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A detailed mechanism for four-component gasoline surrogates, developed by Lawrence Livermore Na-
tional Laboratory (LLNL), showed good agreement with experiments in engine-relevant conditions.
However, with 1389 species and 5935 reversible reactions, the mechanism is far too large to use in
practical engine simulations. Therefore, reduction of the mechanism was performed. First, the directed
relation graph with error propagation and sensitivity analysis (DRGEPSA) method was used to generate
skeletal mechanisms at varying levels of detail. This step produced significantly reduced skeletal mech-
anisms, but those with tight error limits were still too sizable for practical use. Therefore, a second
reduction step was employed, using the quasi-steady-state (QSS) approximation based on computa-
tional singular perturbation (CSP) analysis. The QSS species concentrations were solved analytically,
rather than through an iterative solution approach. For error constraints of 10% and 30%, the final
reduced mechanisms consist of 245 and 178 species, respectively. Both reduced mechanisms (and the
corresponding skeletal mechanisms) were validated with homogeneous autoignition simulations over
engine-relevant conditions, and both showed good agreement in predicting ignition delay.

1 Introduction

Modeling the kinetics of gasoline—as well as other liquid transportation fuels—is complex due
to the near-continuous spectrum of constituent hydrocarbons. One widely used solution in the
combustion community is to use surrogate fuels that consist of a small number of hydrocarbons
representing the major hydrocarbon classes present in real gasoline. Historically, binary blends
of n-heptane and iso-octane were used to model gasoline at various octane numbers; these are
the primary reference fuels (PRFs). However, these simple mixtures in general can’t match the
physical properties of gasoline. For example, the H/C ratio of gasoline is usually less than two
[1], but PRFs are limited to the range of 2.3–2.25. In addition, PRFs can’t capture the so-called
gasoline “sensitivity,” the difference between motor octane number (MON) and research octane
number (RON); RON and MON are equal for any PRF.

In order to better match the physical and kinetic properties of gasoline, a number of research
groups developed surrogate formulations with additional components to represent other major
hydrocarbon classes (e.g., olefins, aromatics). Gauthier et al. [2] and Chaos et al. [1] proposed
three-component surrogates, adding toluene to n-heptane and iso-octane to form toluene reference
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fuels (TRFs). Recently, Mehl et al. [3, 4] proposed a four-component gasoline surrogate consist-
ing of n-heptane, iso-octane, toluene, and 2-pentene to represent linear hydrocarbons, branched
hydrocarbons, aromatics, and olefins, respectively. They found that this surrogate emulates engine
data, laminar flame speeds, and shock tube ignition delay times of the target gasoline with good
agreement. Kukkadapu et al. [5] performed further experimental and computational validation of
the surrogate mixture and representative kinetic mechanism of Mehl et al. [3]. They found that
for stoichiometric mixtures the surrogate matched the autoignition response of gasoline in a rapid
compression machine, and the mechanism predicted overall ignition delays of real gasoline with
good agreement.

While the performance of the proposed mechanism for gasoline surrogates is promising, the large
size (1389 species and 5936 reversible reactions) poses a significant challenge to practical engine
simulations. The computational cost of chemistry scales by the third power of the number of
species in the worst case [6]. Chemistry calculations must be performed at least once for each grid
point or cell, and three-dimensional, high-fidelity simulations of engines or combustion chambers
could require mesh sizes of 104–107 cells. Significant reduction in mechanism size is therefore
vital in order to use the mechanism in practical simulations.

A number of mechanism reduction methods have been developed in recent years to counter the
trend of increasing mechanism sizes, as reviewed by Lu and Law [6]. Most focus on identifying
and removing unimportant species, or performing “skeletal” reduction. Many methods have been
developed, but one class that received significant development is that based on the directed relation
graph (DRG) [7–9]. Based on the graphical representation of reaction pathways of Bendtsen et
al. [10], DRG quantifies the importance of species using normalized contributions to the overall
production rates of certain preselected important, “target” species. Since the introduction of DRG,
a number of more effective variants have been developed, including DRG-aided sensitivity analysis
(DRGASA) [11–13], DRG with error propagation (DRGEP) [14, 15], DRGEP with sensitivity
analysis (DRGEPSA) [16], and path-flux analysis [17].

Another reduction paradigm focuses on time-scale analysis, identifying and removing short times
scales—induced by rapidly depleting species and/or fast reversible reactions—that cause chemical
stiffness. Many methods rely on the classical quasi-steady state (QSS) [18, 19] and partial equi-
librium approximations [20, 21], which replace differential equations with algebraic relations for
some species. Originally, such species and reactions were identified on the basis of experience, but
systematic methods that use analysis of the Jacobian matrix to identify QSS species and PE reac-
tions, namely the computational singular perturbation (CSP) [22–24] and intrinsic low-dimensional
manifold [25] methods, have since been developed.

Finding a single skeletal reduction not sufficient to reduce the size of large detailed mechanisms, Lu
and Law [13] presented a multi-stage reduction strategy and applied it to to a detailed mechanism
for n-heptane. Their approach consisted of DRGASA, unimportant reaction elimination, isomer
lumping, and time scale reduction through the QSS approximation. In addition, they grouped sim-
ilar diffusive species in the final reduced mechanism to reduce the cost of the mixture-averaged
diffusion formulation. Later, Niemeyer et al. [16] showed that DRGEPSA can produce more com-
pact skeletal mechanisms for the same level of accuracy than DRG, DRGEP, and DRGASA.

In this work, we apply a multi-stage reduction strategy similar to that developed by Lu and Law
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[13] based on DRGEPSA to the large detailed mechanism for gasoline surrogates of Mehl et al.
[3, 4]. First, the DRGEPSA method is applied to remove a large number of unimportant species
(and corresponding reactions). Second, a step of further unimportant reaction elimination is per-
formed to remove additional reactions—this step doesn’t affect the number of species, but the
complexity of the mechanism is reduced. Third, QSS species are identified using CSP analysis.
Finally, an analytic solution for the QSS species concentrations is generated. We then validate the
resulting reduced mechanisms over engine-relevant conditions, comparing the performance against
that of the detailed mechanism in predicting global phenomena such as homogeneous, adiabatic
ignition delay and extinction. In addition, we perform local comparisons of major species profiles,
emissions, and CA ignition prediction in HCCI engine simulations.

2 Methodology

2.1 DRGEP

In the current work we use the DRGEPSA method of Niemeyer et al. [16], which is based on
the DRGEP of Pepiot-Desjardins and Pitsch [14] followed by a sensitivity analysis of remaining
species. First, the DRGEP method is described here in brief; further detail can be found in our prior
work [15, 16]. Accurate calculation of the production of a species A that is strongly dependent on
another species B requires the presence of species B in the reaction mechanism. This dependence
is expressed with the direct interaction coefficient (DIC):

rAB =

∣∣∑NR
i=1 νA,iΩiδ

i
B

∣∣
max(PA,CA)

, (1)

where

PA =
NR

∑
i=1

max
(
0,νA,iΩi

)
, (2)

CA =
NR

∑
i=1

max
(
0,−νA,iΩi

)
, (3)

δ
i
B =

{
1 if reaction i involves species B,
0 otherwise,

(4)

A and B represent the species of interest (with dependency in the A→ B direction meaning that A
depends on B), i the ith reaction, νA,i the overall stoichiometric coefficient of species A in the ith
reaction (νA,i = ν ′′A,i−ν ′A,i), Ωi the overall reaction rate of the ith reaction, and NR the total number
of reactions.

After calculating the DIC for all species pairs, a graph search is performed—using Dijkstra’s algo-
rithm as described by Niemeyer and Sung [15]—starting at user-selected target species to find the
dependency paths for all species from the targets. A path-dependent interaction coefficient (PIC)
represents the error propagation through a certain path and is defined as the product of intermediate
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DICs between the target T and species B through pathway p:

rT B,p =
n−1

∏
j=1

rS jS j+1 , (5)

where n is the number of species between T and B in pathway p and S j is a placeholder for the
intermediate species j starting at T and ending at B. An overall interaction coefficient (OIC) is then
defined as the maximum of all PICs between the target and each species of interest:

RT B = max
all paths p

(rT B,p) . (6)

Pepiot-Desjardins and Pitsch [14] also proposed a coefficient scaling procedure to better relate
the OICs from different points in the reaction system evolution that we adopt here. A pseudo-
production rate of a chemical element a based on the production rates of species containing a is
defined as

Pa = ∑
all species S

Na,S max(0,PS−CS) , (7)

where Na,S is the number of atoms a in species S and PS and CS are the production and consumption
rates of species S as given by Eqs. (2) and (3), respectively. The scaling coefficient for element a
and target species T at time t is defined as

αa,T (t) =
Na,T |PT −CT |

Pa
. (8)

For the set of elements {E }, the global normalized scaling coefficient for target T at time t is

αT (t) = max
a∈{E }

 αa,T (t)
max

all time
αa,T (t)

 . (9)

Given a set of kinetics data {D} and target species {T }, the overall importance of species S to the
target species set is

RS = max
T∈{T }
k∈{D}

[
max

all time, k
(αT RT S)

]
. (10)

The removal of species where RS < εEP is considered negligible to the overall production/consumption
rates of the target species and therefore such species are unimportant for the given conditions and
can be removed from the reaction mechanism. The optimal threshold εEP is chosen in an iterative
manner. Starting with a low value (e.g., 0.01), an initial skeletal mechanism is generated and the
error in ignition delay prediction (compared to the detailed mechanism) is calculated for all initial
conditions using the following:

δskel = max
k∈{D}

∣∣τk
det− τk

skel

∣∣
τk

det
, (11)
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where τk
det and τk

skel are the ignition delays calculated by the detailed and skeletal mechanisms, re-
spectively, and {D} is the set of autoignition initial conditions. If the maximum error for this initial
skeletal mechanism is above the user-specified error limit δlimit, the threshold is decreased. For this
and any subsequent mechanisms, if the maximum error is below the error limit the threshold is in-
creased until the error reaches the specified limit. This procedure generates a minimal skeletal
mechanism using DRGEP for a given error limit prior to application of sensitivity analysis.

2.2 Sensitivity analysis

Following the removal of a large number of species by the DRGEP method, a sensitivity analysis
algorithm eliminates additional unimportant species. Species with overall importance values

(
RS
)

that satisfy εEP < RS < ε∗, where ε∗ is a higher value (e.g., 0.1–0.4), are classified as “limbo”
species to be analyzed for removal. Species where RS > ε∗ are classified as “retained” species and
included in the final skeletal mechanism. Previously used sensitivity analysis approaches removed
limbo species one-by-one, arranged them in ascending order based on the error induced to the
mechanism by removal, then removed using this order until the global error reached a limit [11–
13, 16, 26, 27].

The sensitivity analysis algorithm first evaluates the error induced by the removal of each species,
given by

δS =
∣∣δS,ind−δskel

∣∣ , (12)

where δskel is the error of the current skeletal mechanism (prior to temporary removal of species
S) and δS,ind the error induced by the removal of species S, by removing each one-by-one. Then,
using the criterion given by Eq. (12) the algorithm sorts the species for removal in ascending order
of induced error. Species are removed in order until the maximum error reaches the user-specified
limit. By using δS rather than δS,ind, the species whose removal affects the mechanism the least is
selected for removal.

2.3 Unimportant reaction elimination

After the DRGEPSA method generates a skeletal mechanism, an additional step of further unim-
portant reaction elimination is performed based on the methodology of Lu and Law [13]. Using an
approach based on the CSP importance index [29], the normalized contribution of a reaction i to
the production rate of a species A is

IA,i =

∣∣νA,iΩi
∣∣

∑ j=1,NR

∣∣νA, jΩ j
∣∣ , (13)

where a reversible reaction must be treated as a single reaction [13]. Reactions are considered
unimportant if IA,i < εreac for all species A; in other words, if

max
all species A

IA,i ≥ εreac, (14)

reaction i is retained in the mechanism. The threshold εreac is determined iteratively based on a
user-defined error limit in a similar manner to εEP.
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2.4 QSS species identification

Our approach for identifying global QSS species is based on the CSP analysis of Lam and coworker
[22–24, 30], and follows the same approach as Lu and Law [13, 31].

dy
dt

= g(y) (15)

dg
dt

= Jg, J≡ dg
dy

(16)

CSP analysis decomposes the source terms g into “modes” using basis vectors:

f = Bg, (17)
df
dt

= ΛΛΛf, (18)

ΛΛΛ =

(
dB
dt

+BJ
)

A, (19)

A = B−1, (20)

where the matrices A and B hold the column and row basis vectors, respectively, and f is the vector
of modes.

Practically, this procedure is implemented by calculating the Jacobian J using finite differences,
then using LAPACK subroutine DGEEV [32] to calculate the eigenvalues and eigenvectors. The
Jacobian is assumed to be time independent such that the basis rotation term dB

dt = 0, and as a result
Eq. (19) becomes

ΛΛΛ = BJA, (21)

or
J = AΛΛΛB, (22)

where the diagonal elements of ΛΛΛ are the eigenvalues of J, the columns of A contain the right
eigenvectors, and the rows of B contain the left eigenvectors.

Next, the fast and slow subspaces are separated, such that

d
dt

(
ffast

fslow

)
=

(
ΛΛΛ

fast

ΛΛΛ
slow

)(
ffast

fslow

)
. (23)

The fast modes are those that exhaust rapidly and decay quickly, while the slow modes remain im-
portant and control the overall behavior of the system. The eigenvalues associated with fast modes,
the diagonal elements of ΛΛΛ

fast, are negative with a much larger magnitude than the eigenvalues as-
sociated with the slow modes, contained in ΛΛΛ

slow. The separation of the fast and slow subspaces is
identified by a timescale analysis:

−1

λmin

(
ΛΛΛ

fast
) ≡ τfast <

τc

αCSP
(24)
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where the time scale of the fast subspace, τ fast, is the negative inverse of the smallest magnitude
eigenvalue in ΛΛΛ

fast, τc is a characteristic time scale of the reacting system (here, autoignition delay),
and αCSP is a safety factor (e.g., 10–100).

Once the fast and slow subspaces are separated, the species rates of production can be projected
onto the two subspaces:

g =
(

Qfast +Qslow
)

g, (25)

where the fast and slow projection matrices are

Qfast = AfastBfast, Qslow = AslowBslow, (26)

respectively. The ith species is considered QSS if it satisfies the following condition over the entire
parameter range of interest: ∣∣∣Qslow

i,i

∣∣∣< εCSP, (27)

where Qslow
i,i is the ith diagonal element of Qslow and εCSP is a small threshold value.

2.5 Analytical QSS solution

Once the set of QSS species are selected, applying the QSS approximation results in a set of
nonlinear algebraic equations for the concentrations of each species, coupled with the remaining
differential equations governing the non-QSS species. Past efforts focused on solving this system
of equations through iterative schemes, but convergence difficulties can arise due to deterioration
of the QSS assumption, leading to excessive computational cost [33]. An alternative is to linearize
the relations—assuming the coupling between QSS species is sparse in general—and generate an
analytical solution for the concentrations of the QSS species. Here, we present our methodology
for this, adopted from the approach established by Lu and Law [34], who also presented greater
detail and explanation of this method. We summarize the necessary steps here.

First, we must ensure the contribution of the nonlinear terms in the QSS equations is negligible
such that these terms can be eliminated from the relations. According to the QSS approximation,
the net production rate of a QSS species is small compared to both the production and consumption
rates. This approximation results in a system of equations for the QSS species:

ωP,i = ωC,i i = 1,2, . . . ,N (28)

with the species production and consumption rates expressed as

ωP,i =
NR

∑
j=1

ν
′′
i, jΩ j and ωC,i =

NR

∑
j=1

ν
′
i, jΩ j, (29)

respectively, where N is the number of QSS species and NR the number of irreversible reactions.
Note that unlike the previous reduction stages, this step requires all reactions to be irreversible.
The reaction rate is calculated using

Ω j = k j

NS

∏
k=1

x
ν ′k,i
k , (30)
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where k j is the Arrhenius rate coefficient, NS the total number of species (both QSS and non-
QSS), and xk the molar concentration of the kth species. Equation (28) may be nonlinear due
to the participation of multiple QSS species or a stoichiometric coefficient greater than one for
a particular QSS species in a reaction. However, due to the typically low concentration of QSS
species (after an initial transient), these nonlinear terms may not be important. This importance can
be quantified by calculating the normalized contribution of the nonlinear terms to the production
and consumption rates of the ith species, expressed as

πi =
∑

NR
j=1 ν ′′i, jΩ jδ j

ωP,i
and κi =

∑
NR
j=1 ν ′i, jΩ jδ j

ωC,i
, (31)

respectively, where

δ j =

{
1 if reaction j involves > 1 QSS reactant,
0 otherwise.

(32)

These measures of importance are similar to those used in DRG/DRGEP as well as unimportant re-
action elimination, and similarly if the values fall below a cutoff threshold the terms are considered
unimportant. The nonlinear terms may be neglected if

max
k∈{D}

(
max

all species i,k
πi

)
< εnonlin and max

k∈{D}

(
max

all species i,k
κi

)
< εnonlin (33)

where k is a reaction state, {D} the set of all reaction states of interest, and εnonlin a small user-
defined threshold (e.g., 0.1–0.2). If Eq. (33) is satisfied, then the nonlinear contributions to QSS
equations are deemed negligible and removed.

Once the nonlinear terms are eliminated, the QSS relations in Eq. (28) can be expressed using
a system of linear equations, which Lu and Law [34] termed the linearized QSS approximation
(LQSSA):

Cixi = ∑
k 6=i

Pikxk +Pi0 i = 1,2, . . . ,N (34)

where

Ci =
ωC,i

xi
, (35)

Pik =
∑

NR
j=1 ν ′′i, jΩ j sgn

(
ν ′k, j

)
xk

, (36)

Pi0 =
NR

∑
j=1

ν
′′
i, jΩ jδ

′
j, (37)

sgn
(

ν
′
k, j

)
=

{
1 if ν ′k, j > 0,
0 if ν ′k, j = 0,

and (38)

δ
′
j =

{
1 if reaction j involves no QSS reactant,
0 otherwise.

(39)
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Note that the consumption and production coefficients Ci, Pik, and Pi0 are independent of QSS
species concentrations, and either positive or zero. As with the initial nonlinear QSS relations,
the system of equations given by Eq. (34) may be solved by iterative schemes, but could suffer
the same computational difficulties. In addition, the system could be solved through the typical
Gaussian elimination, but its algorithmic complexity is a cubic function of N. Instead, an analytic
solution based on variable substitution and elimination offers an efficient approach for calculation
the QSS species concentrations. Now, the challenge becomes finding the best order for elimination
by substitution that minimizes the number of operations required. Lu and Law [34] proposed using
graph theory to identify the interdependence of QSS species. We detail the construction of such a
QSS graph (QSSG) in the following section.

The system of LQSSA equations, as given by Eq. (34), can be transformed to a form that offers a
direct solution for each variable:

xi = ∑
k 6=i

Aikxk +Ai0 i = 1,2, . . . ,N (40)

where
Aik =

Pik

Ci
and Ai0 =

Pi0

Ci
(41)

In this formulation, the solution for the concentration xi directly requires xk if Aik > 0. Simi-
lar to the concept used in DRG/DRGEP, the dependence of QSS species concentrations on one
another can be mapped to a directed graph, where each QSS species is a graph node: the QSS
graph (QSSG). Edges between nodes exist when there is a direct dependence between species: the
edge xi → xk exists if and only if Aik > 0. In some cases, Eq. (40) may be explicit for all QSS
species—meaning there is no interdependence—and the equations can be solved in order without
the need to substitute expressions and eliminate variables. In general, though, the QSSG will con-
sist of strongly coupled groups of species that form cycles of dependence—these are known as the
strongly connected components (SCCs) of the graph. Intergroup coupling, on the other hand, is
acyclic, such that an explicit solution order of groups may be determined.

One important step is to prune the QSSG of unimportant edges, again in a similar manner to the
elimination of unimportant species in the DRG and DRGEP methods. While less important when
a small number of QSS species exist, trimming the edges in a large graph ensures that the matrix A
formed by the Aik coefficients is sparse, resulting in multiple groups—rather than one large cyclic
group made up of all the QSS species. The importance of QSSG edges can be determined by
calculating the normalized contribution of the kth QSS species to the production rate of the ith
QSS species (not to be confused with the DRGEP direct interaction coefficient given by Eq. (1)):

rik = max
{D}

(
Aikxk

∑ j 6=i Ai jx j +Ai0

)
(42)

where {D} indicates the maximum over all reaction states of interest. Unimportant QSSG edges
are then identified and removed through comparison with a small cutoff threshold εQSS, such that
the remaining edges satisfy

xi→ xk ⇐⇒ rik ≥ εQSS. (43)

After pruning the graph edges, the next step is to identify the SCCs and perform a topological sort
[28], which provides the order in which the SCCs are to be solved. This is performed using the
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DIGRAPH_ADJ_COMPONENTS subroutine of Burkardt’s GRAFPACK [35], with the algorithm
originally taken from Thulasiraman and Swamy [36]. The adjacency matrix E of the QSSG, a
necessary input, is formed by

Eik =

{
1, if there is an edge xi→ xk,

0,otherwise.
(44)

With the SCCs identified and sorted, the only remaining task is to solve for the intra-SCC species
concentrations through variable elimination by substitution. Lu and Law [34] proposed a method to
identify a near-optimal sequence for variable elimination, by calculating the normalized expansion
cost ci of each variable xi, defined as

c = Lc (45)

where

c = (c1,c2, . . . ,cM)T , and (46)

Lik =
Eik

∑
M
j=1 E jk

, (47)

where M is the number of QSS species in the current SCC. Equation (45) is an eigenvalue problem,
where the column vector c is the eigenvector of L associated with the principal eigenvalue. Practi-
cally, we solve this equation using the LAPACK subroutine DGEEV [32], and select the resulting
eigenvector associated with the largest eigenvalue. The values of c represent the relative expansion
cost of each QSS species in the SCC, such that species with lower ci values should be eliminated
from later expressions first. Therefore, species within the SCC are sorted in ascending order of ci
for elimination by substitution.

Finally, we note that in some cases, the LQSSA—and therefore the analytic QSS solution—may
not be valid when the contributions from the nonlinear terms (πi and κi) are not negligible. For
example, Lu and Law [34] compared the terms’ importance to detailed and skeletal mechanisms
for ethylene, consisting of 70 and 33 species, respectively. They found that while the terms were
in fact small (between 0.1–0.2) for the skeletal mechanism, the same was not true for the detailed
mechanism, where the nonlinear contributions to the production rates (πi) were nearly unity in
some cases. It remains to be seen whether the LQQSA approximation is valid in the case of
larger, more complex skeletal mechanisms resulting from even larger initial detailed mechanisms.
When non-negligible nonlinear terms exist in the skeletal mechanism, two main options exist: (1)
remove offending species from the QSS list, such that the nonlinear terms become negligible; and
(2) develop a hybrid analytic-iterative solution scheme, where most of variables are calculated
analytically and a small number of nonlinear terms are solved iteratively.

2.6 Reduction package

The various reduction stages described above are integrated into a new version of the Mechanism
Automatic Reduction Software (MARS) package, first described by Niemeyer and Sung [16, 26].
This version uses VODE_F90 [37], a Fortran 90 version of the well-known VODE solver, in con-
junction with CHEMKIN-III [38] to generate numerical solutions of constant volume autoignition
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using the detailed reaction mechanism over the range of initial conditions for the desired coverage
of the skeletal mechanism. Chemical kinetics data used in the reduction procedure are sampled
densely around the ignition evolution. In addition, the ignition delay results from the detailed
mechanism are used to measure the error of skeletal mechanisms.

MARS first employs the DRGEPSA with a user-defined error limit and the iterative threshold
technique described previously automatically generate a skeletal mechanism with a minimal num-
ber of species. Next, the unimportant reaction elimination stage is performed to further reduce
complexity of the skeletal mechanism by removing reactions in addition to those eliminated with
unimportant species. This skeletal mechanism is converted to a version with only irreversible reac-
tions using the freely-available tool irrev_mech [39]. Then, using the resulting skeletal mechanism,
a CSP-based time scale analysis algorithm identifies global QSS species. Finally, MARS gener-
ates analytical solutions for the concentrations of these QSS species. The final reduced mechanism
consists of a CHEMKIN-format mechanism file containing the non-QSS species, and a Fortran 90
source file containing a replacement for the CHEMKIN subroutine CKWYP, which calculates the
molar production rates of the species.

The MARS code is parallelized using OpenMP [40], such that multiple autoignition simulations
may be performed simultaneously. This greatly reduces the run time of the original sampling of
the detailed mechanism, in addition to the sensitivity analysis portion of the DRGEPSA stage.

3 Results and Discussion

We generated skeletal and reduced mechanisms at various levels of detail from a detailed mecha-
nism for gasoline surrogates of Mehl et al. [3], which consists of 1389 species and 5936 reversible
reactions. Thermochemical data were sampled from constant volume autoignition simulations per-
formed over the range of conditions listed in Table 1, using the surrogate formulation of Mehl et al.
[3]: 48.8% iso-octane, 15.3% n-heptane, 30.6% toluene, and 5.3% 2-pentene (by molar percent-
age). This range of conditions was chosen to sample over a wide range of temperatures, pressures,
and species compositions relevant to HCCI engine conditions, while limiting the computational
cost of the reduction procedure. We selected error limits of 10% and 30% to produce two pairs
of skeletal and reduced mechanisms at different levels of detail, and chose iso-octane, n-heptane,
toluene, 2-pentene, oxygen, and nitrogen (to prevent removal) as the DRGEP target species.

Table 2 shows the results for the various stages of the reduction procedure, for both error limits.
Both the final skeletal (following the reaction elimination stage) and reduced mechanisms represent
significant reduction from the initial detailed mechanism. The iterative threshold algorithm of the
DRGEP algorithm selected cutoff thresholds (εEP) of 0.007 and 0.019 for the 10% and 30% error
limits, respectively. The separation values ε∗ used in the sensitivity analysis were 0.01 and 0.11.
For the reaction elimination stage, the εreac threshold values 0.007 and 0.01 were selected.

Next, in the CSP analysis, safety factors (αCSP) of 100 and CSP threshold εCSP values of 0.0001
were used for both cases. For both, the maximum contributions of the nonlinear terms were quite
small: πmax = 6.8×10−16 and κmax = 4.2×10−6 for the 10%, and πmax = 2.6×10−18 and κmax =
8.7×10−4 for the 30% skeletal mechanisms. Interestingly, the skeletal mechanism generated using
the tighter error control (10%) is over 150% larger than the slightly less accurate version (30%); a
similar relationship is exhibited between the number of QSS species.
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Equivalence Ratio Initial Temperature (K) Initial Pressure (atm)

1.0 800 10
1.0 750 60
0.6 1200 60
0.6 1100 10
0.6 1000 60
0.6 800 10
0.6 750 10
0.6 750 60
0.2 800 60
0.2 700 20
0.2 800 20

Table 1: Set of initial conditions used to generate skeletal mechanisms for gasoline surrogates. Adopted from
that used by Mehl et al. [4].

Error limit Stage # Species # Reactions

10% DRGEP 471 2434
SA 423 2131

Reac. elim 423 1747
Reduced 245 (178 QSS) 3448

30% DRGEP 341 1727
SA 270 1237

Reac. elim 270 1001
Reduced 178 (92 QSS) 1965

Table 2: Skeletal and reduced mechanisms sizes for gasoline surrogates. The reduced mechanisms consist of
more reactions since all reversible reactions were converted into two irreversible reactions.
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Figure 1: Autoignition validation of the skeletal and reduced mechanisms for gasoline, corresponding to a 10%
error limit, over a range of initial temperatures and pressures, and at varying equivalence ratios.

Validation of the skeletal and reduced mechanisms was performed with constant volume autoigni-
tion simulations over a range of initial conditions for temperature, pressure, and equivalence ra-
tios. The results for the mechanisms generated with the 10% and 30% error limits are presented in
Figs. 1 and 2, respectively. Both the skeletal and reduced mechanisms generated using the tighter
error control predicted the ignition delay of the detailed mechanism extremely well, with little dis-
cernible discrepancies. The mechanisms associated with the 30% error limit performed nearly as
well, with some error in the negative temperature coefficient region.

We note that the QSS reduction parameters (αCSP and εCSP) were chosen based on trial and error.
Lu and Law [13, 31] used “jumps” in the numbers of QSS species as a function of εCSP to select
the best values for methane and n-heptane reduced mechanisms (0.1 in both cases). Figure 3 shows
this relationship for the current situation, for the skeletal mechanism with 270 species (30% error).
While similar jumps in number are observed, we found that more care must be taken in selecting
εCSP. For example, using a value of 0.001 results in a reduced mechanism with 138 non-QSS and
132 QSS species. Even though this value represents a point in Fig. 3 prior to a jump, the resulting
reduced mechanism does not perform well, as demonstrated in Fig. 4. A more systematic approach
to determining the optimal εCSP values is warranted, which will be pursued in future work.

4 Conclusions

Skeletal and reduced mechanisms for gasoline surrogates were generated using a combined strat-
egy of skeletal reduction via the DRGEPSA method, followed by further unimportant reaction
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Figure 2: Autoignition validation of the skeletal and reduced mechanisms for gasoline, corresponding to a 30%
error limit, over a range of initial temperatures and pressures, and at varying equivalence ratios.
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Figure 3: Number of QSS species as a function of CSP threshold, for the skeletal mechanism with 270 species
generated using a 30% error limit.
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Figure 4: Comparison of autoignition delays between the detailed mechanism and a reduced mechanism with
138 non-QSS species (generated from the 30% error skeletal mechanism) for gasoline, over a range of initial
temperatures and pressures, and at stoichiometric conditions.

elimination, then time-scale reduction based on the QSS assumption using CSP analysis. Us-
ing error limits of 10% and 30%, reduced mechanisms with 245 and 178 species, respectively,
were generated from the original detailed mechanism with 1389 species. Validation of both re-
duced mechanisms showed good performance in predicting homogenous autoignition delay over
a wide range of conditions. However, further validation is warranted, comparing the prediction
of extinction limits and laminar flame speeds. In addition, detailed validation using HCCI engine
simulations will be performed, determining the performance in predicting species profiles and heat
release. Finally, additional investigation is needed in selecting the optimal cutoff threshold for CSP
analysis, as methods used previously may result in a poorly performing reduced mechanism.
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