Modulation of Proton-Coupled Electron Transfer through Molybdenum-quinonoid Interactions

Justin T. Henthorn and Theodor Agapie*

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125

I. Experimental Details	
General Considerations	S3
Synthesis of bis(benzo-15-crown-5)potassium [1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-	
semicatecholate]tricarbonylmolybdenum(0) (9)	S4
Synthesis of bis(benzo-15-crown-5)potassium [1,4-bis(2-bromophenyl)-2,3-semicatecholate] (10)	S5
Synthesis of 1,4-bis(2-bromophenyl)-2,3-quinone (11)	S6
General Procedure for pK_a determination of compound 1, 2, 3, and 8	S 7
Reactions of 1, 2, and 8 with TEMPO	S 7
II. Nuclear Magnetic Resonance Spectra	
Figure S1. ¹ H NMR spectrum of 2 in CD ₃ CN at 25 $^{\circ}$ C	S 9
Figure S2. ¹³ C $\{^{1}H\}$ NMR spectrum of 2 in CD ₃ CN at 25 °C	S9
Figure S2. ${}^{31}P{}^{1}H$ NMR spectrum of 2 in CD ₃ CN at 25 °C	S9
Figure S3. ¹⁹ F NMR spectrum of 2 in CD ₃ CN at 25 °C	S10
Figure S5. ¹ H NMR spectrum of 3 in CD ₃ CN at 25 °C	S10
Figure S5. If $C_1^{13}C_1^{14}$ NMR spectrum of 3 in CD ₃ CN at 25 °C	S10
Figure S0. ${}^{31}P{}^{1}H$ NMR spectrum of 3 in CD ₃ CN at 25 °C	S10
Figure S7. F_{1} F NMR spectrum of 3 in CD ₃ CN at 25 °C	S11 S11
Figure S9. ¹ H NMR spectrum of 5a and 5b in CD ₃ CN at 25 °C	S11 S11
Figure S9. If NMR spectrum of 5a and 5b in CD ₃ CN at 25 °C Figure S10. $^{13}C{^{1}H}$ NMR spectrum of 5a and 5b in CD ₃ CN at 25 °C	S11 S12
Figure S10. ${}^{31}P{}^{1}H$ NMR spectrum of 5a and 5b in CD ₃ CN at 25 °C	S12 S12
Figure S11. ¹⁹ F NMR spectrum of 5a and 5b in CD ₃ CN at 25 °C Figure S12. ¹⁹ F NMR spectrum of 5a and 5b in CD ₃ CN at 25 °C	S12 S12
Figure S12. FINMR spectrum of Sa and Sb in CD_3CN at 25 °C Figure S13. ¹ H NMR spectrum of 6 in CD_2Cl_2 at 25 °C	S12 S13
Figure S15. In NMR spectrum of 6 in CD_2Cl_2 at 25 °C Figure S14. ¹³ C{ ¹ H} NMR spectrum of 6 in CD_2Cl_2 at 25 °C	S13 S13
Figure S14. $C\{H\}$ NMR spectrum of 6 in CD_2CI_2 at 25 °C	S13 S13
Figure S15. ${}^{31}P{}^{1}H$ NMR spectrum of 6 in CD ₂ Cl ₂ at 25 °C	
Figure S16. ¹ H NMR spectrum of 9 in CD ₃ CN at 25 °C	S14
Figure S17. ${}^{13}C{}^{1}H$ NMR spectrum of 9 in CD ₃ CN at 25 °C	S14
Figure S18. ${}^{31}P{}^{1}H{}$ NMR spectrum of 9 in CD ₃ CN at 25 °C	S14
Figure S19. ¹ H NMR spectrum of 10 in CD ₃ CN at 25 °C	S15
Figure S20. ${}^{13}C{}^{1}H$ spectrum of 10 in CD ₃ CN at 25 °C	S15
Figure S21. ¹ H NMR spectrum of 11 in CDCl ₃ at 25 °C	S15
Figure S22. ${}^{13}C{}^{1}H{}$ spectrum of 11 in CDCl ₃ at 25 °C	S16
Figure S23. ¹ H and ³¹ P{ ¹ H} NMR spectra of 1 and 2 equiv. TEMPO in CD ₃ CN at 25 °C	S16
Figure S24. ¹ H and ³¹ P{ ¹ H} NMR spectra of 2 and 2 equiv. TEMPO in CD ₃ CN at 25 °C	S16
Figure S25. ¹ H NMR spectrum of 8 and 2 equiv. TEMPO in CD ₃ CN at 25 °C	S17
Figure S26. ¹ H NMR spectra of 11 and 2 equiv. TEMPOH in CD ₃ CN at 25 °C.	S17
Figure S27. ¹ H NMR spectra of equilibrium mixtures of 9 and 4- ^t BuPhOH, 2 and 2-NO ₂ PhNH ₂ , 3 a	
DABCO, and 10 and 4-'BuPhOH in CD ₃ CN at 25 °C	S17

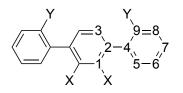
III. Estimation of O-H BDFE

 Table S1. Thermochemical data for selected quinonoid compounds. Note that 1, 2, and 3 show irreversible redox events by cyclic voltammetry.
 S18

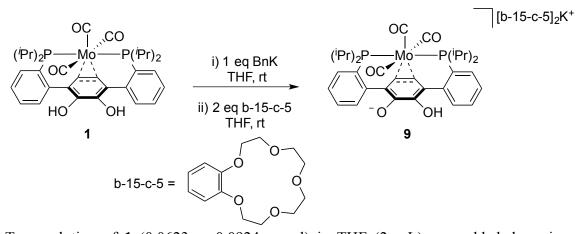
IV. Crystallographic Information	
Refinement Details	S18
Table S2. Crystal and Refinement data for 3, 5a•2MeCN, 5b, and 6	S19
Figure S26. Structural drawing of 3	S20
Figure S27. Structural drawing of 5a	S21
Figure S28. Structural drawing of 5b	S22
Figure S29. Structural drawing of 6	S22
•	

VII. References

S23

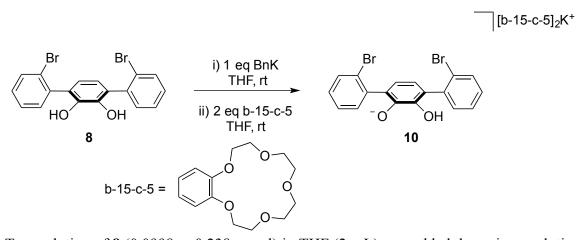

I. Experimental Details

General considerations:

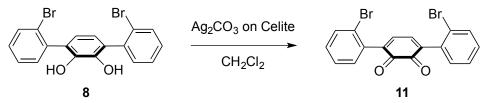

Unless indicated otherwise, reactions performed under inert atmosphere were carried out in oven-dried glassware in a glovebox under a nitrogen atmosphere purified by circulation through RCI-DRI 13X-0408 Molecular Seives 13X, 4x8 Mesh Beads and BASF PuriStar® Catalyst R3-11G, 5x3 mm (Research Catalysts, Inc.). Solvents for all reactions were purified by Grubbs' method.¹ CD₃CN and CD₂Cl₂ were purchased from Cambridge Isotope Laboratories and distilled from CaH₂ prior to use. Alumina and Celite were activated by heating under vacuum at 200 °C for 24 hours. ¹H, ¹⁹F, and ³¹P NMR spectra were recorded on Varian Mercury 300 MHz spectrometers at ambient temperature, unless denoted otherwise. ¹³C NMR spectra were recorded on a Varian INOVA-500 MHz spectrometer. ¹H and ¹³C NMR chemical shifts are reported with respect to internal solvent: 1.94 ppm and 118.26 for CD₃CN, and 5.32 ppm and 53.84 ppm for CD₂Cl₂, respectively. ¹⁹F and ³¹P NMR chemical shifts are reported with respect to an external standard of C₆F₆ (-164.9 ppm) and 85% H₃PO₄ (0.0 ppm).

Powder and thin film ATR-IR measurements were obtained by placing a powder or drop of solution of the complex on the surface of a Bruker APLHA ATR-IR spectrometer probe and allowing the solvent to evaporate (Platinum Sampling Module, diamond, OPUS software package) at 2 cm⁻¹ resolution. Solution IR spectra were recorded on a Thermo-Fisher Scientific Nicolet 6700 FTIR spectrometer using a CaF₂ plate solution cell. Fast atom bombardment-mass spectrometry (FAB-MS) analysis was performed with a JEOL JMS-600H high-resolution mass spectrometer. Gas chromatography-mass spectrometry (GC-MS) analysis was performed upon filtering the sample through a plug of silica gel. Electrochemical measurements were recorded with a Pine Instrument Company AFCBP1 bipotentiostat using the AfterMath software package. Cyclic voltammograms and square-wave voltammograms were recorded on ca. 2 mM solutions of the relevant complex in the glovebox at 20 °C with an auxiliary Pt-coil electrode, a Ag/Ag⁺ reference electrode (0.01 M AgNO₃, 0.1 M $[^{n}Bu4N^{+}][PF_{6}]$ in MeCN), and a 3.0 mm glassy carbon electrode disc (BASI). The electrolyte solution was 0.1 M [ⁿBu4N⁺][PF₆] in MeCN. All reported values are referenced to an internal ferrocene/ferrocenium couple. Elemental analysis was conducted by Robertson Microlit Labs (Ledgewood, NJ).

Unless otherwise noted all chemical reagents were purchased from commercial sources and used without further purification. AgOTf, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and benzo-15-crown-5 were purchased from Sigma Aldrich and used as received. 2,6-di-*tert*-butyl-4-methylpyridine, 4-*tert*-butylphenol, 2-nitroaniline, and [2,2,2]-diazobicyclooctane were purchased from Sigma Aldrich and sublimed prior to use. PhICl₂,² BnK,³ **1**,⁴ **4**,⁴ **8**⁴, and Fetizon's reagent (Ag₂CO₃ on Celite)⁵ were prepared using literature procedures. Assignments of NMR spectra are given corresponding to the following numbering scheme:



Synthesis of bis(benzo-15-crown-5)potassium [1,4-bis(2-(diisopropylphosphino)phenyl)-2,3-semicatecholate]tricarbonylmolybdenum(0) (9)


To a solution of 1 (0.0623 g, 0.0924 mmol) in THF (2 mL) was added dropwise a solution of BnK (0.0118 g, 0.0906 mmol) in THF (2 mL). Upon complete addition, a solution of benzo-15-crown-5 (0.0507 g, 0.189 mmol) in THF (2 mL) and the mixture was stirred at room temperature for 30 minutes. The volatiles were then removed under reduced pressure, and the resulting residue was triturated with Et₂O (5 mL) and the solid collected on a pad of celite. The solid was then dissolved in benzene (5 mL), filtered through celite, and concentrated in vacuo to afford the desired product as an orange powder (0.0756 g, 66%). ¹H NMR (300 MHz, CD₃CN, 25 °C), δ(ppm): 9.22 (s, br, 1 H, O-H), 8.04 (d, 8 Hz, 2 H, Ar-CH), 7.91 (d, 8 Hz, 2 H, Ar-CH), 7.38 (t, 8 Hz, 2 H, Ar-CH), 7.25 (t, 8 Hz, 2 H, Ar-CH), 6.91 (m, 2 H, crown Ar-CH), 6.81 (m, 2 H, crown Ar-CH), 5.38 (t, 4.9 Hz, 2 H, quinonoid Ar-C₃H), 3.91 (m, 4 H, crown O–CH₂), 3.66 (m, 8 H, crown O–CH₂), 3.66 (m, 8 H, crown O–CH₂), 3.57 (m, 4 H, crown O–CH₂), 2.93 (m, 2 H, PCH(CH₃)₂), 2.48 (m, 2 H, PCH(CH₃)₂), 1.42 (m, 6 H, PCH(CH₃)₂), 1.31 (m, 6 H, PCH(CH₃)₂), 0.96 (m, 6 H, PCH(CH₃)₂), 0.90 (m, 6 H, PCH(CH₃)₂). ³¹P NMR (121 MHz, CD₃CN , 25 °C), δ(ppm): 51.42 (s). ¹³C NMR (126 MHz, CD₃CN , 25 °C), δ(ppm): 229.15 (t, 10 Hz, Mo-CO), 216.66 (t, 10 Hz, Mo-CO), 211.78 (t, 10 Hz, Mo-CO), 149.80 (s, Ar-C₁), 148.65 (s, crown Ar-C–O), 133.03 (s, Ar-CH), 132.29 (s, Ar-CH), 131.73 (s, Ar-CH), 130.73 (s, Ar-CH), 128.59 (s, Ar-CH), 126.62 (s, Ar-CH), 124.95 (s, Ar-CH), 122.43 (s, crown Ar-CH), 120.19 (s, Ar-C), 114.32 (s, crown Ar-CH), 86.58 (s, C₃), 69.49 (s, crown O-CH₂), 68.75 (s, crown O-CH₂), 68.26 (s, crown O- CH_2 , 67.91 (s, crown O- CH_2), 34.65 (t, $PCH(CH_3)_2$), 31.16 (t, $PCH(CH_3)_2$), 20.31 (t, PCH(CH₃)₂), 19.92 (t, PCH(CH₃)₂), 19.53 (s, PCH(CH₃)₂), 19.52 (s, PCH(CH₃)₂). IR (THF), v_{CO} (cm⁻¹): 1875, 1605. Anal. Calcd for [9], $C_{61}H_{79}KMoO_{15}P_2$: C, 58.65; H, 6.37. Found: C, 57.33; H, 6.10.

Synthesis of bis(benzo-15-crown-5)potassium [1,4-bis(2-bromophenyl)-2,3-semicatecholate] (10)

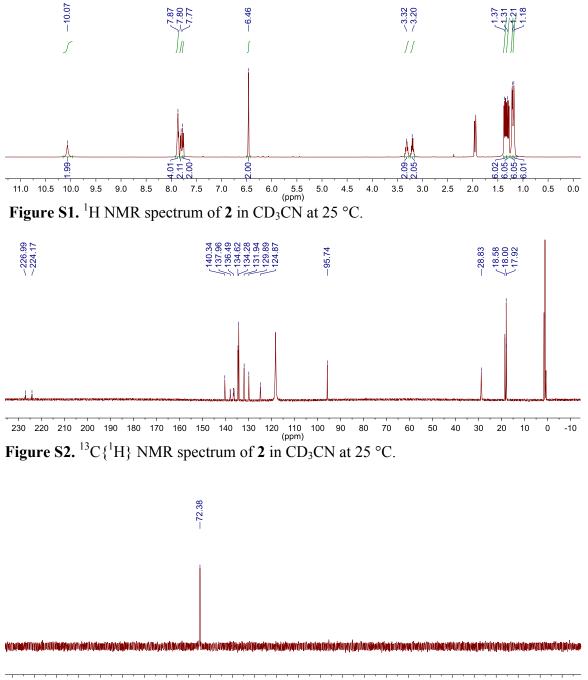
To a solution of 8 (0.0998 g, 0.238 mmol) in THF (2 mL) was added dropwise a solution of BnK (0.0309 g, 0.237 mmol) in THF (2 mL). Upon complete addition, a solution of benzo-15-crown-5 (0.1351 g, 0.504 mmol) in THF (2 mL) and the mixture was stirred at room temperature for 30 minutes. The volatiles were then removed under reduced pressure, and the resulting residue was triturated with Et₂O (5 mL) and the solid collected on a pad of celite. The solid was then dissolved in benzene (5 mL), filtered through celite, and concentrated in vacuo to afford the desired product as an orange powder (0.1213, 51%). ¹H NMR (300 MHz, CD₃CN , 25 °C), δ(ppm): 9.22 (s, br, 1 H, O–H), 8.04 (d, 8 Hz, 2 H, Ar-CH), 7.91 (d, 8 Hz, 2 H, Ar-CH), 7.38 (t, 8 Hz, 2 H, Ar-CH), 7.25 (t, 8 Hz, 2 H, Ar-CH), 6.91 (m, 2 H, crown Ar-CH), 6.81 (m, 2 H, crown Ar-CH), 5.38 (t, 4.9 Hz, 2 H, quinonoid Ar-C₃H), 3.91 (m, 4 H, crown O-CH₂), 3.66 (m, 8 H, crown O-CH₂), 3.66 (m, 8 H, crown O–CH₂), 3.57 (m, 4 H, crown O–CH₂), 2.93 (m, 2 H, PCH(CH₃)₂), 2.48 (m, 2 H, PCH(CH₃)₂), 1.42 (m, 6 H, PCH(CH₃)₂), 1.31 (m, 6 H, PCH(CH₃)₂), 0.96 (m, 6 H, PCH(CH₃)₂), 0.90 (m, 6 H, PCH(CH₃)₂). ³¹P NMR (121 MHz, CD₃CN , 25 °C), δ(ppm): 51.42 (s). ¹³C NMR (126 MHz, CD₃CN , 25 °C), δ(ppm): 228.21 (t, 10 Hz, Mo-CO), 215.71 (t, 10 Hz, Mo-CO), 210.83 (t, 10 Hz, Mo-CO), 148.86 (s, Ar-C₁), 147.70 (s, crown Ar-C–O), 132.09 (m), 131.35 (s, Ar-CH), 130.79 (s, Ar-CH), 129.78 (s, Ar-CH), 127.64 (s, Ar-CH), 125.68 (s, Ar-CH), 124.00 (s, Ar-CH), 121.48 (s, crown Ar-CH), 113.37 (s, crown Ar-CH), 85.63 (s, C₃), 68.55 (s, crown O-CH₂), 67.81 (s, crown O-CH₂), 67.32 (s, crown O–CH₂), 66.96 (s, crown O–CH₂), 33.70 (t, PCH(CH₃)₂), 30.22 (t, PCH(CH₃)₂), 19.37 (t, PCH(CH₃)₂), 18.98 (t, PCH(CH₃)₂), 18.58 (s, PCH(CH₃)₂), 18.57 (s, PCH(CH₃)₂). Anal. Calcd for [**3**], C₄₆H₅₁Br₂KO₁₂: C, 55.54; H, 5.17. Found: C, 54.15; H, 5.33.

Synthesis of 3,6-bis(2-bromophenyl)-1,2-benzoquinone (11)

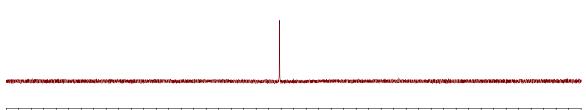
A round bottom flask was charged with **8** (200 mg, 0.476 mmol) dissolved in CH₂Cl₂ (40 mL). Silver carbonate on Celite (2.23 g, 3.90 mmol, 1.75 mmol Ag₂CO₃/g) was added with stirring. The reaction was allowed to stir for 30 minutes at room temperature. The reaction was then filtered over a pad of Celite and the filtrate concentrated *in vacuo* to yield a red-orange solid (198 mg, 99%). ¹H NMR (300 MHz, CDCl₃, 25 °C), δ (ppm): 7.72 – 7.61 (m, 2 H, Ar-C*H*), 7.43 – 7.24 (m, 6 H, Ar-C*H*), 7.13 (s, 2 H, Ar-C₃*H*). ¹³C NMR (126 MHz, CD₃CN, 25 °C), δ (ppm): 178.27 (s, Ar-*C*=O), 142.26 (s, Ar-*C*), 137.96 (s, Ar-*C*₃H), 134.87 (s, Ar-*C*), 133.10 (s, Ar-*C*H), 131.02 (s, Ar-*C*H), 130.50 (s, Ar-*C*H), 127.41 (s, Ar-C*H*), 123.15 (s, Ar-*C*). MS (m/z): calcd, 417.9027 [M]⁺; found, 417.9023 (FAB⁺, [M]⁺).

General procedure for determining the pK_a of compounds 1, 2, 3 and 8

The pK_a values for compounds 1, 2, 3, and 8 were determined via ¹H NMR spectroscopy and are the average of triplicate self-consistent trials, as has been described previously. The compound of interest was combined with an acid or base of known pK_a and the equilibrium populations were determined via ¹H NMR spectroscopy. All compounds exhibit rapid proton exchange on the NMR time-scale, such that the chemical shift can be used to determine the mole fraction of the species in solution via the equation $\chi_A = (\delta_{eq} - \delta_{eq})$ δ_A /($\delta_A - \delta_B$), where χ_A is mole fraction of the acid, δ_e is the equilibrium chemical shift and δ_A and δ_B are the chemical shifts of the pure acid and the pure conjugate base, respectively. The value of χ_A was determined using well-resolved ¹H NMR signals, with good agreement observed between the independent calculations. The value used to determine the equilibrium concentration was the average of the independent caluclations. Once the equilibrium concentrations were determined, the equilibrium constant between the compound of interest and the acid/base of known pK_a was determined, and by using Hess's law the pK_a of the Mo complex (or 8) was determined. The following acids/bases were used to determine the unknown pK_a 's: 4-tert-butylphenol ($pK_a = 27.45$) for compound 1 and 8; [2,2,2]-diazobicyclooctane ($pK_a = 18.60$) for compound 3; 2nitroaniline ($pK_a = 4.80$) for compound **2**. Representative ¹H NMR spectra of equilibrium mixtures used to calculate pKa's are given in Figure S27.

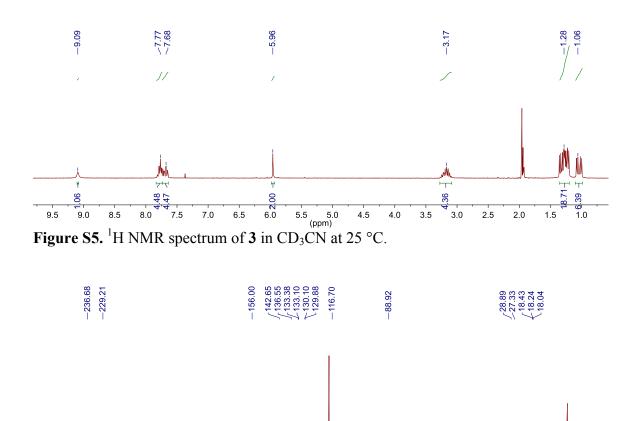

Reactions of 1, 2 and 8 with TEMPO and 11 with TEMPOH

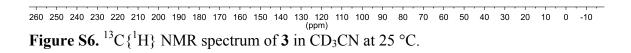
1 and TEMPO: Compound **1** (0.0295 g, 0.0437 mmol) and TEMPO (0.0147 g, 0.0941 mmol) were combined in CD₃CN (0.6 mL) in a 1 dram vial and thoroughly mixed for 30 seconds until all of **1** had solubilized and the color had darkened from pale orange to redorange. The solution was then transferred to an NMR tube and the ¹H and ³¹P NMR spectra were recorded (Figure **S23**).

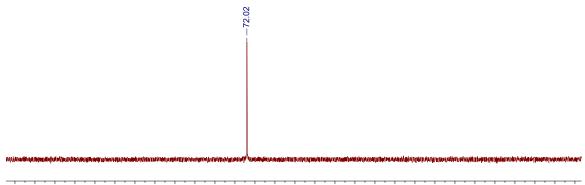

2 and TEMPO: Compound **2** (0.0225 g, 0.0238 mmol) and TEMPO (0.0082 g, 0.0525 mmol) were combined in CD₃CN (0.6 mL) in a 1 dram vial and thoroughly mixed for 30 seconds until all of **2** had solubilized and the color had darkened from pale orange to redorange. The solution was then transferred to an NMR tube and the ¹H and ³¹P NMR spectra were recorded (Figure **S24**).

8 and TEMPO: Compound **8** (0.0412 g, 0.0981 mmol) and TEMPO (0.0299 g, 0.191 mmol) were combined in CD₃CN (0.6 mL) in a 1 dram vial and thoroughly mixed for 30 seconds until all of **8** had solubilized. No color change was observed. The solution was then transferred to an NMR tube and the ¹H and ³¹P NMR spectra were recorded (Figure **S25**).

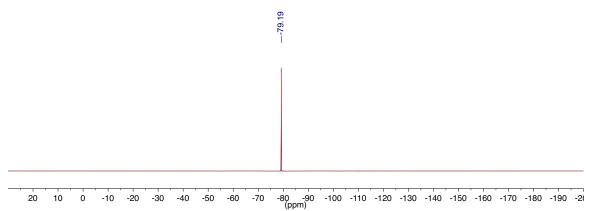
11 and TEMPOH: Compound **11** (0.0100 g, 0.0239 mmol) and TEMPOH (0.0075 g, 0.0477 mmol) were combined in CD₃CN (0.6 mL) in a 1 dram vial and thoroughly mixed for 30 seconds until all of **11** had solubilized. The solution was then transferred to an NMR tube and the ¹H and ³¹P NMR spectra were recorded, showing generation of compound **8** (Figure **S26**). The solution turned from a red orange to a pale pink within minutes.




115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 **Figure S3.** ${}^{31}P{}^{1}H$ NMR spectrum of **2** in CD₃CN at 25 °C.



---79.33


 $^{\circ}$ 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(Figure S4. 19 F NMR spectrum of 2 in CD₃CN at 25 °C.

130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 **Figure S7.** ${}^{31}P{}^{1}H$ NMR spectrum of **3** in CD₃CN at 25 °C.

Figure S8. ¹⁹F NMR spectrum of **3** in CD₃CN at 25 °C.

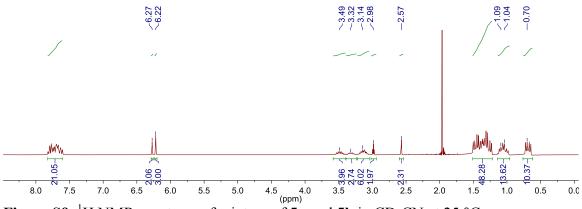
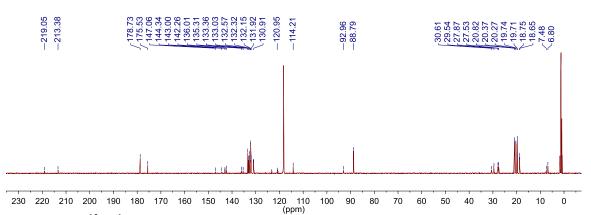
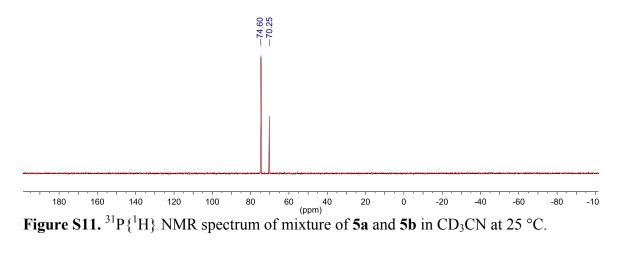
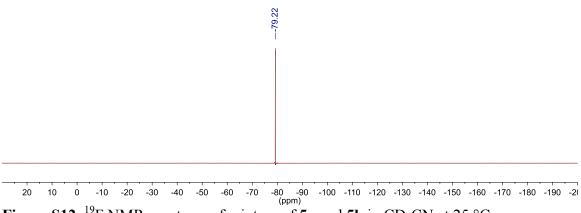





Figure S9. ¹H NMR spectrum of mixture of 5a and 5b in CD₃CN at 25 °C.

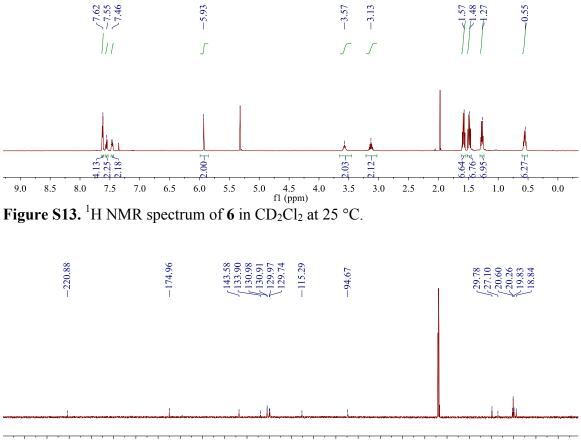


Figure S10. ¹³C{¹H} NMR spectrum of mixture of **5a** and **5b** in CD₃CN at 25 °C.

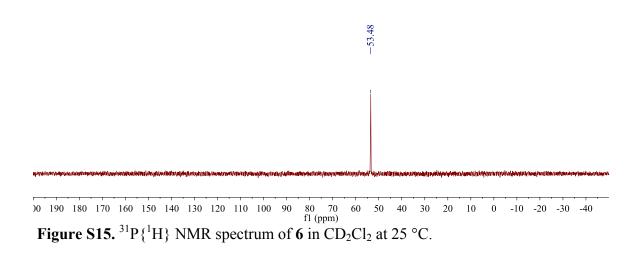


Figure S12. ¹⁹F NMR spectrum of mixture of **5a** and **5b** in CD₃CN at 25 °C.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum of 6 in CD₂Cl₂ at 25 °C.

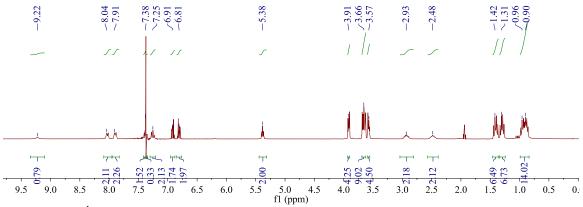
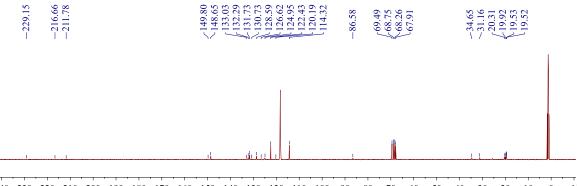



Figure S16. ¹H NMR spectrum of 9 in CD₃CN at 25 °C.

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm) 0 -10 Figure S17. ¹³C $\{^{1}H\}$ NMR spectrum of 9 in CD₃CN at 25 °C.

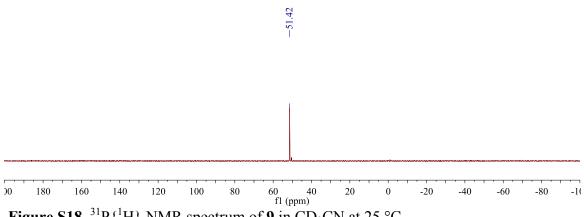


Figure S18. ³¹P{¹H} NMR spectrum of 9 in CD₃CN at 25 °C.

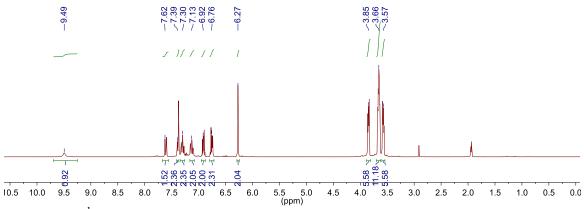
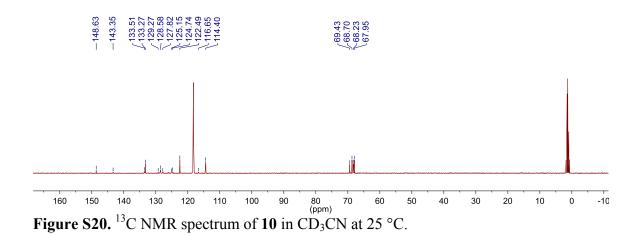



Figure S19. ¹H NMR spectrum of 10 in CD₃CN at 25 °C.

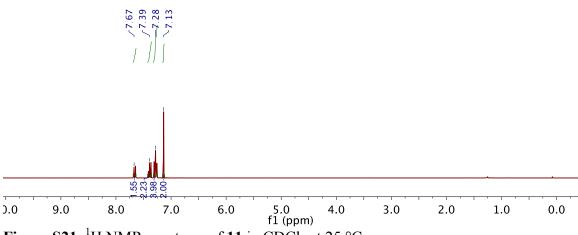
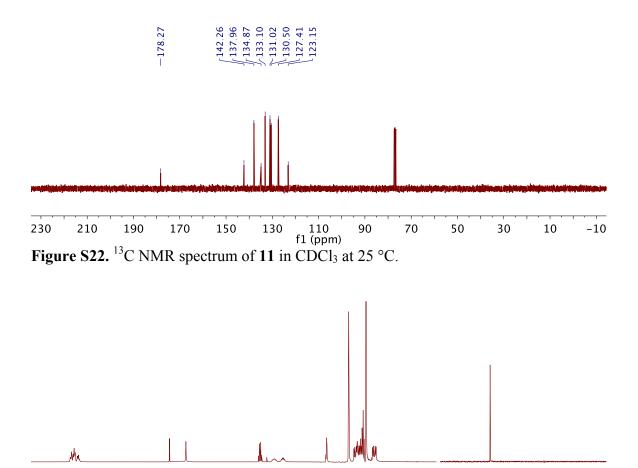
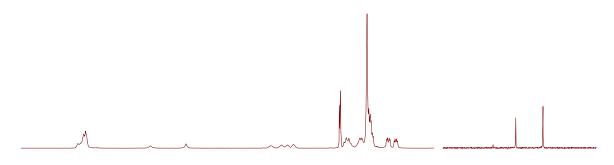




Figure S21. ¹H NMR spectrum of 11 in CDCl₃ at 25 °C.

Figure S23. ¹H NMR spectrum (left) and ³¹P NMR spectrum (right) of 1 and 2 equiv. TEMPO in CD₃CN at 25 °C after 10 min.

Figure S24. ¹H NMR spectrum (left) and ³¹P NMR spectrum (right) of **2** and 2 equiv. TEMPO in CD₃CN at 25 °C after 10 min.

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5**Figure S25.** ¹H NMR spectrum of **8** and 2 equiv. TEMPO in CD₃CN at 25 °C after 10 min.

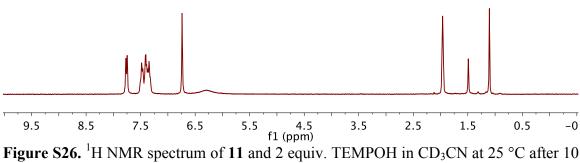
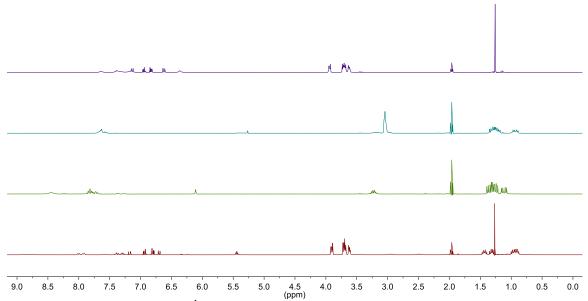



Figure S26. H NMR spectrum of 11 and 2 equiv. TEMPOH in CD₃CN at 25 min.

Figure S27. Representative ¹H NMR spectrum of equilibrium mixtures in CD₃CN of **9** and 4-^{*t*}BuPhOH (brown), **2** and 2-NO₂PhNH₂ (green), **3** and DABCO (teal), and **10** and 4-^{*t*}BuPhOH (purple) all recorded at 25 °C.

III. Estimation of O-H BDFE

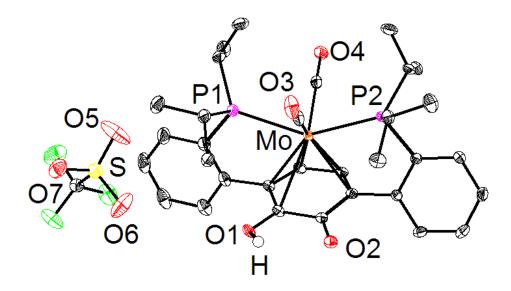
	$p{K_{a(O-H)}}^a$	$E^{\circ}_{Irr(O^{-}/O^{\cdot})}^{b}$	Estimated BDFE _{0-H} ^c
1	25.89(9)	-0.770 V	73 kcal/mol
2	4.74(9)	0.220 V	67 kcal/mol
3	17.1(4)	-0.470 V	68 kcal/mol
8	26.3(1)	-0.630 V ^d	76 kcal/mol

Table S1. Thermochemical data for selected quinonoid compounds. Note that 1, 2, and 3 show irreversible redox events by cyclic voltammetry.

^apK_a for first O–H determined via solution equilibria (see SI). ^bIrreversible oxidation potential for conjugate base determined via square-wave voltammetry. ^cCalculated using equation (1). ^dReversible oxidation event.

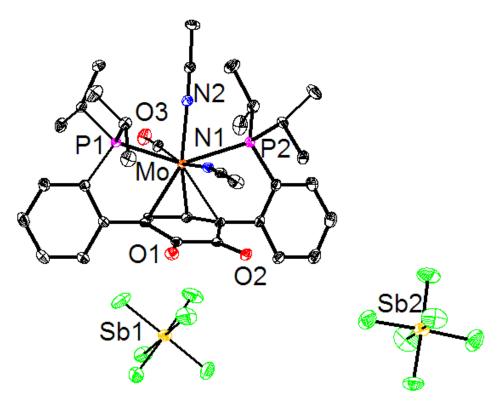
IV. Crystallographic Information

CCDC 1469761-1469764 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

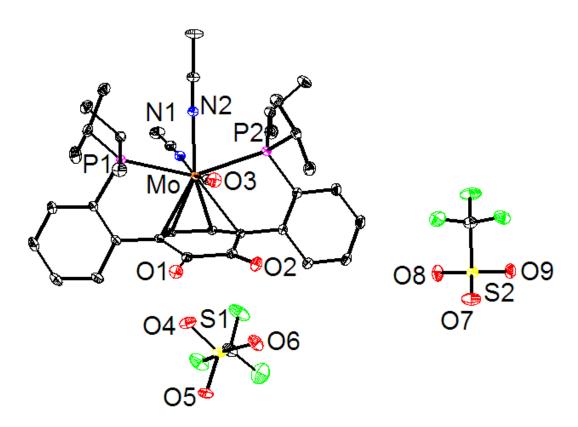

Refinement Details

In each case, crystals were mounted on a glass fiber or nylon loop using Paratone oil, then placed on the diffractometer under a nitrogen stream. Low temperature (100 K) X-ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-ray tube, $K_{\alpha} = 0.71073$ Å) or a Bruker PHOTON100 CMOS based diffractometer (Mo microfocus sealed X-ray tube, $K_{\alpha} = 0.71073$ Å). All diffractometer manipulations, including data collection, integration, and scaling were carried out using the Bruker APEXII software.⁶ Absorption corrections were applied using SADABS.⁷ Space groups were determined on the basis of systematic absences and intensity statistics and the structures were solved by direct methods using XS⁸, by intrinsic phasing using XT (incorporated into SHELXTL), or by charge flipping using Olex2⁹ and refined by full-matrix least squares on F². All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were refined (weighed least squares refinement on F²) to convergence. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Diamond visualization software.¹⁰

Compound	3	5a•2NCMe	5b	6
CCDC	1469761	1469762	1469763	1469764
empirical formula	$C_{33}H_{39}F_3MoO_7P_2S$	$C_{39}H_{50}F_{12}MoN_4O_3P_2Sb_2$	$C_{37}H_{44}F_6MoN_2O_9P_2S_2$	C ₃₁ H ₃₈ Cl ₂ MoO ₃ P ₂
formula wt	794.61 g/mol	1252.23 g/mol	996.74 g/mol	687.39 g/mol
T (K)	100	100	100	100
a, Å	30.285(3)	10.005(1)	11.3464(4)	16.255(1)
b, Å	26.445(2)	27.668(2)	21.2519(8)	16.255(1)
c, Å	17.945(1)	19.306(1)	17.4117(7)	22.205(2)
α, deg	90	90	90	90
β, deg	93.729(2)	94.925(3)	94.171(1)	90
γ, deg	90	90	90	90
$V, Å^3$	14341(2)	5324.3(5)	4187.4(3)	5866.9(5)
Ζ	4	4	4	8
cryst syst	Monoclinic	Monoclinic	Monoclinic	Orthorhombic
space group	$P2_1/c$	$P2_1/n$	$P2_1/n$	Pbca
$d_{calc}, g/cm^3$	1.407	1.562	1.581	1.556
θ range, deg	2.18-33.14	1.29-38.57	2.629-43.71	1.83-45.29
μ , mm ⁻¹	0.573	1.377	0.571	0.771
abs cor	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
GOF	1.070	1.132	1.058	0.954
$R_1^{a}, w R_2^{b}$ (I >	0.0556, 0.1313	0.0409, 0.1502	0.0317, 0.0756	0.0338, 0.0868
2sig(I))				
Diffractometer	APEXII	APEXII	PHOTON100	APEXII


Table S2. Crystal and refinement data for 3, 5a•2NCMe, 5b, and 6.

^a R₁ = $\Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^b wR₂ = $[\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]]^{1/2}$


Figure S28. Structural drawing of **3** with 50% probability ellipsoids. Hydrogen atoms, and additional three Mo complexes and three triflate anions of the asymmetric unit are omitted for clarity. Carbon and fluorine atoms are shown in black and green, respectively.

Special Refinement Details for 3: One of the four triflate anions was positionally disordered and satisfactorily modeled as approximately a 50:50 mixture using "PART", "SAME", and "EADP" cards in SHELX. Two isopropyl groups were also positionally disordered and satisfactorily modeled as approximately 70:30 mixtures using "PART" cards in SHELX. Two DMF solvent molecules were highly disordered and could not be adequately modeled even with constraints. The electron density of these molecules was removed using the "solvent mask" function in Olex2.

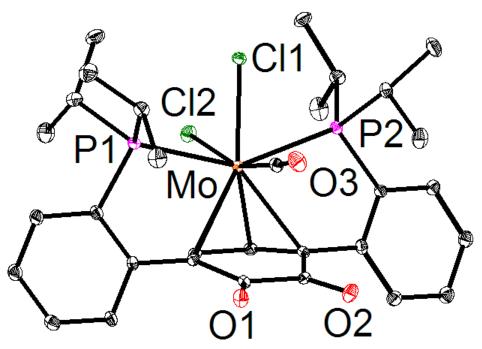


Figure S29. Structural drawing of **5a**•**2NCMe** with 50% probability ellipsoids. Hydrogen atoms and solvent molecules are omitted for clarity. Carbon and fluorine atoms are shown in black and green, respectively.

Special Refinement Details for 5a: Two acetonitrile solvent molecules were highly disordered and could not be adequately modeled even with constraints. The electron density of these molecules was removed using the "solvent mask" function in Olex2.

Figure S30. Structural drawing of **5b** with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. Carbon and fluorine atoms are shown in black and green, respectively.

Figure S31. Structural drawing of **6** with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity. Carbon atoms are shown in black.

V. References

- (1) Pangborn, A.B.; Giardell, M.A.; Grubbs, R.H.; Rosen, R.K.; Timmers, F.J. *Organometallics* **1996**, *15*, 1518.
- (2) Podgorsek, A.; Iskra, J. Molecules 2010, 15, 2857-2871.
- (3) Schlosser, M.; Hartman, R. Angew. Chem., Int. Ed. 1973, 12, 508-509.
- (4) Henthorn, J.T.; Lin, S.; Agapie, T. J. Am. Chem. Soc. 2015, 137 (4), pp 1458-1464.
- (5) Balogh, V.; Fetizon, M.; Golfier, M. J. Org. Chem., 1971, 36 (10), pp 1339–1341
- (6) APEX2, Version 2 User Manual, M86-E01078, Bruker Analytical X-ray Systems, Madison, WI, June 2006.
- (7) Sheldrick, G.M. "SADABS (version 2008/1): Program for Absorption Correction for Data from Area Detector Frames", University of Göttingen, 2008.
- (8) Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.
- (9) Dolomanov, O.V. (2009). OLEX2. J. Appl. Cryst. 42, 339-341.
- (10) Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.