

[^6]2a

2a

2c

2c

$2 f$

2e

2h

2g

$2 i$

2j

2j

2k

2k

2n

2m

20

2n

20

3b

$11 /$

Cls,

3j

[^0]: ${ }^{1}$ Lee, C. -M. J. Heterocycl. Chem. 1964, 1, 235-8.

[^1]: ${ }^{2}$ Anderson, W. K.; Lai, G. Synthesis 1995, 1287-1290.

[^2]: ${ }^{3}$ Gujadhur, R.; Venkataraman, D.; Kintigh, J. T. Tetrahedron Lett. 2001, 42, 47914793.
 ${ }^{4}$ Waisser, K.; Machacek, M.; Dostal, H.; Gregor, J.; Kubicova, L.; Klimesova, V.; Kunes, J.; Palat, K.; Hladuvkova, J.; Kaustova, J.; Möllmann, U. Collect. Czech. Chem. Commun. 1999, 1902-1924.

[^3]: ${ }^{5}$ Katritzky, A. R.; Fan, W.-Q.; Akutagawa, K. Tetrahedron 1986, 42, 4027-4034.

[^4]: ${ }^{6}$ Coppola, G. M.; Mansukhani, R. I. J. Heterocycl. Chem. 1978, 15, 1169-1173.

[^5]: ${ }^{7}$ Schmidt, R. R.; Wagner, A. Synthesis 1982, 958-962.

[^6]: ${ }^{8}$ Tsunoda, T.; Tanaka, A.; Mase, T.; Sakamoto, S. Heterocycles 2004, 1113-1122.

