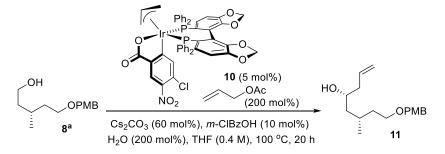
Total Synthesis and Stereochemical Assignment of Callyspongiolide

Jingjing Zhou, Bowen Gao, Zhengshuang Xu,* and Tao Ye*

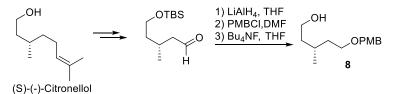
Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China

Supporting Information


Index

1. General Experimental	S3
2. Experimental procedures	S4
2.1. Synthesis of homoallylic alcohol 11	S4
2.2. Synthesis of alcohol 12	S5
2.3. Synthesis of acyl oxazolidinone 13	S6
2.4. Synthesis of alcohol 6	S8
2.5. Synthesis of propargylic alcohol 14	S8
2.6. Synthesis of PMB ether 15	S9
2.7. Synthesis of vinyl iodide 16	S9
2.8. Synthesis of sulfide 18	S10
2.9. Synthesis of sulfone 7	S11
2.10. Synthesis of alkene 20	S12
2.11. Synthesis of alcohol 21	S12
2.12. Synthesis of α,β-unsaturated ester 23	S13
2.13. Synthesis of α,β-unsaturated acid 4	S14
2.14. Synthesis of macrolactone 2	S15
2.15. Synthesis of (R)-β-hydroxy ester 26	S15
2.16. Synthesis of alcohol 27	S17
2.17. Synthesis of vinyl iodide 28	S17
2.18. Synthesis of enyne 3	S18
2.19. Synthesis of enyne <i>ent</i> -3	S19
2.20. Synthesis of 1a	S19
2.21. Synthesis of 1d	S20
2.22. Synthesis of 1b	S21
2.23. Synthesis of 1c	S21
3. Biological Evaluation of Synthetic Compounds	S22
4. Comparison of NMR Spectra of Natural and Synthetic Callyspongiolides	S25
4.1. ¹ H NMR Spectra of Natural and Synthetic Callyspongiolides	S25
4.2. ¹³ C NMR Spectra of Natural and Synthetic Callyspongiolides	S29
4.3. Comparison of ¹³ C NMR Data of Natural, Synthetic Samples	S33
5. ¹ H & ¹³ C NMR Spectra	S35

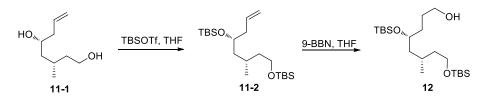
1. General Experimental


All reactions were conducted in flame-dried or oven-dried glassware under an atmosphere of dry nitrogen or argon. Oxygen and/or moisture sensitive solids and liquids were transferred appropriately. Concentration of solutions in vacuo was accomplished using a rotary evaporator fitted with a water aspirator. Residual solvents were removed under high vacuum (0.1-0.2 mm Hg). All reaction solvents were purified before use: Tetrahydrofuran were distilled from sodium benzophenone ketyl. Toluene was distilled over molten sodium metal. Dichloromethane, dimethylformamide, diethylamine, triethylamine and diisoproylethylamine were distilled from CaH_2 . Methanol was distilled from Mg/I₂. Flash column chromatography was performed using the indicated solvents on E. Qingdao silica gel 60 (230 – 400 mesh ASTM). TLC was carried out using pre-coated sheets (Oingdao silica gel 60-F250, 0.2 mm). Compounds were visualized with UV light, iodine, p-anisaldehyde stain, ceric ammonium molybdate stain, or phosphomolybdic acid in EtOH. ¹H NMR spectra were recorded on Bruker DPX 300 MHz, AV 500 MHz or AV 600 MHz spectrometers. Chemical shifts were reported in parts per million (ppm), relative to either a tetramethylsilane (TMS) internal standard or the signals due to the solvent. The following abbreviations are used to describe spin multiplicity: s = singlet, d = doublet, t = doublettriplet, q = quartet, qn = quintet, m = multiplet, br = broad, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, ddd = doublet of doublet of doublets; other combinations are derived from those listed above. Coupling constants (J) are reported in Hertz. ¹³C NMR spectra were completely heterodecoupled and measured at 75, 125, or 150 MHz. High resolution mass spectra were measured on ABI Q-star Elite. Optical rotations were recorded on a Perkin-Elmer 351 polarimeter at 589 nm, 100 mm cell. Data were reported as follow: optical rotation (c (g/100 mL), solvent).

2. Experimental procedures

To an oven-dried sealed tube under one atmosphere of nitrogen charged with alcohol **8** (200 mg, 0.84 mmol), catalyst **10** (44 mg, 0.04 mmol), Cs₂CO₃ (85mg, 0.50mmol), *m*-ClBzOH (13 mg, 0.08 mmol), and H₂O (30 mg, 1.68 mmol) was added THF (2.0 mL, 0.4 M) followed by allyl acetate (168 mg, 1.68 mmol). The reaction mixture was allowed to stir at 100 °C for 20 h, at which point the reaction mixture was evaporated. The residue was purified by silica gel flash chromatography to produce **11** (210 mg, 90%) as a colorless oil. $R_f = 0.2$ (silica gel, 10% ethyl acetate in hexane); $[\alpha]_D^{20} = -9.4$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, *J* = 8.2 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 2H), 5.88 – 5.75 (m, 1H), 5.12 (dd, *J* = 7.7, 6.8 Hz, 2H), 4.43 (s, 2H), 3.80 (s, 3H), 3.78 – 3.68 (m, 1H), 3.52 – 3.42 (m, 2H), 2.32 – 2.21 (m, 1H), 2.17 – 2.06 (m, 1H), 1.90 (s, 1H), 1.82 – 1.59 (m, 2H), 1.45 – 1.30 (m, 3H), 0.93 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.22, 134.95, 130.67, 129.25, 117.87, 113.82, 72.49, 68.60, 68.31, 55.27, 44.32, 42.19, 36.25, 27.00, 20.68. HRMS (*m*/*z*): calculated for C₁₇H₂₆O₃Na⁺ [M + Na]⁺: 301.1774, found 301.1775.

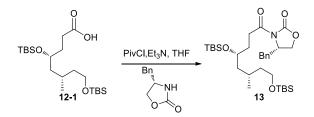
^a The known alcohol **8** was prepared according to the following scheme.;



Fujiwara, K.; Naka, J.; Katagiri, T.; Sato, D.; Kawai, H.; Suzuki, T. *Bull. Chem. Soc. Jpn.* **2007**, *80*, 1173.; Lee, E. Lee, Y. R. Moon, Kwon, B. O. Shim, M. S. Yun, J. S. *J. Org. Chem.* **1994**, *59*, 1444.

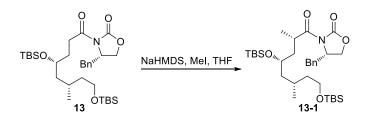
To a solution of **11** (300 mg, 1.1 mmol) in DCM (10 mL) and phosphate buffer (1 mL, pH 7.0, 100 mM) was added DDQ (500 mg, 2.2 mmol) at room temperature. The reaction mixture was stirred at

room temperature for 2 h., and then washed sequentially with saturated aqueous solution of Na₂S₂O₃ (20 mL), NaHCO₃ (20 mL) and brine (20 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to produce **11-1** (162 mg, 95%) as a colorless oil. $R_f = 0.4$ (silica gel, 33% ethyl acetate in hexane); $[\alpha]_D^{20} = -22.0$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 5.88 – 5.77 (m, 1H), 5.15 – 5.07 (m, 2H), 3.80 – 3.73 (m, 1H), 3.73 – 3.67 (m, 1H), 3.67 – 3.58 (m, 1H), 2.97 (s, 2H), 2.31 – 2.21 (m, 1H), 2.21 – 2.11 (m, 1H), 1.90 – 1.75 (m, 1H), 1.75 – 1.64 (m, 1H), 1.44 – 1.33 (m, 2H), 1.33 – 1.20 (m, 1H), 0.94 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 134.94, 117.73, 68.17, 60.52, 44.21, 42.20, 38.46, 25.82, 20.70. HRMS (*m*/*z*): calculated for C₉H₁₈O₂Na⁺ [M + Na]⁺: 181.1199, found 181.1192.

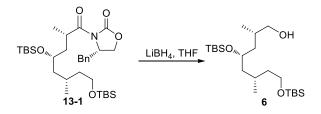


To a solution of diol **11-1** (272 mg, 1.74 mmol) in DCM (15 mL) was added TBSOTf (1.13 mL, 5.25 mmol) and Et₃N (0.95 mL, 7.00 mmol) at -78 °C. The reaction mixture was allowed to slowly warm to -30 °C and stirred at -30 °C for 2 h., and then was quenched with saturated aqueous solution of NaHCO₃ (20 mL) at -78 °C and allowed to warm to room temperature. The mixture was dissolved in ethyl acetate (50 mL) and the layers were separated. The aqueous phase was extracted with ethyl acetate (3 x 30 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na2SO4 and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to produce **11-2** (670 mg, 99%) as a colorless oil. R_f = 0.20 (silica gel, hexane);

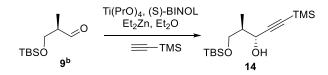
To a solution of **11-2** (670 mg, 1.76 mmol) in THF (10 mL) was added 9-BBN (12 mL, 0.5 M) at 0 °C. The mixture was warmed to room temperature and stirred for 2 h., and then slowly quenched by the addition of saturated aqueous solution of NaHCO₃ (10 mL) and 30% hydrogen peroxide (10 mL) at 0 °C. The mixture was allowed to warm to room temperature and stirred for 2 h. Layers were separated and the aqueous phase was extracted with ethyl ether (2 x 30 mL). The organic phase was washed with brine (30 mL), dried over anhydrous Na₂SO₄, concentrated in *vacuo* and purified by silica gel flash chromatography to give **12** as colorless oil (630 mg, 90 %). $R_f = 0.4$ (silica gel, 10% ethyl acetate in hexane); $[\alpha]_D^{20} = 1.8$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 3.88 – 3.79 (m, 1H), 3.69 – 3.55 (m, 4H), 2.24 (s, 1H), 1.67 – 1.52 (m, 7H), 1.37 – 1.23 (m, 2H), 0.91 – 0.83 (m, 21H), 0.07 (s, 6H), 0.05 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 70.16, 63.24, 61.11, 44.12, 40.48, 33.14, 27.87, 26.29, 25.97, 25.90, 19.94, 18.33, 18.10, -4.43, -4.46, -5.26, -5.29.HRMS (*m/z*): calculated for C₂₁H₄₈O₃Si₂Na⁺ [M + Na]⁺: 427.3034, found 427.3036.


To a solution of compound **12** (630 mg, 1.56 mmol) in CH₃CN (20 mL) and phosphate buffer (20 mL, pH 7.0, 100 mM) were subsequently added NaClO₂ (755 mg, 8.39 mmol), NaClO (1.55 mL, 10% chlorine) and TEMPO (15 mg, 0.10 mmol) at room temperature. After being stirred for 2 h, the pH value of the reaction mixture was adjusted to 3 with 1M HCl. Volatiles were removed in *vacuo*, the aqueous residue was extracted with ethyl ether (2 x 30 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na₂SO₄, concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to give **12-1** as a colorless oil (610 mg, 94 %). $R_f = 0.4$ (silica gel, 10% ethyl acetate in hexane); $[\alpha]_{\rm D}^{20} = 10.1$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 3.87 – 3.78 (m, 1H), 3.71 – 3.58 (m, 2H), 2.44 (t, *J* = 7.6 Hz, 2H), 1.93 – 1.80 (m, 1H), 1.70 – 1.59 (m, 2H), 1.58 – 1.50 (m, 1H), 1.46 – 1.39 (m, 1H), 1.39 – 1.26 (m, 2H), 0.94 – 0.89 (m, 12H), 0.89 (s, 9H), 0.06 (s, 6H), 0.05 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 180.00, 69.26, 61.10, 44.65, 40.47, 31.15, 29.52, 26.33, 25.95, 25.86, 19.90, 18.30, 18.02, -4.36, -4.56, -5.30, -5.32. HRMS (*m*/*z*): calculated for C₂₁H₄₆O₄Si₂Na⁺ [M + Na]⁺: 441.2827, found 441.2825.

To a stirred solution of acid **12-1** (610 mg, 1.46 mmol) in dry THF (10 mL) was sequentially added Et_3N (0.61 mL, 4.38 mmol) and trimethylacetyl chloride (180 uL, 1.61 mmol) at 0 °C. After being stirred for 20 minutes, the reaction mixture was cooled to -78 °C.

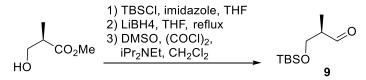

In a separate flask, *n*-butyllithium (1.1 mL, 1.65 mmol, 1.5 M in heptane) was added to a solution of (4*S*)-4-benzyl-1,3-oxazolidin-2-one (550 mg, 3.11 mmol) in THF (5 mL) at -78 °C. After being stirred for 30 min later, the resulting solution was transferred to the afore-mentioned reaction mixture at -78 °C. This reaction mixture was stirred for 2 h at -78 °C and quenched with saturated aqueous solution of NaHCO₃ (10 mL). Volatiles were removed in *vacuo*, the aqueous phase was extracted with ethyl ether (2 x 30 mL). The combined organic phases were washed with brine (30 mL), dried over anhydrous Na₂SO₄, concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to give **13** as a colorless oil (675 mg, 80%). $R_f = 0.9$ (silica gel, 17% ethyl acetate in

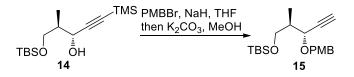
hexane); $[a]_{D}^{20} = 35.4$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.30 (m, 2H), 7.30 – 7.26 (m, 1H), 7.24 – 7.18 (m, 2H), 4.74 – 4.59 (m, 1H), 4.25 – 4.11 (m, 2H), 3.90 – 3.77 (m, 1H), 3.71 – 3.57 (m, 2H), 3.30 (dd, J = 13.4, 3.2 Hz, 1H), 3.15 - 2.89 (m, 2H), 2.82 - 2.70 (m, 1H), 1.98 - 1.85 (m, 1H), 1.76 - 1.62 (m, 2H), 1.62 - 1.54 (m, 1H), 1.51 - 1.42 (m, 1H), 1.39 - 1.28 (m, 2H), 0.92 (d, J = 6.6 Hz, 3H), 0.89 (s, 18H), 0.07 (s, 3H), 0.06 (s, 3H), 0.05 (s, 6H).¹³C NMR (125 MHz, CDCl₃) δ 173.48, 153.36, 135.36, 129.42, 128.94, 127.32, 69.36, 66.12, 61.27, 55.15, 45.20, 40.50, 37.92, 31.59, 30.92, 26.44, 25.99, 25.91, 20.01, 18.33, 18.05, -4.32, -4.52, -5.25, -5.28. HRMS (*m*/*z*): calculated for $C_{31}H_{55}NO_5Si_2Na^+$ [M + Na]⁺: 600.3511, found 600.3512.



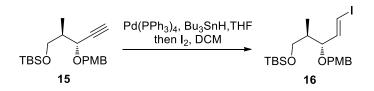
To a solution of **13** (395 mg, 0.68 mmol) in THF (10 mL) was added NaHMDS (0.85 mL, 1.70 mmol, 2.0 M) at -78 °C. After being stirred for 15 minutes, MeI (131 uL, 2.05 mmol) was added dropwise at -78 °C. The reaction mixture was stirred overnight at -78 °C and then quenched with saturated aqueous NH₄Cl (30 mL). Volatiles were removed in *vacuo*, the aqueous layer was extracted with ethyl ether (2 x 30 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to give **13-1** (420 mg, 99%) as a colorless oil. $R_f = 0.80$ (silica gel, 17% ethyl acetate in hexane); $[\alpha]_D^{20} = 49.1$ (*c* 1.0, CHCl₃);

¹**H NMR** (500 MHz, CDCl₃) δ 7.33 (t, J = 7.2 Hz, 2H), 7.29 – 7.24(m, 1H), 7.24 – 7.17 (m, 2H), 4.74 – 4.63 (m, 1H), 4.21 – 4.09 (m, 2H), 3.88 – 3.80 (m, 1H), 3.80 – 3.72 (m, 1H), 3.71 – 3.59 (m, 2H), 3.24 (dd, J = 13.4, 3.2 Hz, 1H), 2.77 (dd, J = 13.4, 9.6 Hz, 1H), 2.14 (ddd, J = 13.6, 9.6, 3.7 Hz, 1H), 1.73 – 1.64 (m, 1H), 1.60 – 1.51 (m, 1H), 1.51 – 1.43 (m, 1H), 1.40 – 1.33 (m, 2H), 1.25 (d, J = 7.0 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H), 0.90 (s, 9H), 0.86 (s, 9H), 0.06 (s, 6H), 0.02 (s, 3H) , -0.03 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 176.82, 152.72, 135.32, 129.48, 128.90, 127.31, 68.73, 65.88, 61.18, 55.18, 45.46, 40.78, 39.80, 37.86, 34.14, 26.42, 25.99, 25.84, 19.85, 19.04, 18.33, 17.98, -4.18, -4.79, -5.26, -5.28. **HRMS** (*m*/*z*): calculated for C₃₂H₅₇NO₅Si₂Na⁺ [M + Na]⁺: 614.3667, found 614.3669.

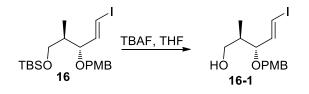

To a solution of **13-1** (420 mg, 0.71 mmol) in THF (10 mL) was added lithium borohydride (1.2 mL, 2.4 mmol, 2 M) at 0 °C. After being stirred for 4 h, the reaction mixture was quenched by the addition of MeOH (0.2 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for additional 3 h. and then added a saturated aqueous solution of NaHCO₃ (10 mL). After the solution was stirred until clear phases were obtained (1.5 h), the aqueous layer was extracted with ethyl ether (2 x 30 mL). The combined organic phases were washed with brine (30 mL), dried over anhydrous Na₂SO₄, concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to give **6** as a colorless oil (260 mg, 88%): $R_f = 0.4$ (silica gel, 10% ethyl acetate in hexane); $[\alpha]_D^{20} = 4.8$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 3.99 – 3.91 (m, 1H), 3.75 – 3.68 (m, 1H), 3.68 – 3.55 (m, 2H), 3.46 (s, 1H), 3.37 – 3.25 (m, 1H), 1.96 – 1.83 (m, 1H), 1.65 – 1.54 (m, 4H), 1.48 – 1.37 (m, 1H), 1.35 – 1.29 (m, 2H), 0.90 (s, 9H), 0.90 – 0.87 (m, 12H), 0.86 (d, *J* = 6.8 Hz, 3H), 0.10 (s, 3H) , 0.09 (s, 3H), 0.04 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 69.78, 68.78, 60.89, 43.35, 41.97, 40.56, 31.55, 26.19, 25.96, 25.84, 19.63, 18.78, 18.25, 18.07, -4.56, -4.60, -5.28, -5.31. HRMS (*m*/z): calculated for C₂₂H₅₀O₃Si₂Na⁺ [M + Na]⁺: 441.3191, found 441.3193.


To a solution of Et₂Zn (18.8 mL, 1.0 M, 18.8 mmol) in toluene was carefully added TMS acetylene (2.6 mL, 18.8 mmol). The mixture was heated to reflux for 1 h, cooled to room temperature, followed by addition of (S)-BINOL (0.52 g, 1.88 mmol) in Et₂O (20 mL) and Ti(OiPr)₄ (1.39 mL, 4.70 mmol). After being stirred for 1 h later, aldehyde **9** (0.95 g, 4.70 mmol) in Et₂O (10 mL) was added to the reaction solution. The reaction mixture was stirred overnight and quenched with tartaric acid (50 mL, 1.0 M in water). After the solution was stirred until clear phases were obtained, the aqueous phase was extracted with Et₂O (3 x 30 mL). The combined organic phases were washed with brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to give **14** as a colorless oil (1.14 g, 80%): R_f = 0.6 (silica gel, 10% ethyl acetate in hexane); $[\alpha]_D^{20} = -6.2 (c 1.0, CHCl_3)$; ¹H NMR (500 MHz, CDCl₃) δ 4.39 (t, *J* = 5.8 Hz, 1H), 3.94 (dd, *J* = 10.0, 4.0 Hz, 1H), 3.57 (dd, *J* = 10.0, 6.6 Hz, 1H), 3.46 (d, *J* = 5.4 Hz, 1H), 1.93 (ddd, *J* = 13.3, 6.7, 4.1 Hz, 1H), 1.60 (s, 1H), 1.02 (d, *J* = 7.0 Hz, 3H), 0.90 (s, 9H), 0.18 (s, 9H), 0.08 (s, 3H), 0.08 (s,

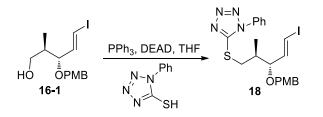
3H). ¹³C NMR (125 MHz, CDCl₃) δ 105.82, 89.87, 67.13, 66.76, 40.62, 25.86, 18.21, 12.91, -0.08, -5.56, -5.61. **HRMS** (*m*/*z*): calculated for C₁₅H₃₂O₂Si₂Na⁺ [M + Na]⁺: 323.1833, found 323.1839.


^b The known aldehyde 9 was prepared according to the following scheme:

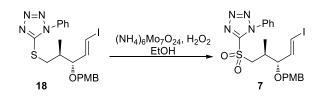
Kirkham, J. E. D.; Lee, V.; Baldwin, J. E. Chem. Commun. 2006, 27, 2863.

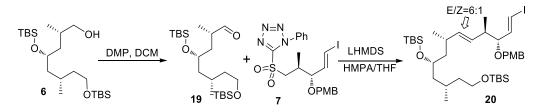


To a solution of 14 (100 mg, 0.33 mmol) in THF (5 mL) was added NaH (27 mg, 0.67 mmol, 60% dispersion in mineral oil) at 0 °C. The resulting solution was stirred for 30 minutes, before 4methoxybenzyl bromide (59.6 uL, 0.40 mmol) was slowly added at 0 °C. The resulting reaction mixture was stirred overnight at room temperature, and then concentrated in vacuo. The residue was dissolved in MeOH (5 mL), and K₂CO₃ (138 mg, 0.99 mmol) was added. The reaction mixture was stirred for 1 h at room temperature and quenched with saturated aqueous solution of NH₄Cl (15 mL). Volatiles were removed in *vacuo*, and the aqueous residue was extracted with ethyl acetate (3 x 25 mL). The combined organic phases were washed with brine (30 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel flash chromatography to give compound 15 (85 mg, 73%) as a colorless oil. $R_{\ell} = 0.7$ (silica gel, 10% ethyl acetate in hexane); $[\alpha]_{\rm D}^{20} = 41.4$ (c 0.5, CHCl₃); ¹**H NMR** (500 MHz, CDCl₃) δ 7.28 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 4.74 (d, J = 11.4 Hz, 1H), 4.43 (d, J = 11.4 Hz, 1H), 4.19 (dd, J = 6.0, 2.1 Hz, 1H), 3.80 (s, 3H), 3.62 - 3.45 (m, 2H), 2.45 (d, J = 2.1 Hz, 1H), 2.02 (dt, J = 12.5, 6.3 Hz, 1H), 1.00 (d, J = 6.8 Hz, 3H), 0.85 (s, 9H), 0.01 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 159.27, 130.15, 129.57, 113.80, 81.50, 74.73, 70.47, 69.79, 64.38, 55.28, 40.46, 25.89, 18.24, 12.21, -5.42, -5.48. **HRMS** (m/z): calculated for $C_{20}H_{32}NaO_{3}SNa^{+}$ [M + Na]⁺: 371.2013, found 371.2005.

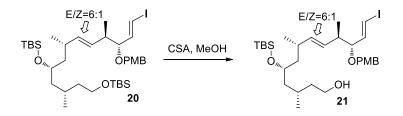


To a stirred solution of **15** (85 mg, 0.24 mmol) and Pd(PPh₃)₄ (14 mg, 0.012 mmol) in THF (5 mL) was added *n*-Bu₃SnH (79 uL, 0.29 mmol). After being stirred for 20 minutes, THF was removed under reduced pressure. The residue was purified by silica gel flash chromatography to provide the

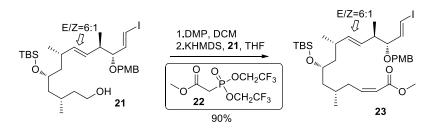

corresponding vinyl tributyltin as a colorless oil. To a solution of the resulting vinyl tributyltin in DCM (5 mL) was added I₂ (1 M in DCM) until the color of the solution persisted. The reaction was quenched with saturated aqueous solution of Na₂SO₃ (30 mL). Layers were separated, the aqueous layer was extracted with DCM (2 x 25 mL). The combined organic layers were dried over MgSO₄, and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to afford **16** (90 mg, 77%) as a colorless oil. $R_f = 0.80$ (silica gel, 5% ethyl acetate in hexane); $[\alpha]_D^{20} = 9.7$ (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 6.49 (dd, J = 14.5, 8.2 Hz, 1H), 6.27 (d, J = 14.5 Hz, 1H), 4.51 (d, J = 11.3 Hz, 1H), 4.28 (d, J = 11.4 Hz, 1H), 3.82 - 3.77 (m, 4H), 3.64 - 3.50 (m, 2H), 1.87 (dt, J = 12.3, 5.6 Hz, 1H), 0.90 - 0.87 (m, 12H), 0.03 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ 159.12, 145.35, 130.41, 129.26, 113.77, 82.26, 78.41, 70.40, 64.24, 55.27, 39.86, 25.91, 18.25, 12.63, -5.41, -5.45. HRMS (*m*/*z*): calculated for C₂₀H₃₃IO₃SiNa⁺ [M + Na]⁺: 499.1136, found 499.1137.


To a solution of **16** (335 mg, 0.70 mmol) in THF (10 mL) was added TBAF (1.5 mL, 1.50 mmol, 1.0 M in THF) at 0 °C. The reaction mixture was stirred at room temperature for 3h before it was quenched by addition of saturated aqueous solution of NH₄Cl (20 mL), and then extracted with ethyl acetate (3 x 30mL). The combined organic layers were washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to produce **16-1** (250 mg, 98%) as a colorless oil. $R_f = 0.20$ (silica gel, 33% ethyl acetate in hexane); $[a]_D^{20} = 45.0$ (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.6 Hz, 2H), 6.89 (d, *J* = 8.7 Hz, 2H), 6.48 (dd, *J* = 14.6, 8.3 Hz, 1H), 6.34 (d, *J* = 14.6 Hz, 1H), 4.56 (d, *J* = 11.4 Hz, 1H), 4.27 (d, *J* = 11.4 Hz, 1H), 3.81 (s, 3H), 3.72 – 3.57 (m, 2H), 3.58 – 3.47 (m, 1H), 1.87 (ddd, *J* = 14.9, 7.1, 3.7 Hz, 1H), 0.83 (d, *J* = 7.0 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 159.36, 145.33, 129.52, 129.48, 113.97, 86.02, 79.54, 70.39, 66.54, 55.25, 39.44, 13.46. HRMS (*m*/*z*): calculated for C₁₄H₁₉IO₃Na⁺ [M + Na]⁺: 385.0271, found 385.0276.

To a solution of alcohol **16-1** (250 mg, 0.69 mmol) in THF (20 mL) was sequentially added 1-phenyl-1H-tetrazole-5-thiol (200 mg, 1.12 mmol), Ph₃P (300 mg, 1.12 mmol), and DEAD (170 uL, 1.12 mmol) at 0 °C. After being stirred at room temperature for 2 h, the reaction mixture was quenched by addition of saturated aqueous solution of NaHCO₃ (20 mL) and extracted with ethyl acetate (3 x 30mL). The combined organic layers were washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to produce **18** (328 mg, 91%) as a colorless oil. $R_f = 0.40$ (silica gel, 33% ethyl acetate in hexane); $[a]_D^{20} = 10.0$ (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.50 (m, 5H), 7.22 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 6.49 (dd, *J* = 14.6, 7.9 Hz, 1H), 6.39 (d, *J* = 14.6 Hz, 1H), 4.55 (d, *J* = 11.4 Hz, 1H), 3.80(s, 3H), 3.71 – 3.56 (m, 2H), 3.47 – 3.36 (m, 1H), 2.22 – 2.17 (m, 1H), 1.03 (d, *J* = 6.9 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 159.24, 154.59, 144.47, 133.68, 130.03, 129.74, 129.63, 129.54, 123.81, 113.79, 113.69, 83.63, 79.91, 70.34, 55.22, 37.27, 36.47, 15.41. HRMS (*m*/z): calculated for C₂₁H₂₃IN₄O₂SNa⁺ [M + Na]⁺: 545.0479, found 545.0477.

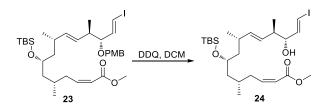


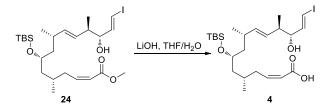
To a solution of **18** (51 mg, 0.10 mmol) in EtOH (10 mL) was added a portion (7 mL) of a stock solution of $(NH_4)_6Mo_7O_{24}$ 4H₂O (50 mg, 0.04 mmol) and 30% H₂O₂ (2 mL). After being stirred at room temperature for 24 h, the reaction mixture was concentrated in *vacuo* and extracted with ethyl acetate (3 x 30mL). The combined organic layers were washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to produce **7** (45.3 mg, 84%) as a colorless oil. $R_f = 0.39$ (silica gel, 33% ethyl acetate in hexane); $[\alpha]_D^{20} = 20.4$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.67 – 7.51 (m, 5H), 7.21 (d, *J* = 8.6 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 6.50 – 6.36 (m, 2H), 4.54 (d, *J* = 11.4 Hz, 1H), 4.26 (d, *J* = 11.4 Hz, 1H), 4.07 (dd, *J* = 14.6, 3.6 Hz, 1H), 3.82 (s, 3H), 3.73 – 3.63 (m, 1H), 3.53 (dd, *J* = 14.6, 8.8 Hz, 1H), 1.16 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.39, 153.97, 143.50, 133.00, 131.44, 129.62, 129.52, 129.27, 125.22, 113.93, 83.12, 80.93, 70.52, 58.15, 55.27, 32.73, 16.14. HRMS (*m*/z): calculated for C₂₁H₂₃IN₄O₄SNa⁺ [M + Na]⁺: 577.0377, found 577.0378.


To a solution of **6** (150 mg, 0.36 mmol) in DCM (5 mL), NaHCO₃ (50 mg, 0.60 mmol) were added at 0 $^{\circ}$ C followed by addition of Dess-Martin periodinane (250 mg, 0.59 mmol). After being stirred at room temperature for 1 h, the reaction mixture was concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to produce **19** (140 mg, 94%) as a colorless oil, which was used directly in the next step without further purification.

To a cooled solution of sulfone 7 (300 mg, 0.54 mmol) in THF (3 mL,) was added LHMDS (0.56 ml, 1 M) at -78 °C. After being stirred at -78 °C for 30 minutes, aldehyde 19 (140 mg, 0.34 mmol) was added over 30 minutes, and the reaction was allowed to warmed to room temperature and stirred overnight. The reaction mixture was quenched with saturated aqueous solution of NH₄Cl (15 mL) and extracted with ethyl acetate (3 x 25 mL). The combined organic phases were washed with brine (30 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel flash chromatography to give compound 20 (190 mg, 76%, E/Z=6:1) as a colorless oil, $R_f = 0.70$ (silica gel, 5% ethyl acetate in hexane); $[a]_{D}^{20} = 27.6$ (c 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 6.47 (dd, J = 14.5, 7.9 Hz, 1H), 6.24 (d, J = 14.5 Hz, 1H), 5.42 -5.25 (m, 2H), 4.52 (d, J = 11.6 Hz, 1H), 4.29 (d, J = 11.6 Hz, 1H), 3.82 (s, 3H), 3.74 - 3.69 (m, 1H), 3.82 (m, 2H), 3.82 (s, 3H), 3.74 - 3.69 (m, 2H), 3.82 (s, 3H), 3.82 (s, 3H),3.67 - 3.62 (m, 2H), 3.59 - 3.53 (m, 1H), 2.41 - 2.25 (m, 2H), 1.67 - 1.61 (m, 1H), 1.59 - 1.54 (m, 1H), 1.54 (m, 1H), 1.54 - 1.54 (m, 1H), 1.54 (m, 1H), 1.54 (m, 1H), 1H), 1.46 - 1.39 (m, 2H), 1.37 - 1.31 (m, 2H), 1.30 - 1.27 (m, 1H), 0.98 (m, 6H), 0.92 - 0.89 (m, 21H), 0.06 (s, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 159.15, 145.28, 137.01, 130.43, 129.80, 129.17, 113.77, 85.01, 78.22, 70.20, 69.05, 61.24, 55.28, 45.75, 44.83, 40.77, 40.56, 32.99, 26.35, 26.02, 21.88, 20.23, 18.35, 18.10, 15.94, -3.84, -4.04, -5.24, -5.25. **HRMS** (*m*/*z*): calculated for $C_{36}H_{65}IO_4Si_2Na^+$ [M + Na]⁺: 767.3358, found 767.3353.

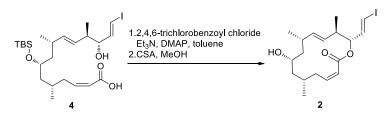
To a solution of **20** (100 mg, 0.13 mmol) in MeOH (5 mL), was added camphorsulfonic acid (10 mg, 0.04 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h at which point **20** had been consumed as judged by TLC analysis. The reaction was quenched by addition of Et_3N (5 uL, 0.04 mmol) and then concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to


give compound **21** (83 mg, 98%, E/Z=6:1) as a colorless oil. $R_f = 0.40$ (silica gel, 10% ethyl acetate in hexane); $[\alpha]_D{}^{20} = 32.3$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 6.52 – 6.39 (m, 1H), 6.24 (d, J = 14.5 Hz, 1H), 5.40 – 5.24 (m, 2H), 4.52 (d, J = 11.6 Hz, 1H), 4.29 (d, J = 11.6 Hz, 1H), 3.81 (s, 3H), 3.76 – 3.72 (m, 1H), 3.71 – 3.65 (m, 2H), 3.59 – 3.47 (m, 1H), 2.39 – 2.22 (m, 2H), 1.71 – 1.60 (m, 3H), 1.43 – 1.33 (m, 4H), 0.98 (m, 6H), 0.89 (m, 12H), 0.06 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 159.09, 145.25, 136.90, 130.34, 129.82, 129.18, 113.72, 84.90, 78.32, 70.13, 68.95, 60.92, 55.25, 45.55, 44.68, 40.75, 40.35, 33.02, 25.98, 21.84, 20.17, 18.07, 16.03, -3.89, -4.06. HRMS (m/z): calculated for C₃₀H₅₁IO₄SiNa⁺ [M + Na]⁺: 653.2494, found 653.2490.

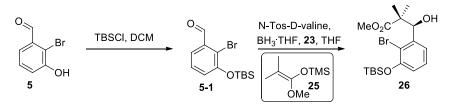

NaHCO₃ (69 mg, 0.82 mmol) was added to a solution of **21** (150 mg, 0.24 mmol) in DCM (5 mL) at 0 $^{\circ}$ C followed by addition of Dess-Martin periodinane (150 mg, 0.35 mmol). The reaction was stirred for 1 h at room temperature. The reaction mixture was concentrated in *vacuo*. Followed by filtered through a pad of silica gel, the residue was concentrated in *vacuo* to afford aldehyde (140 mg, 94%) as a colorless oil, which was used directly in the next step without further purification.

To a solution of 18-crown-6 (100 mg, 0.36 mmol) and (CF₃CH₂)P(O)CH₂CO₂Me (114 mg, 0.36 mmol) in THF(7 mL) was added potassium bis(trimethylsilyl)amide (KHMDS) (714 uL, 0.36 mmol, 0.5 M in toluene) at -78 °C. After being stirred for 15 minutes, aldehyde (140 mg, 0.22 mmol) in THF (2 mL) was added dropwise. The reaction was stirred overnight at -78 °C and quenched with saturated aqueous solution of NH₄Cl (15 mL) and extracted with ethyl acetate (3 x 25 mL). The combined organic phases were washed with brine (30 mL), dried over Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to provide compound **23** (147 mg, 96%, E/Z=6:1) as a colorless oil. $R_f = 0.65$ (silica gel, 10% ethyl acetate in hexane); $[a]_D^{20} = 26.3$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, *J* = 8.5 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 6.46 (dd, *J* = 14.5, 7.9 Hz, 1H), 6.26 - 6.18 (m, 2H), 5.84 (d, *J* = 11.6 Hz, 1H), 5.41 - 5.22 (m, 2H), 4.52 (d, *J* = 11.6 Hz, 1H), 4.29 (d, *J* = 11.6 Hz, 1H), 3.81 (s, 3H), 3.76 - 3.69 (m, 4H), 3.60 - 3.52 (m, 1H), 2.65 - 2.57 (m, 2H), 2.38 - 2.31 (m, 1H), 2.31 - 2.22 (m, 1H), 1.74 - 1.65 (m, 1H), 1.50 - 1.29 (m, 4H), 1.02 - 0.94 (m, 6H), 0.91 - 0.87 (m, 12H), 0.06 (s, 3H) , 0.05 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.85, 159.16, 149.32, 145.32, 136.96, 130.43, 129.82, 129.18, 120.21, 113.77, 84.99, 78.24, 70.21,

68.90, 55.28, 50.95, 45.04, 44.92, 40.79, 36.25, 32.99, 29.82, 26.00, 21.73, 20.08, 18.09, 15.99, -3.94, -4.02. **HRMS** (*m*/*z*): calculated for C₃₃H₅₃IO₅Na⁺ [M + Na]⁺: 707.2599, found 707.2593.

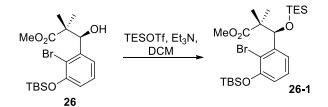


To a solution of **23** (110 mg, 0.17 mmol) in DCM (7 mL) was added phosphate buffer (pH 7.2, 100 mM, 1 mL) and DDQ (120 mg, 0.53 mmol) at room temperature. The reaction mixture was stirred for 3 h at room temperature and then extracted with DCM (3 x 25 mL). The combined organic phases were washed sequentially with saturated aqueous solution of Na₂S₂O₃ (20 mL), NaHCO₃ (20 mL), brine (20 mL) and dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to produce 24 (74 mg, 82%) as a colorless oil. $R_f = 0.40$ (silica gel, 5% ethyl acetate in hexane); $[a]_{0}^{20} = 13.0$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 6.56 (dd, *J* = 14.4, 6.6 Hz, 1H), 6.36 (d, *J* = 14.5 Hz, 1H), 6.28 – 6.19 (m, 1H), 5.84 (d, *J* = 11.6 Hz, 1H), 5.46 – 5.21 (m, 2H), 3.83 – 3.73 (m, 2H), 3.71 (s, 3H), 2.61 (t, *J* = 6.5 Hz, 2H), 2.37 – 2.30 (m, 1H), 2.25 – 2.14 (m, 1H), 1.71 – 1.58 (m, 2H), 1.46 – 1.34 (m, 4H), 1.01 – 0.96 (m, 6H), 0.91 – 0.87 (m, 12H), 0.06 (s, 3H) , 0.05 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.88, 149.31, 146.70, 139.54, 129.34, 120.24, 77.93, 69.02, 50.99, 44.99, 44.82, 43.19, 36.12, 33.28, 29.86, 29.71, 26.00, 21.85, 20.05, 18.14, 16.33, -3.92, -4.02. HRMS (*m*/z): calculated for C₂₅H₄₅IO₄Na⁺ [M + Na]⁺: 587.2024, found 587.2023.


To a solution of **24** (74 mg, 0.13 mmol) in THF (5 mL), MeOH (1 mL) and H₂O (3 mL) was added LiOH (20 mg, 0.49 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature, stirred at for 5h, and extracted with DCM (3 x 25 mL). The combined organic phase were dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to produce **4** (62 mg, 86%) as a colorless oil. $R_f = 0.50$ (silica gel, 25% ethyl acetate in hexane); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20} = 20.6$ (c 0.35, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.55 (dd, J = 14.4, 6.6 Hz, 1H), 6.40 – 6.26 (m, 2H), 5.86 (d, J = 11.6 Hz, 1H), 5.50 – 5.17 (m, 2H), 3.86 – 3.71 (m, 2H), 2.70 – 2.53 (m, 2H), 2.38 – 2.25 (m, 1H), 2.25 – 2.13 (m, 1H), 1.78 – 1.65 (m, 1H), 1.49 – 1.32 (m, 4H), 1.02 – 0.94 (m, 6H), 0.94 – 0.87 (m, 12H), 0.06 (s, 3H) , 0.05 (s, 3H). 13C NMR (100 MHz, CDCl₃) δ

170.13, 151.53, 146.49, 139.67, 129.29, 119.85, 78.00, 69.01, 44.93, 44.80, 43.19, 36.12, 33.30, 29.93, 29.71, 25.99, 21.93, 20.12, 18.14, 16.46, -3.92, -4.05. **HRMS** (m/z): calculated for C₂₄H₄₃IO₄Na⁺ [M + Na]⁺: 573.1868, found 573.1868.

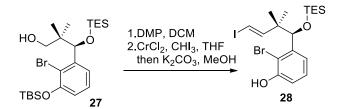
To a solution of **4** (15 mg, 0.03 mmol) and triethylamine (18 μ L, 0.12 mmol) in dry toluene (20 mL) was added 2,4,6-trichlorobenzoyl chloride (95 μ L, 0.09 mmol) at 0 °C. After being allowed to warm to room temperature and stirred for 1 h, DMAP (18 mg, 0.15 mmol) in toluene (5 mL) was added to the reaction mixture. The mixture was stirred overnight at room temperature and quenched with saturated aqueous solution of NH₄Cl (15 mL) and extracted with ethyl acetate (3 x 25 mL). The combined organic phases were washed with brine (30 mL), dried over Na₂SO₄ and concentrated in *vacuo*. The residue was used directly in the next step without further purification.


To a solution of the residue in MeOH (5 mL) was added camphorsulfonic acid (2 mg, 0.01 mmol). The reaction mixture was stirred for 1 h at which point **20** had been consumed as judged by TLC analysis, and then quenched by addition of Et₃N (1.2 uL, 0.01 mmol). The solution was concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to give compound **2** (7.6 mg, 67%, two steps) as a colorless oil. $R_f = 0.40$ (silica gel, 10% ethyl acetate in hexane); $[\alpha]_D^{20} = 90.0$ (*c* 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.56 – 6.43 (m, 2H), 6.34 – 6.23 (m, 1H), 5.87 (dd, *J* = 11.6, 2.5 Hz, 1H), 5.18 – 5.10 (m, 2H), 5.03 (dd, *J* = 15.0, 9.2 Hz, 1H), 3.81 – 3.70 (m, 1H), 3.37 (t, *J* = 10.7 Hz, 1H), 2.37 – 2.26 (m, 1H), 2.25 – 2.09 (m, 2H), 1.96 (dd, *J* = 14.8, 2.8 Hz, 1H), 1.68 – 1.56 (m, 2H), 1.39 – 1.26 (m, 3H), 1.05 (d, *J* = 7.1 Hz, 3H), 0.98 – 0.93 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 165.06, 146.49, 143.12, 137.74, 131.55, 121.63, 81.03, 65.94, 45.99, 42.97, 42.67, 34.48, 31.22, 29.70, 27.08, 22.34, 20.03, 17.52. HRMS (*m*/*z*): calculated for C₁₈H₂₇IO₃Na⁺ [M + Na]⁺: 441.0897, found 441.0893.

To a solution of compound **5** (500 mg, 2.25 mmol) and imidazole (500 mg, 7.43 mmol) in DCM (20 mL) was added TBSCl (600 mg, 4.03 mmol) at 0 $^{\circ}$ C. After being stirred at room temperature for 1 h,

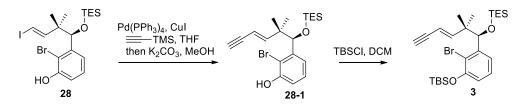
the reaction was quenched by addition of saturated aqueous solution of NH₄Cl (20 mL) and extracted with DCM (3 x 30mL). The combined organic layers were washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel chromatography to produce **5-1** (775 mg, 99%) as a colorless oil. $R_f = 0.85$ (silica gel, 10% ethyl acetate in hexane);

BH₃ THF complex (2.5 mL, 1.0 M solution in THF) was added to a solution of N-Ts-*D*-Val (676 mg, 2.46 mmol) in DCM (7 mL) at 0 °C under Ar. The mixture was stirred for 0.5 h and allowed to warm to room temperature for addition 1 h. The resulting mixture was re-cooled to -78 °C. To this solution, **5-1** (775 mg, 2.46 mmol) in DCM (3 mL) and silyl ketene acetal (0.73 mL, 3.20 mmol) were slowly added. After being stirred at -78 °C for 12 h, the reaction mixture was quenched by addition of saturated aqueous solution of NH₄Cl (20 mL) and extracted with DCM (3 x 30mL). The combined organic layers were washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to produce **26** (1.0 g, 98%) as a colorless oil. $R_f = 0.45$ (silica gel, 20% ethyl acetate in hexane); $[\alpha]_D^{20} = 20.8$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.17 (t, *J* = 7.9 Hz, 1H), 7.08 (dd, *J* = 7.8, 1.4 Hz, 1H), 6.83 (dd, *J* = 7.9, 1.5 Hz, 1H), 5.56 (d, *J* = 4.6 Hz, 1H), 3.76 (s, 3H), 3.41 (d, *J* = 4.7 Hz, 1H), 1.22 (s, 3H), 1.20 (s, 3H), 1.04 (s, 9H), 0.24 (s, 3H), 0.23 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 178.41, 152.29, 141.39, 127.22, 121.82, 119.18, 118.09, 52.22, 48.57, 25.80, 23.54, 19.01, 18.41, -4.14, -4.26. HRMS (*m*/z): calculated for C₁₈H₂₉BrO₄SiNa⁺ [M + Na]⁺: 439.0911, found 439.0910.

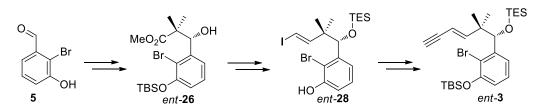


To a solution of **26** (680 mg, 1.63 mmol) in DCM (15 mL), was added Et₃N (0.70 mL, 5.03 mmol) and TESOTF (0.60 mL, 2.66 mmol) at -50 °C. The reaction mixture was allowed to slowly warm to -30 °C and stirred at -30 °C for 2h before it was quenched with saturated aqueous solution of NaHCO₃ (20 mL) at -50 °C. After the solution was warmed to room temperature and stirred until clear phases were obtained (1.5 h), the aqueous phase was extracted with DCM (3 x 30 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to produce **26-1** (848 mg, 98%) as a colorless oil. R_f = 0.90 (silica gel, 20% ethyl acetate in hexane); $[\alpha]_D^{20} = -10.8$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.17 – 7.08 (m, 2H), 6.82 (dd, *J* = 5.6, 3.9 Hz, 1H), 5.70 (s, 1H), 3.71 (s, 3H), 1.19 (s, 3H), 1.08 (s, 3H), 1.05 (s, 9H), 0.81 (t, *J* = 7.9 Hz, 9H), 0.46 – 0.38 (m, 6H), 0.23 (s, 3H) , 0.23 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 177.17, 151.96, 142.19, 126.59, 123.62, 119.23, 117.88, 51.78,

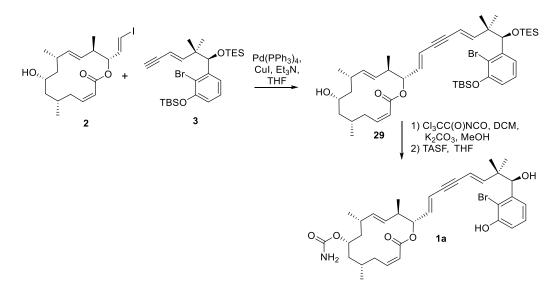
50.06, 25.87, 22.90, 18.46, 18.19, 6.62, 4.63, -4.19, -4.28. **HRMS** (m/z): calculated for C₂₄H₄₃BrO₄Si₂Na⁺ [M + Na]⁺: 553.1775, found 553.1774.


To a solution of ester **26-1** (548 mg, 1.03 mmol) in DCM (15 mL) was added DIBAL-H (2 mL, 1.5 M in toluene) at -78 °C. The reaction mixture was allowed to warm to -40 °C and stirred for 1h before it was re-cooled to -78 °C and quenched by addition of MeOH (1 mL). Aqueous Rochelle's salt (20 mL) was added, and the solution was stirred for 2 h at room temperature. The aqueous phase was extracted with DCM (3 x 20 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to produce **27** (485 mg, 95%) as a colorless oil. $R_f = 0.20$ (silica gel, 3% ethyl acetate in hexane); $[\alpha]_D^{20} = 2.6$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.23 – 7.13 (m, 2H), 6.83 (dd, *J* = 7.6, 1.9 Hz, 1H), 5.23 (s, 1H), 3.75 (dd, *J* = 11.0, 3.5 Hz, 1H), 3.51 (dd, *J* = 6.9, 3.7 Hz, 1H), 3.27 (dd, *J* = 11.0, 6.9 Hz, 1H), 1.15 (s, 3H), 1.05 (s, 9H), 0.84 (t, *J* = 7.9 Hz, 9H), 0.76 (s, 3H), 0.55 – 0.41 (m, 6H), 0.24 (s, 3H) , 0.24 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 152.09, 142.70, 127.04, 122.80, 119.19, 117.78, 80.76, 70.48, 40.46, 25.87, 23.39, 20.49, 18.46, 6.62, 4.53, -4.17, -4.29. HRMS (*m*/*z*): calculated for C₂₃H₄₃BrO₃Si₂Na⁺ [M + Na]⁺: 525.1826, found 525.1827.

To a solution of **27** (210 mg, 0.56 mmol) in DCM (10 mL) was added NaHCO₃ (200 mg, 2.38 mmol) and Dess-Martin periodinane (500 mg, 1.2 mmol) at 0 $^{\circ}$ C. After being stirred for 1 h at room temperature, the reaction mixture was concentrated in *vacuo* and filtered through a pad of silica gel to afford the corresponding aldehyde as a colorless oil, which was used directly in the next step without further purification.


To a solution of anhydrous $CrCl_2$ (510 mg, 4.15 mmol) in THF (5 mL) was added a solution of the aldehyde and iodoform (616 mg, 1.76 mmol,) in THF (5 mL). After being stirred overnight, the reaction mixture was quenched by addition of saturated aqueous solution of NH₄Cl (20 mL) and extracted with DCM (3 x 30mL). The combined organic layers were concentrated in *vacuo* and the residue was dissolved in MeOH (5 mL). To this solution, K₂CO₃ (200 mg, 1.43 mmol) was added and the mixture was stirred at room temperature for 1 h before it was quenched by saturated aqueous

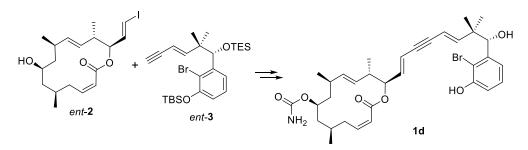
solution of NH₄Cl (15 mL) and extracted with ethyl acetate (3 x 25 mL). The combined organic phases were washed with brine (30 mL), dried over Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to give compound **28** (145 mg, 68%, two steps) as a colorless oil. $R_f = 0.20$ (silica gel, 3% ethyl acetate in hexane); $[\alpha]_D^{20} = 52.3$ (*c* 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.18 (t, *J* = 7.9 Hz, 1H), 7.03 – 6.88 (m, 2H), 6.71 (d, *J* = 14.7 Hz, 1H), 5.86 (d, *J* = 14.7 Hz, 1H), 5.63 (s, 1H), 4.87 (s, 1H), 1.06 (s, 3H), 1.00 (s, 3H), 0.84 (t, *J* = 7.9 Hz, 9H), 0.54 – 0.38 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 152.31, 151.40, 141.84, 127.54, 122.37, 114.74, 112.34, 78.80, 74.92, 47.53, 23.57, 21.95, 6.71, 4.71. HRMS (*m*/*z*): calculated for C₁₈H₂₈BrIO₂SiNa⁺ [M + Na]⁺: 532.9979, found 532.9974.



To a solution of **28** (50 mg, 0.10 mmol) and Et₃N (14 uL, 0.10 mmol) in dry THF (2 mL) under argon was added trimethylsilylacetylene (42 uL, 0.30 mmol), Pd (PPh₃)₄ (11.5 mg, 0.01 mmol) and CuI (3.8 mg, 0.02 mmol) at room temperature. After being stirred for 2.5 h at room temperature, the reaction mixture was concentrated in *vacuo* and dissolved in MeOH (5 mL). To this solution, K₂CO₃ (40 mg, 0.29 mmol) was added and the mixture was stirred for 1 h at room temperature before it was quenched with saturated aqueous solution of NH₄Cl (15 mL) and extracted with ethyl acetate (3 x 25 mL). The combined organic phases were washed with brine (30 mL), dried over Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to give compound **28-1** (36 mg, 90%) as a colorless oil. R_f = 0.20 (silica gel, 3% ethyl acetate in hexane).

To a solution of compound **28-1** (12 mg, 0.03 mmol) and imidazole (10 mg, 0.15 mmol) in DCM (3 mL) was added TBSCl (25 mg, 0.17 mmol) at 0 °C. After a catalytic amount of DMAP (one crystal) was added, the reaction mixture was stirred at room temperature for 2 h and then quenched by addition of saturated aqueous solution of NH₄Cl (2 mL) and DCM (10 mL). Layers were separated and the aqueous phase was extracted with DCM (3 x 15 mL). The combined organic layers were washed with water (20 mL) and brine (20 mL), dried over anhydrous Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to produce **3** (15 mg, 98%) as a colorless oil. R_f = 0.80 (silica gel, 3% ethyl acetate in hexane); $[\alpha]_D^{20} = 55.8$ (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.11 (t, *J* = 7.8 Hz, 1H), 7.03 (dd, *J* = 7.8, 1.6 Hz, 1H), 6.79 (dd, *J* = 7.8, 1.7 Hz, 1H), 6.51 (d, *J* = 16.5 Hz, 1H), 5.27 (dd, *J* = 16.5, 2.2 Hz, 1H), 5.06 (s, 1H), 2.80 (d, *J* = 2.0 Hz, 1H), 1.09 (s, 3H), 1.04 (s, 9H), 0.98 (s, 3H), 0.82 (d, *J* = 7.9 Hz, 9H), 0.54 – 0.38 (m, 6H), 0.23 (s, 3H), 0.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.64, 151.81, 143.17, 126.61, 123.13, 119.04, 106.57, 83.12, 78.90, 75.98, 44.00, 29.71, 25.90, 24.33, 22.01, 18.47, 6.72, 4.68, -4.16, -4.27. HRMS (*m*/*z*): calculated for C₂₆H₄₃BrO₂Si₂Na⁺ [M + Na]⁺: 545.1877, found 545.1882.

ent-3 was synthesized according to the procedures described for **3**. The NMR analytical data of *ent-3* were identical to the data of **3**.

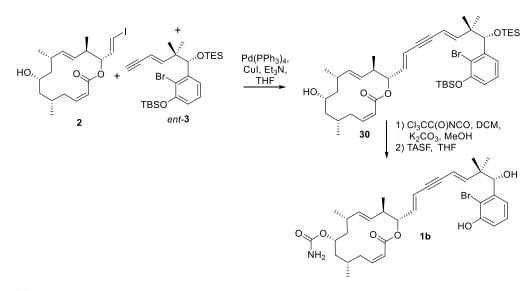


To a solution of 2 (9 mg, 0.02 mmol), 3 (20 uL, 0.04 mmol), and Et₃N (3 uL, 0.02 mmol) in dry THF (2 mL) under argon was added Pd (PPh₃)₄ (12 mg, 0.01 mmol) and CuI (8 mg, 0.05 mmol) at room temperature. After being stirred for 3 h at room temperature, the reaction was concentrated in vacuo before was quenched with saturated aqueous solution of NH₄Cl (15 mL) and extracted with ethyl acetate (3 x 25 mL). The combined organic phases were washed with brine (30 mL), dried over Na_2SO_4 and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to give compound **29** (13 mg, 74%) as a colorless oil. $R_f = 0.60$ (silica gel, 25% ethyl acetate in hexane); $[\alpha]_{D}^{20} = 31.0 (c \ 1.0, \text{ MeOH}); {}^{1}\text{H NMR} (500 \text{ MHz}, \text{CDCl}_{3}) \delta 7.12 (t, J = 7.8 \text{ Hz}, 1\text{H}), 7.04 (dd, J = 7.8, 1)$ 1.5 Hz, 1H), 6.79 (dd, J = 7.9, 1.5 Hz, 1H), 6.42 (d, J = 16.4 Hz, 1H), 6.28 (td, J = 12.8, 3.4 Hz, 1H), 6.02 (dd, J = 15.8, 8.0 Hz, 1H), 5.90 - 5.80 (m, 2H), 5.40 (dd, J = 16.3, 2.0 Hz, 1H), 5.24 - 5.11 (m, 2H), 5.09 - 4.98 (m, 2H), 3.77 (td, J = 14.2, 4.7 Hz, 1H), 3.42 (t, J = 10.6 Hz, 1H), 2.35 - 2.26 (m, 1H), 2.25 – 2.11 (m, 2H), 2.00 – 1.91 (m, 1H), 1.65 – 1.61 (m, 2H), 1.40 – 1.30 (m, 3H), 1.11 (s, 3H), 1.08 - 1.03 (m, 12H), 1.01 - 0.94 (m, 9H), 0.84 (t, J = 7.9 Hz, 9H), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (d, J = 1.03 m), 0.53 - 0.37 (m, 6H), 0.23 (m, 4.8 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 165.21, 151.88, 151.22, 145.98, 143.30, 138.71, 137.48, 132.12, 126.63, 123.17, 121.98, 119.05, 117.67, 114.09, 107.53, 90.50, 86.12, 79.08, 76.12, 66.06, 46.13, 44.12, 43.25, 43.10, 34.52, 31.28, 29.72, 27.17, 25.93, 24.39, 22.37, 20.06, 18.49, 17.66, 6.72, 4.77, -4.15, -4.24. **HRMS** (m/z): calculated for C₄₄H₆₉BrO₅Si₂Na⁺ [M + Na]⁺: 835.3759, found

835.3762.

To a solution of **29** (13 mg, 0.016 mmol) in DCM (4 mL) was added trichloroacetylisocyanate (2.3 μ L, 0.019 mmol) at room temperature. After being stirred for 30 min and concentrated in *vacuo* the mixture was added MeOH (4 mL) and K₂CO₃, and stirred for 1 h. The reaction mixture was quenched with saturated aqueous solution of NH₄Cl (15 mL) and extracted with ethyl acetate (3 x 25 mL). The combined organic phases were washed with brine (30 mL), dried over Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to give the corresponding carbamate (11 mg, 93%) as a colorless oil.

To a solution of carbamate (11 mg, 0.015 mmol) in THF (2 mL) was added a solution of TASF (15 mg, 0.055 mmol) in THF (1 mL) at 0 °C. After being stirred at 0 °C for 36 h, the reaction was quenched with saturated aqueous solution of NH₄Cl (15 mL) and extracted with ethyl acetate (3 x 25 mL). The combined organic phases were washed with brine (30 mL), dried over Na₂SO₄ and concentrated in *vacuo*. The residue was purified by silica gel flash chromatography to give compound **1a** (7.6 mg, 82%) as a colorless oil. $R_f = 0.20$ (silica gel, 40% ethyl acetate in hexane); $[\alpha]_D^{20} = 66.0$ (*c* 0.1, MeOH);

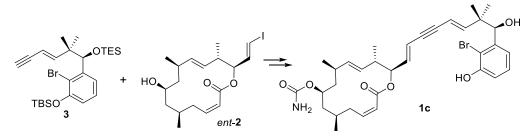


1d was synthesized according to the procedures for the synthesis of 1a. Optical rotation for 1d: $[\alpha]_D^{20} = -62.86 (c \ 0.1, MeOH)$

NMR analytical data for 1a and 1d are identical:

¹**H NMR** (400 MHz, DMSO-*d6*) δ 10.08 (s, 1H), 7.13 (t, J = 7.9 Hz, 1H), 6.83 (dd, J = 7.8, 2.2 Hz, 2H), 6.36 (d, J = 16.4 Hz, 1H), 6.13 (td, J = 12.1, 3.1 Hz, 1H), 6.06 (dd, J = 15.8, 7.6 Hz, 1H), 5.99 – 5.88 (m, 2H), 5.53 (d, J = 4.4 Hz, 1H), 5.45 (dd, J = 16.4, 2.0 Hz, 1H), 5.21 (dd, J = 15.0, 9.4 Hz, 1H), 5.13 – 4.96 (m, 2H), 4.88 (d, J = 4.4 Hz, 1H), 4.53 – 4.41 (m, 1H), 3.47 – 3.36 (m, 1H), 2.29 – 2.17 (m, 1H), 2.05 – 1.93 (m, 1H), 1.89 – 1.81 (m, 1H), 1.80 – 1.68 (m, 1H), 1.44 – 1.32 (m, 2H), 1.09 – 0.99 (m, 5H), 0.99 – 0.91 (m, 6H), 0.91 – 0.84 (m, 6H). ¹³C NMR (100 MHz, DMSO-*d6*) δ 164.08, 156.59, 153.18, 151.55, 143.13, 142.38, 139.55, 136.29, 131.92, 126.79, 122.19, 120.00, 114.25, 113.28, 111.60, 106.71, 90.34, 86.28, 76.45, 75.60, 68.21, 44.04, 42.98, 41.71, 40.98, 33.17, 31.20, 26.76, 24.00, 22.34, 21.92, 19.81, 17.34.

HRMS (m/z): calculated for C₃₃H₄₂BrNO₆Na⁺ [M + Na]⁺: 650.2088, found 650.2087.



30 and **1b** were synthesized according to the procedures described for the synthesis of **29** and **1a**, respectively.

Analytical data for **30**: (Yield = 68%) $R_f = 0.60$ (silica gel, 25% ethyl acetate in hexane); $[\alpha]_D^{20} = 25.0$ (*c* 0.7, CHCl3);

¹**H NMR** (500 MHz, CDCl₃) δ 7.12 (t, J = 7.9 Hz, 1H), 7.04 (d, J = 6.5 Hz, 1H), 6.79 (dd, J = 7.8, 1.4 Hz, 1H), 6.42 (d, J = 16.4 Hz, 1H), 6.33 – 6.19 (m, 1H), 6.02 (dd, J = 15.8, 8.0 Hz, 1H), 5.92 – 5.80 (m, 2H), 5.40 (dd, J = 16.3, 2.0 Hz, 1H), 5.26 – 5.11 (m, 2H), 5.09 – 4.99 (m, 2H), 3.86 – 3.68 (m, 1H), 3.42 (t, J = 10.9 Hz, 1H), 2.32 – 2.24 (m, 1H), 2.25 – 2.09 (m, 2H), 1.99 – 1.92 (m, 1H), 1.72 – 1.60 (m, 2H), 1.38 – 1.30 (m, 3H), 1.11 (s, 3H), 1.08 – 1.02 (m, 12H), 1.02 – 0.93 (m, 9H), 0.84 (t, J = 7.9 Hz, 9H), 0.54 – 0.39 (m, 6H), 0.23 (d, J = 4.8 Hz, 6H). ¹³**C NMR** (125 MHz, CDCl₃) δ 165.21, 151.88, 151.23, 145.98, 143.30, 138.71, 137.48, 132.13, 126.63, 123.17, 121.98, 119.06, 117.67, 114.10, 107.53, 90.51, 86.12, 79.09, 76.13, 66.07, 46.13, 44.12, 43.25, 43.10, 34.53, 31.29, 29.72, 27.18, 25.93, 24.40, 22.37, 20.07, 18.49, 17.67, 6.73, 4.77, -4.15, -4.24.

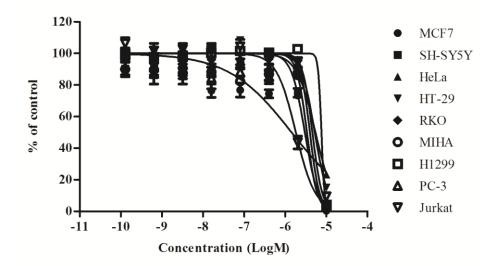
HRMS (*m/z*): calculated for $C_{44}H_{69}BrO_5Si_2Na^+$ [M + Na]⁺: 835.3759, found 835.3757. **1b**: (Yield = 65%). $R_f = 0.20$ (silica gel, 40% ethyl acetate in hexane); $[\alpha]_D^{20} = 12.0$ (*c* 0.1, MeOH);

1c was synthesized according to the procedures for the synthesis of 1a. Analytical data for 1c: $[\alpha]_D^{20} = -13.0 (c \ 0.1, \text{MeOH});$

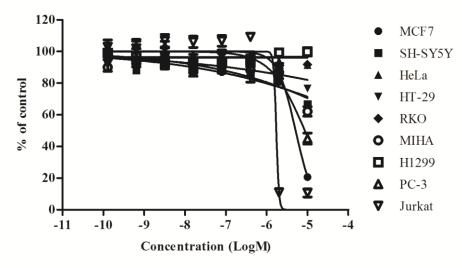
NMR and Mass data for 1b and 1c are identical:

¹**H NMR** (400 MHz, DMSO-*d6*) δ 10.06 (s, 1H), 7.13 (t, J = 7.9 Hz, 1H), 6.83 (dd, J = 7.9, 2.9 Hz, 2H), 6.36 (d, J = 16.4 Hz, 1H), 6.18 – 6.10 (m, 1H), 6.06 (dd, J = 15.8, 7.6 Hz, 1H), 6.00 – 5.90 (m, 2H), 5.52 (d, J = 4.4 Hz, 1H), 5.50 – 5.41 (m, 1H), 5.22 (dd, J = 15.0, 9.3 Hz, 1H), 5.14 – 5.00 (m, 2H), 4.89 (d, J = 4.4 Hz, 1H), 4.51 – 4.41 (m, 1H), 3.48 – 3.35 (m, 1H), 2.28 – 2.18 (m, 1H), 2.05 – 1.92 (m, 1H), 1.90 – 1.80 (m, 1H), 1.80 – 1.68 (m, 1H), 1.45 – 1.32 (m, 2H), 1.11 – 0.99 (m, 5H), 0.99 – 0.91 (m, 6H), 0.91 – 0.84 (m, 6H).¹³**C NMR** (100 MHz, DMSO-*d6*) δ 164.08, 156.59, 153.18, 151.55, 143.13, 142.38, 139.54, 136.29, 131.91, 126.78, 122.19, 120.00, 114.26, 113.28, 111.61, 106.70, 90.34, 86.28, 76.46, 75.61, 68.24, 44.07, 42.97, 41.70, 40.98, 33.17, 31.21, 26.77, 24.02, 22.33, 21.92, 19.81, 17.34.

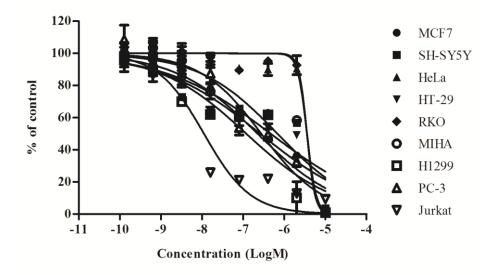
HRMS (m/z): calculated for C₃₃H₄₂BrNO₆Na⁺ [M + Na]⁺: 650.2088, found 650.2100.


Biological Evaluation of Synthetic Compounds

Material and Methods


Compounds: Four synthetic compounds were dissolved in DMSO. The final concentration of DMSO in the assay was below 0.01%.

Cell culture: Breast carcinoma cell line MCF7, neuroblastoma cell line SH-SY5Y, cervical adenocarcinoma cell line HeLa, colon carcinoma cell lines HT-29 and RKO, immortalized human hepatocyte cell line MIHA, lung adenocarcinoma cell line H1299, prostate carcinoma cell line PC-3 and T lymphocyte cell line Jurkat were obtained from American Type Culture Collection (Manassas, VA). These cell lines were cultured in DMEM containing supplements (10%FBS, penicillin/streptomycin and L-glutamine).


The effect of the synthetic compounds on the proliferation of cancer cell lines: Cells were seeded into 96-well plates overnight and cultured with incremental concentrations of the compounds in the medium containing 1% FBS for another 72 h. Cell proliferation was measured using 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyohenyl)-2-(4-sulfophenyl-2H-tetrazolium) (MTS) assay. (Promega Co., Madison, WI). According to the manufacturer's instruction, 20 μ L of CellTiter96 Aqueous solution was added into each well containing 100 μ L medium and incubated at 37°C for 4 hours. The absorbance at 490nm was measured using an ELISA plate reader (Bio-Rad microplate reader 680, Bio-Rad Laboratories, California, USA). The IC₅₀ values were calculated by Prism 5 (GraphPad Prism software Inc, USA).

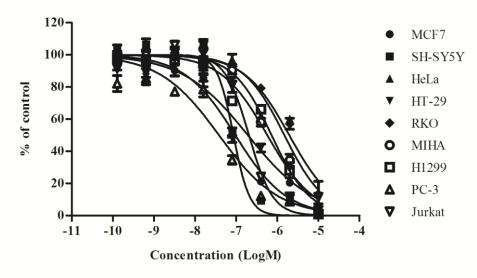
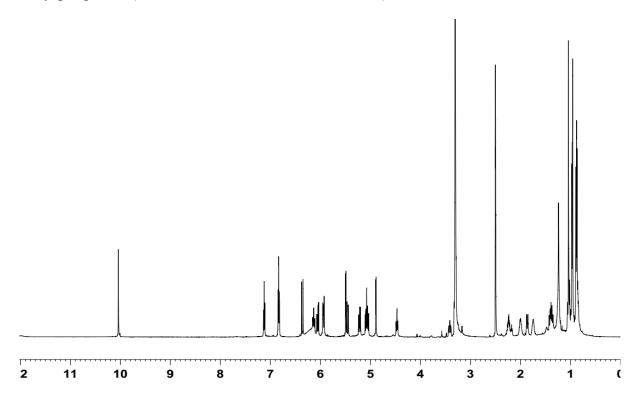
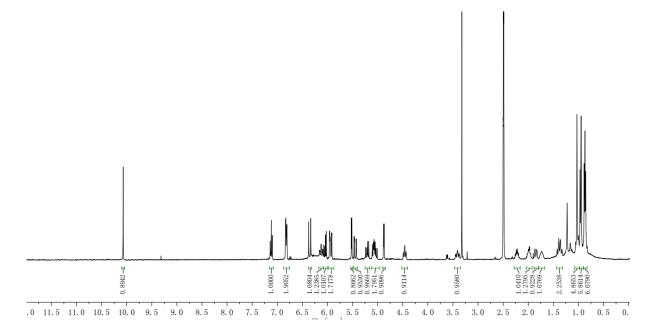
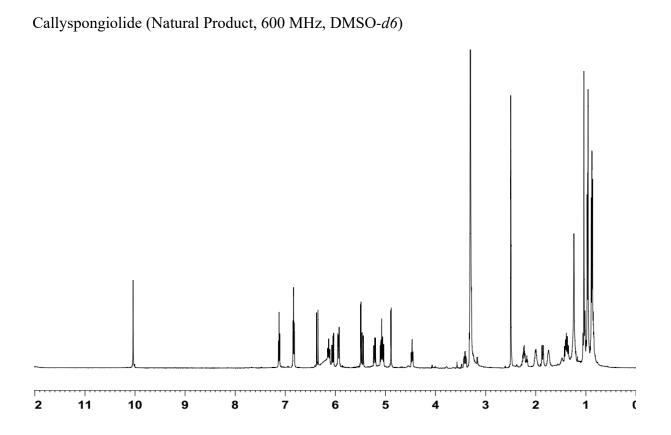

Figure 1. Effect of **1a** on the proliferation of cancer cell lines. Effect of **1a** on proliferation of cancer cell lines was assessed by MTS assay. Cells were incubated for 72 hours in the presence of various concentrations of **1a**. Cell proliferation was measured by MTS assay. Representative data of three experiments were shown, and each concentration was repeated six times in each experiment.

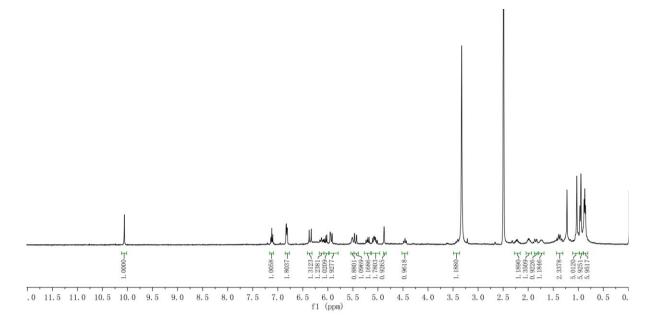
Figure 2. Effect of **1b** on the proliferation of cancer cell lines. Effect of **1b** on proliferation of cancer cell lines was assessed by MTS assay. Cells were incubated for 72 hours in the presence of various concentrations of **1b**. Cell proliferation was measured by MTS assay. Representative data of three experiments were shown, and each concentration was repeated six times in each experiment.

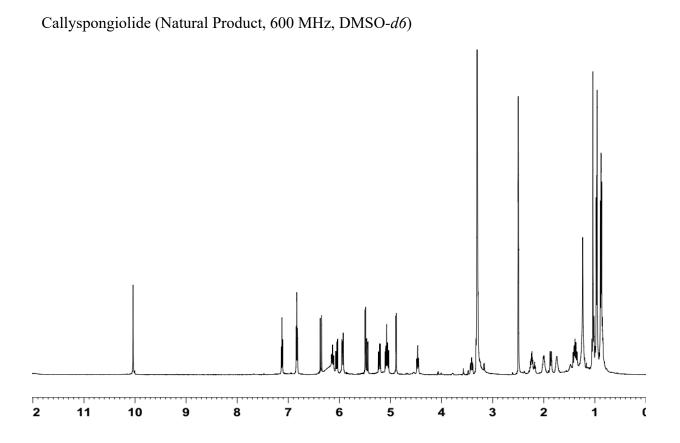

Figure 3. Effect of **1c** on the proliferation of cancer cell lines. Effect of **1c** on proliferation of cancer cell lines was assessed by MTS assay. Cells were incubated for 72 hours in the presence of various concentrations of **1c**. Cell proliferation was measured by MTS assay. Representative data of three experiments were shown, and each concentration was repeated six times in each experiment.

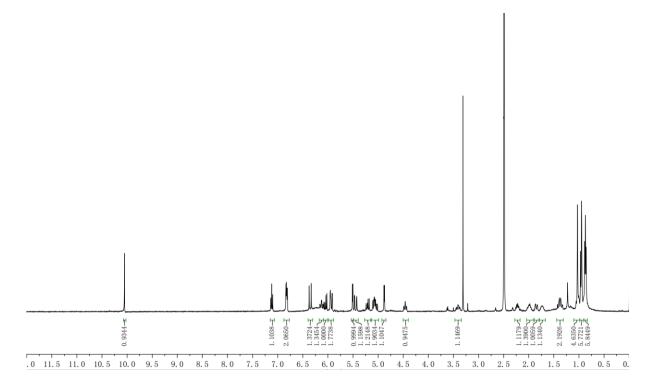

Figure 4. Effect of **1d** on the proliferation of cancer cell lines. Effect of **1d** on proliferation of cancer cell lines was assessed by MTS assay. Cells were incubated for 72 hours in the presence of various concentrations of **1d**. Cell proliferation was measured by MTS assay. Representative data of three experiments were shown, and each concentration was repeated six times in each experiment.

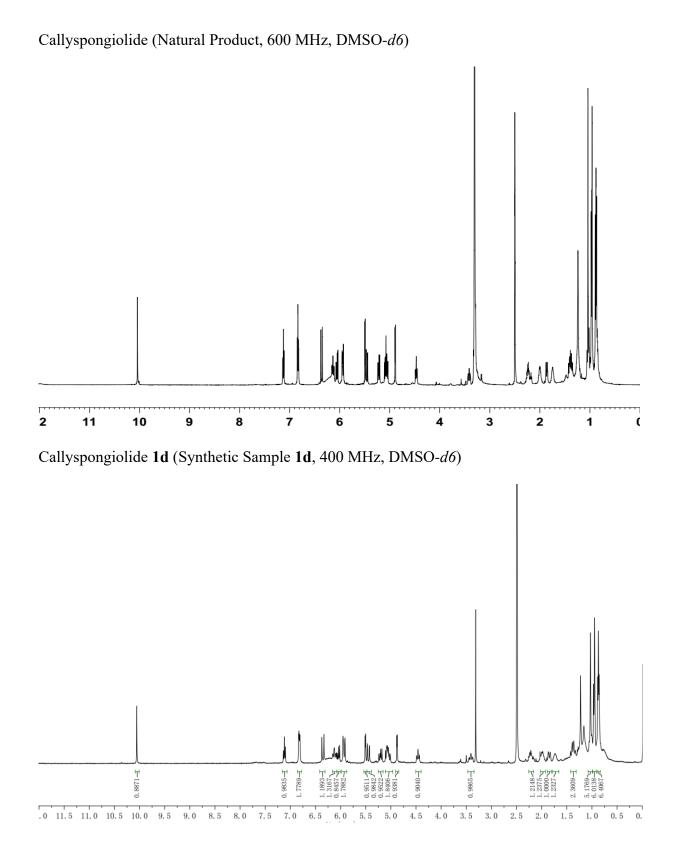

¹H NMR Spectra of Natural and Synthetic Callyspongiolide

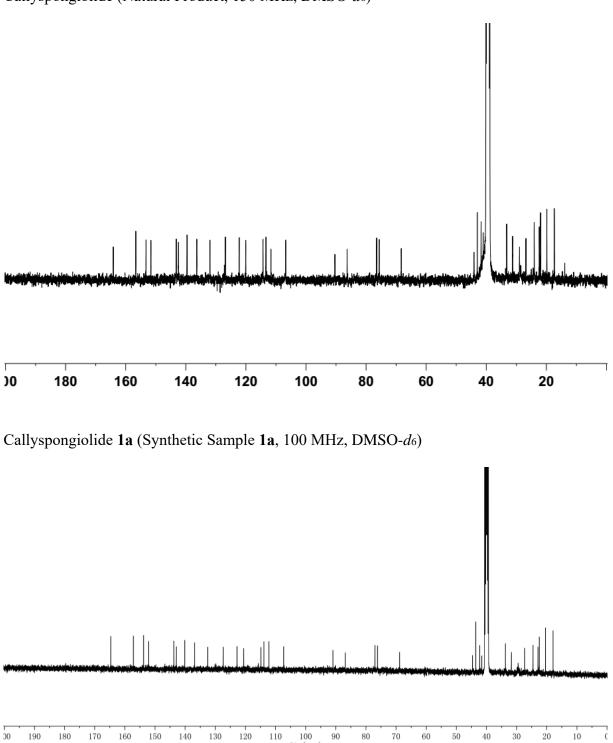
Callyspongiolide (Natural Product, 600 MHz, DMSO-*d6*)



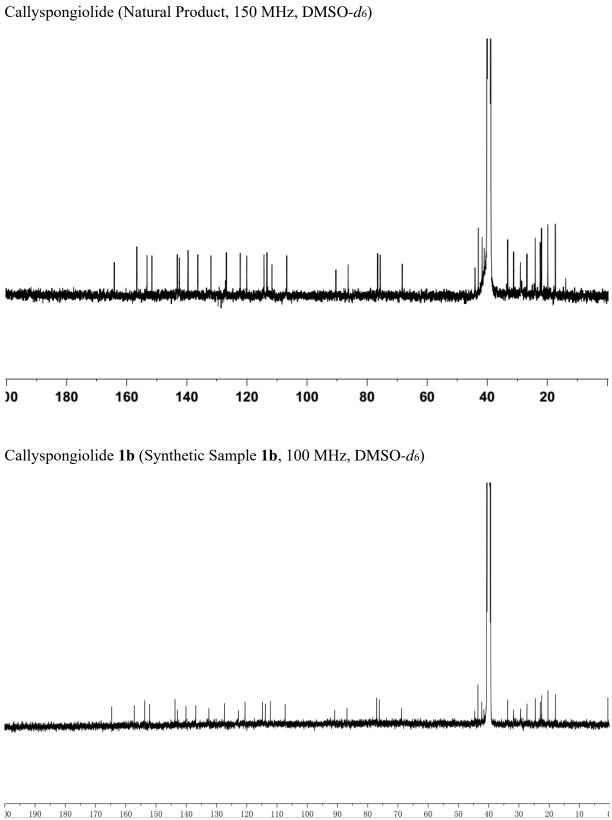

Callyspongiolide 1a (Synthetic Sample 1a, 400 MHz, DMSO-*d6*)

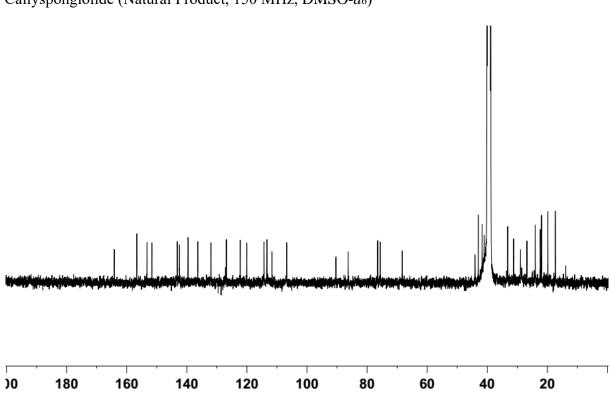



Callyspongiolide 1b (Synthetic Sample 1b, 400 MHz, DMSO-d6)

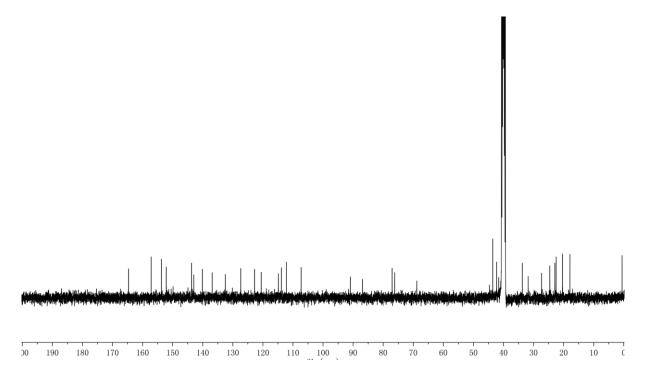


Callyspongiolide 1c (Synthetic Sample 1c, 400 MHz, DMSO-d6)

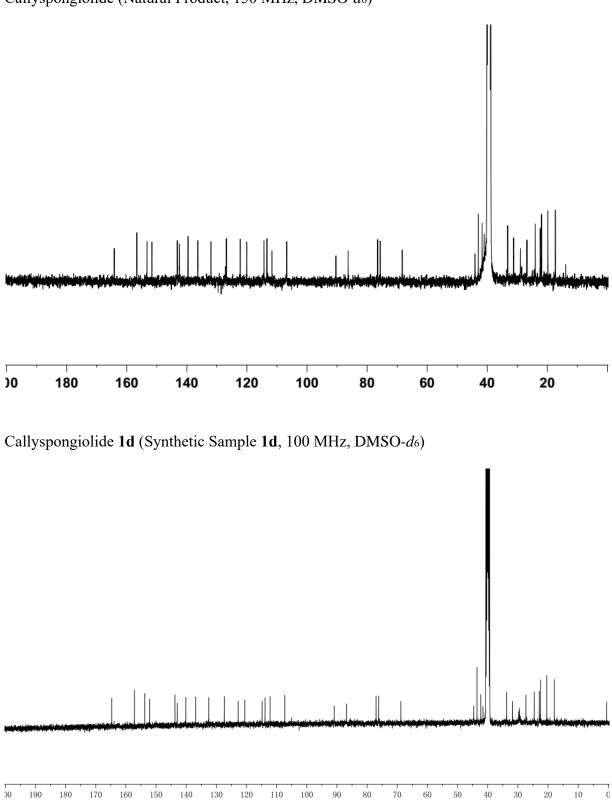




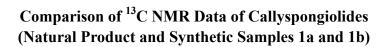
¹³C NMR Spectra of Natural and Synthetic Callyspongiolides

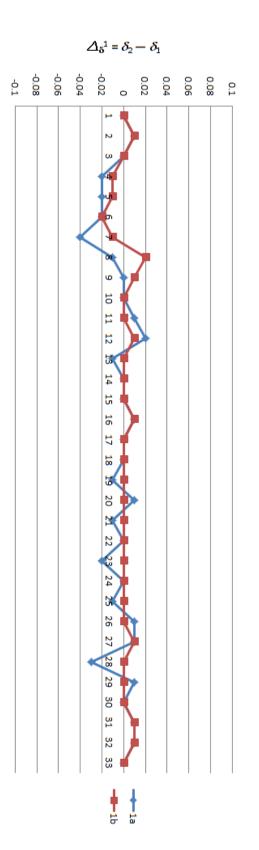


Callyspongiolide (Natural Product, 150 MHz, DMSO-d₆)

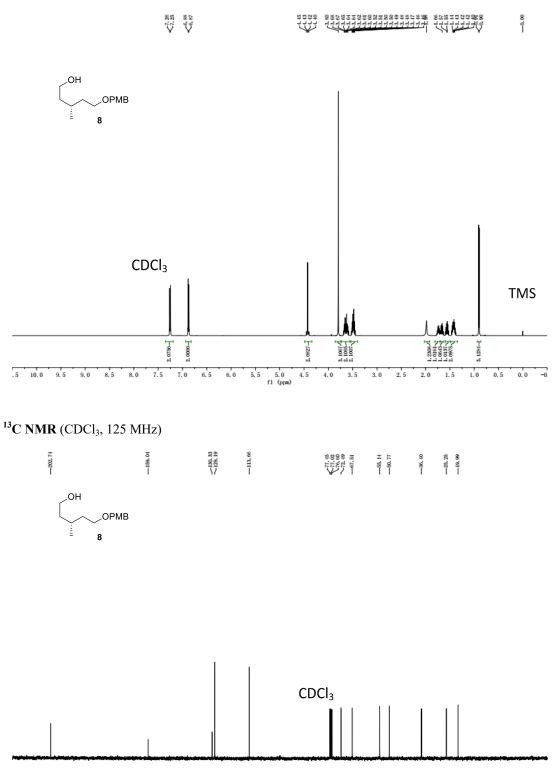


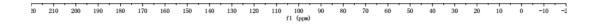
Callyspongiolide 1c (Synthetic Sample 1c, 100 MHz, DMSO-d6)

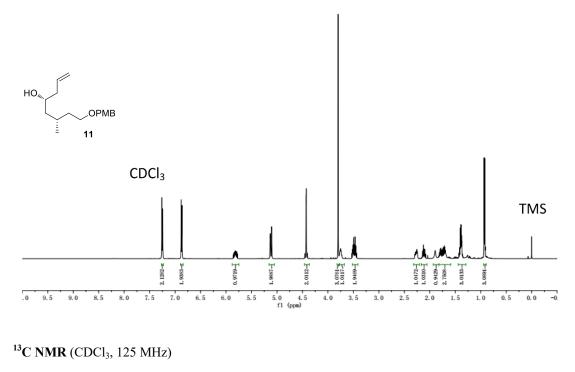

Callyspongiolide (Natural Product, 150 MHz, DMSO-d6)

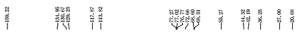


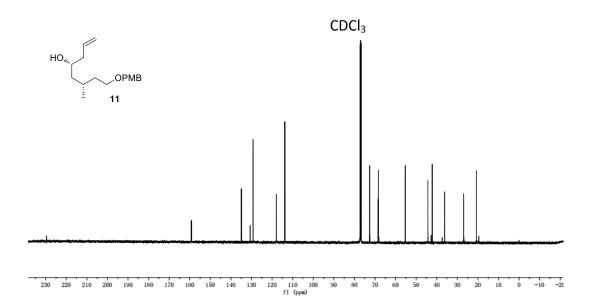
Callyspongiolide (Natural Product, 150 MHz, DMSO-d6)

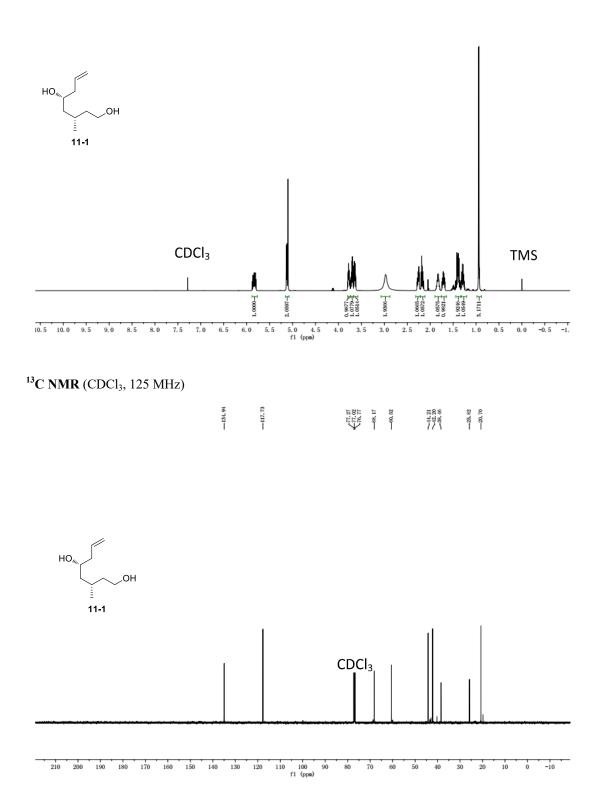

Carbon No.	Callyspongiolide (Natural product) (δ_l)	Callyspongiolide 1a (δ_2 = record value + 0.07)	$oldsymbol{\Delta}_{\delta}^{-1}=\delta_{2}-\!\!-\delta_{1}$	Callyspongiolide 1b (δ_3 = record value + 0.07)	${\cal A_8}^2=\delta_3-\!\!-\delta_1$
1	164.15	164.15	0	164.15	0
2	122.25	122.26	0.01	122.26	0.01
3	142.45	142.45	0	142.45	0
4	31.29	31.27	-0.02	31.28	-0.01
5	26.85	26.83	-0.02	26.84	-0.01
6	41.07	41.05	-0.02	41.05	-0.02
7	68.32	68.28	-0.04	68.31	-0.01
8	44.12	44.11	-0.01	44.14	0.02
9	33.23	33.23	0	33.24	0.01
10	136.36	136.36	0	136.36	0
11	131.98	131.99	0.01	131.98	0
12	41.76	41.78	0.02	41.77	0.01
13	75.68	75.67	-0.01	75.68	0
14	139.61	139.61	0	139.61	0
15	113.35	113.35	0	113.35	0
16	86.34	86.35	0.01	86.35	0.01
17	90.41	90.41	0	90.41	0
18	106.77	106.77	0	106.77	0
19	151.62	151.61	-0.01	151.62	0
20	43.04	43.05	0.01	43.04	0
21	76.53	76.52	-0.01	76.53	0
22	143.2	143.2	0	143.2	0
23	111.68	111.66	-0.02	111.68	0
24	153.25	153.25	0	153.25	0
25	114.33	114.32	-0.01	114.33	0
26	126.85	126.86	0.01	126.85	0
27	120.06	120.07	0.01	120.07	0.01
28	24.09	24.06	-0.03	24.09	0
29	22.4	22.41	0.01	22.4	0
30	19.88	19.88	0	19.88	0
31	21.98	21.99	0.01	21.99	0.01
32	17.4	17.41	0.01	17.41	0.01
33	156.66	156.66	0	156.66	0

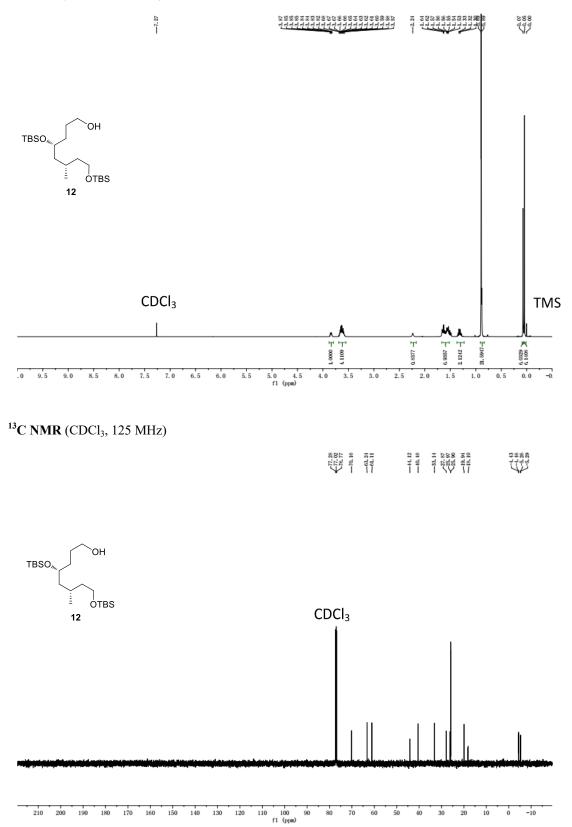

Comparison of ¹³C NMR Data of Natural, Synthetic Callyspongiolides 1a and 1b

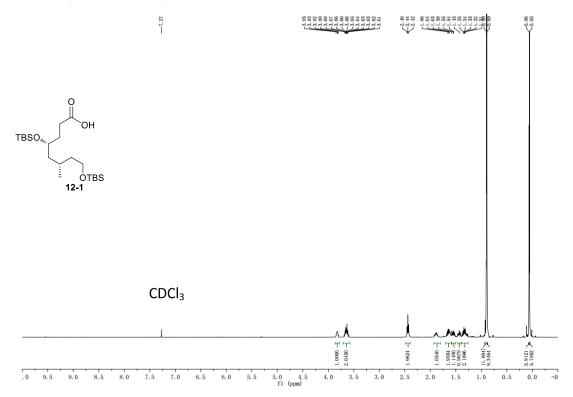


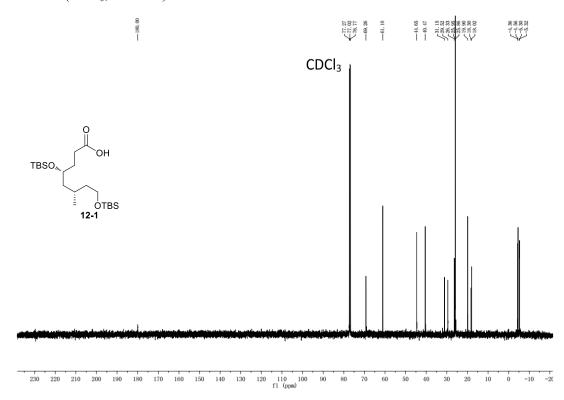

S-34



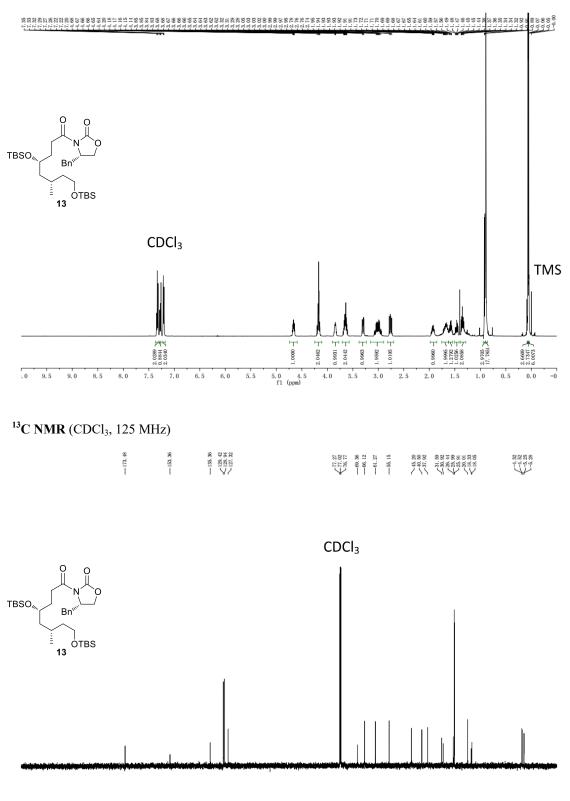

8 0







S-38



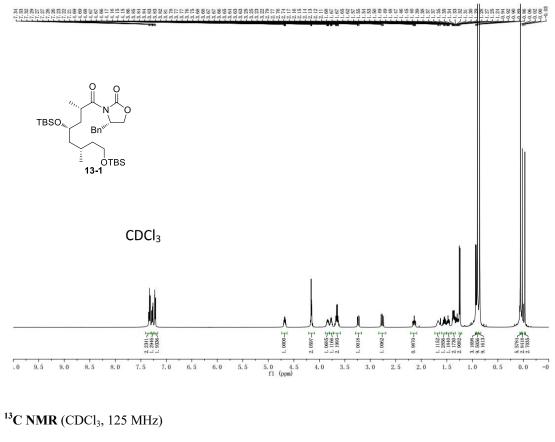
¹³C NMR (CDCl₃, 125 MHz)

20 210

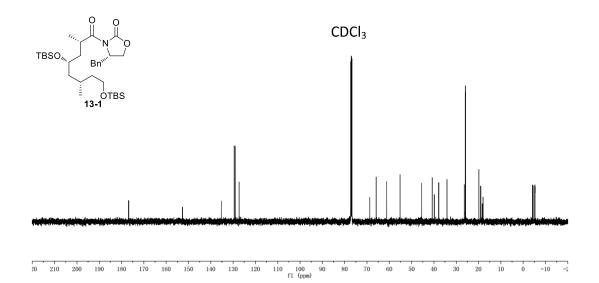
200 190 180 170 160

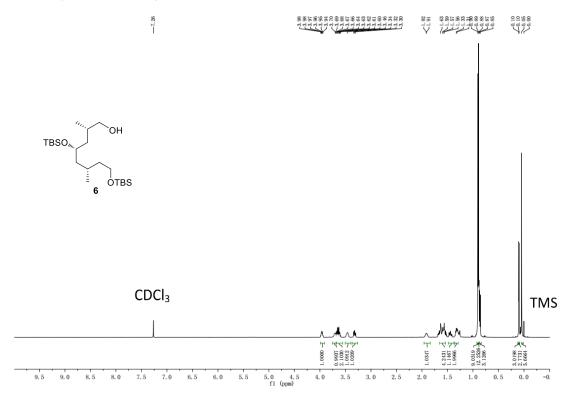
S-40

70 60 50

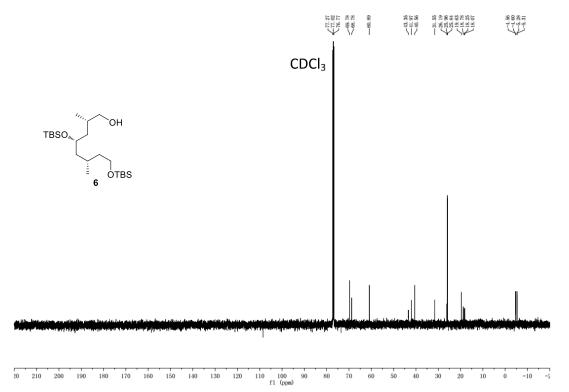

30 20

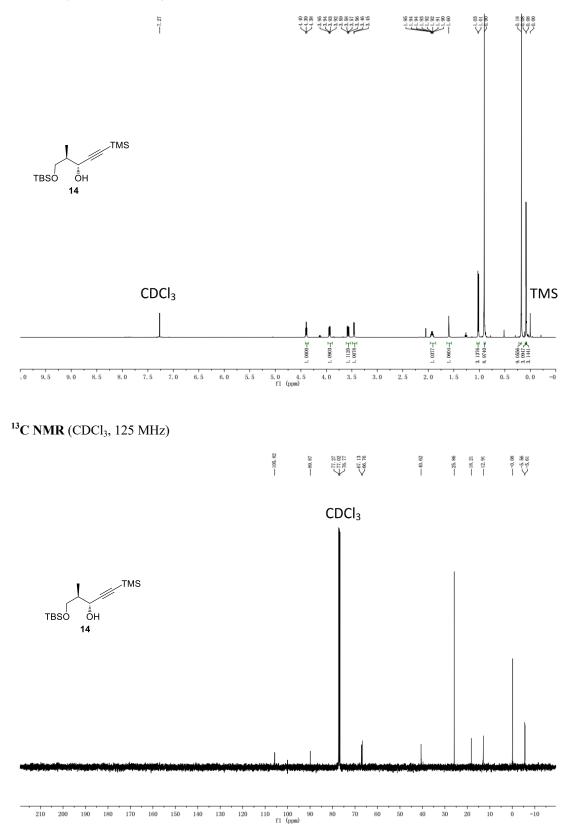
10 0

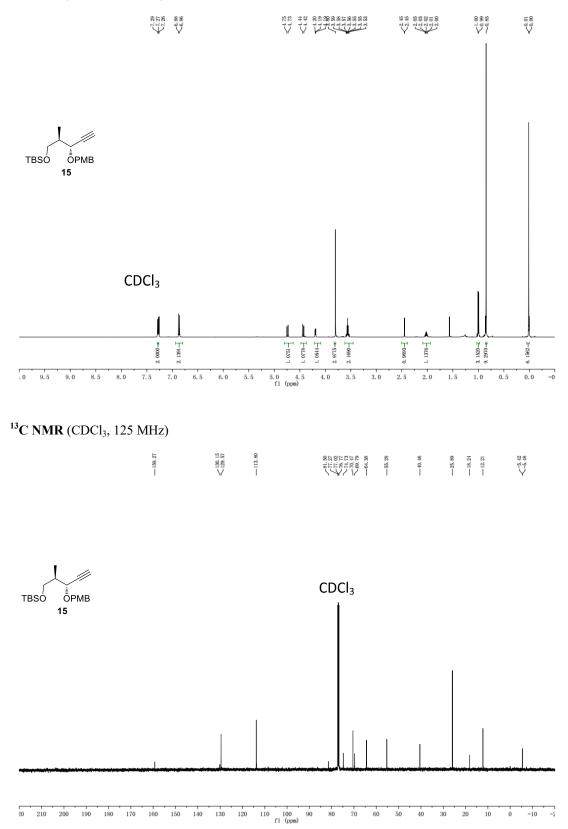

40

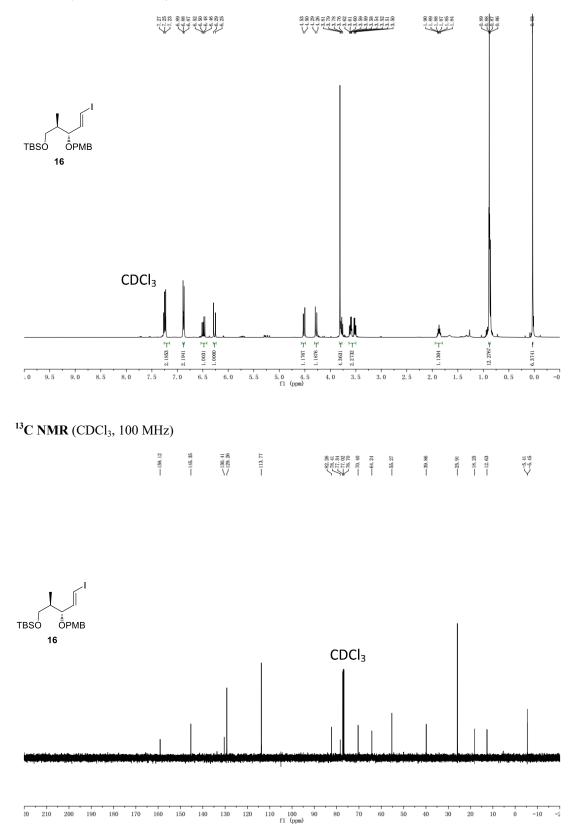

-10 -2

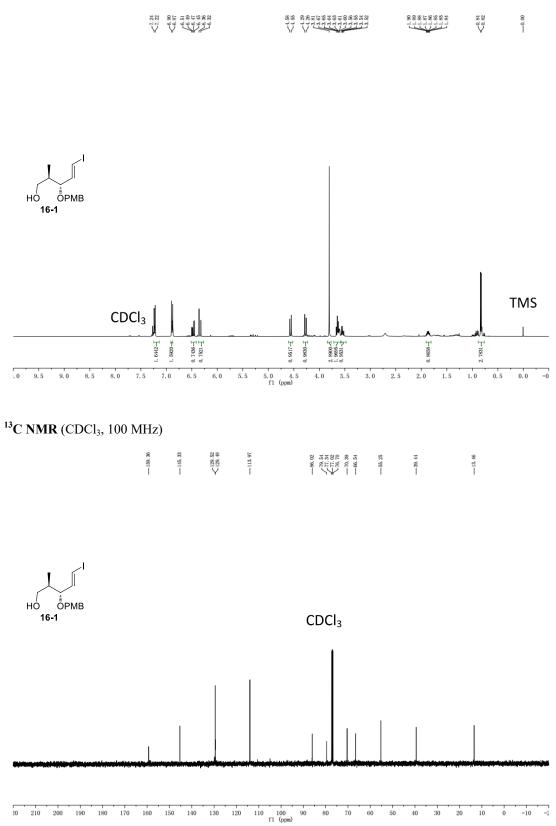
150 140 130 120 110 100 90 80 f1 (ppm)

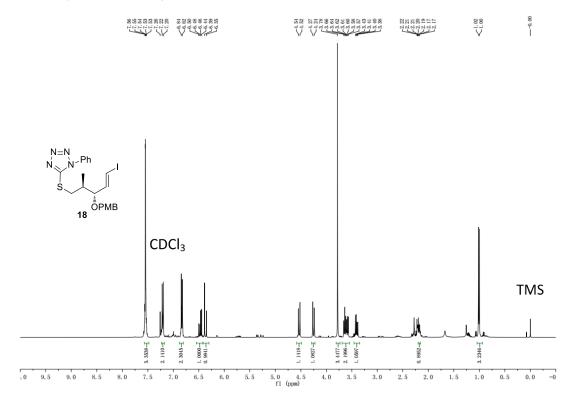


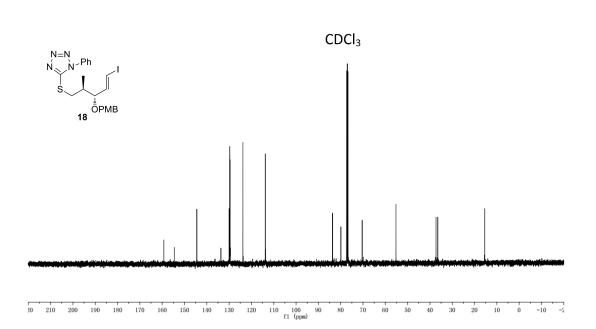


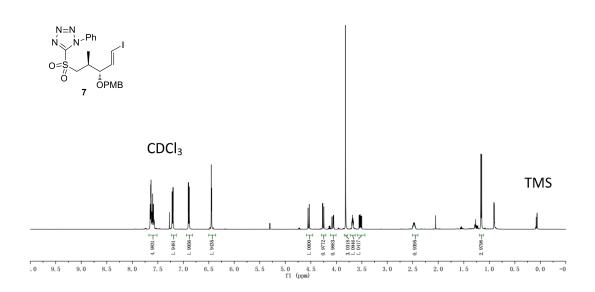




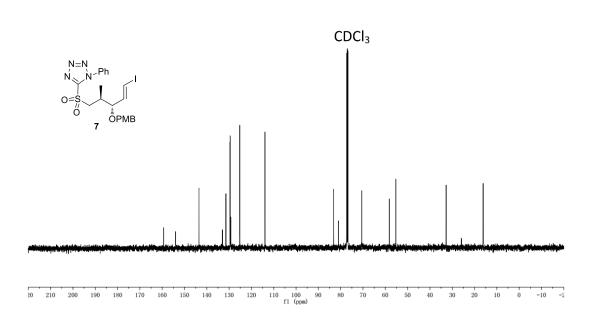

¹³C NMR (CDCl₃, 125 MHz)

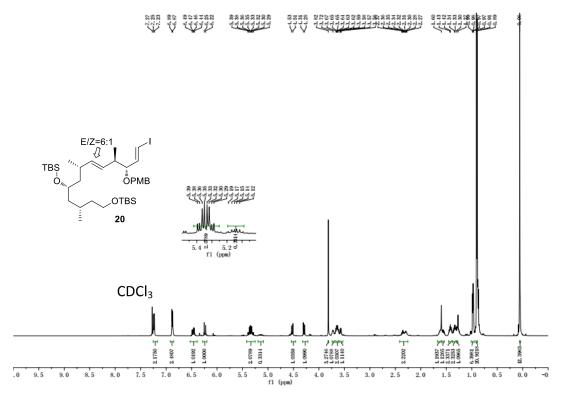


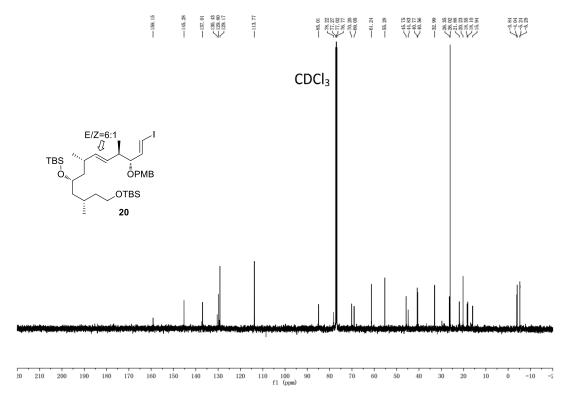


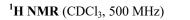


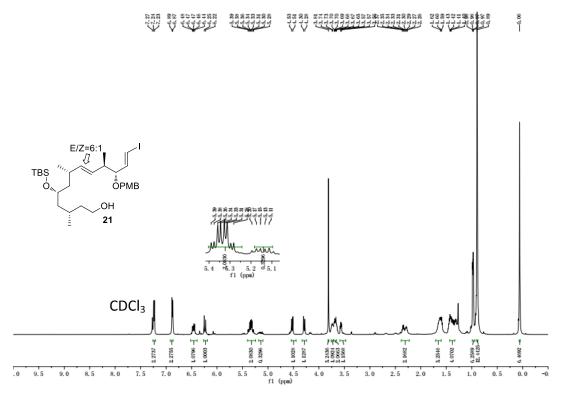
¹³C NMR (CDCl₃, 100 MHz)



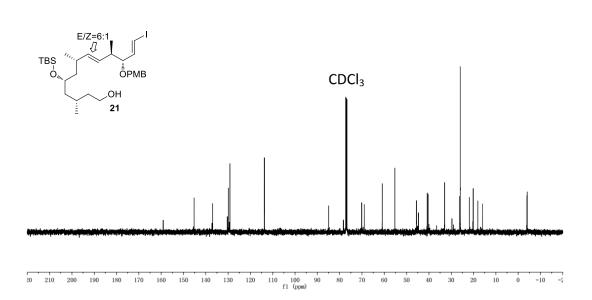


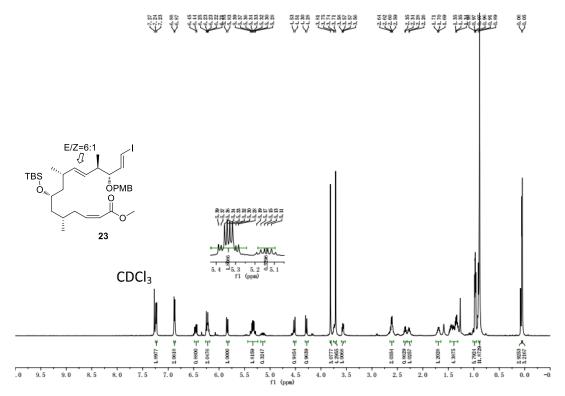




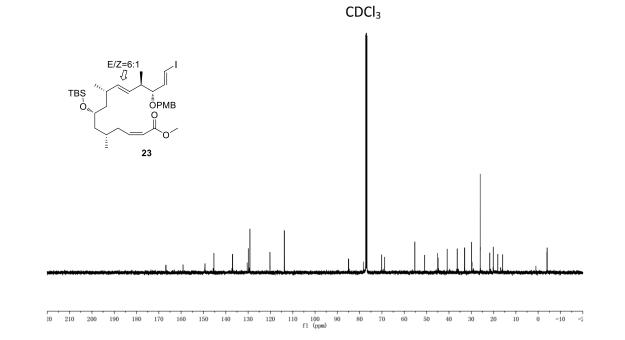


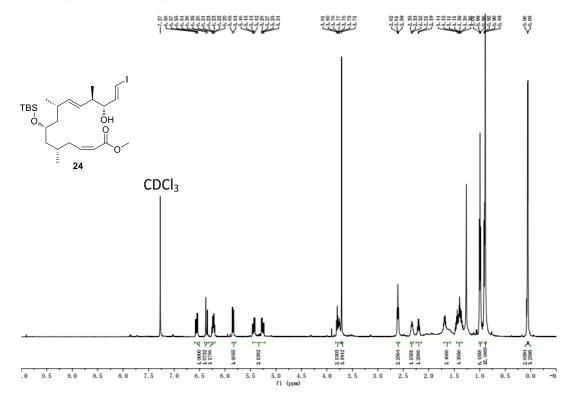
¹³C NMR (CDCl₃, 125 MHz)

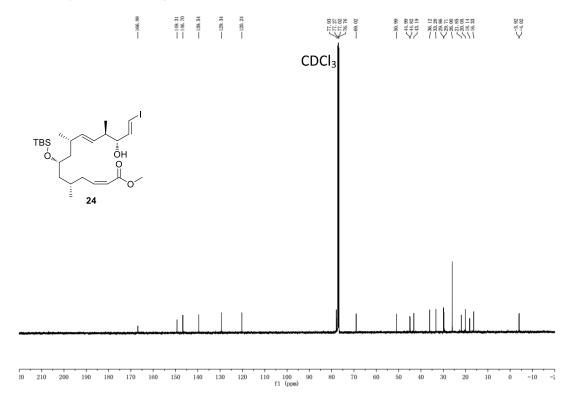


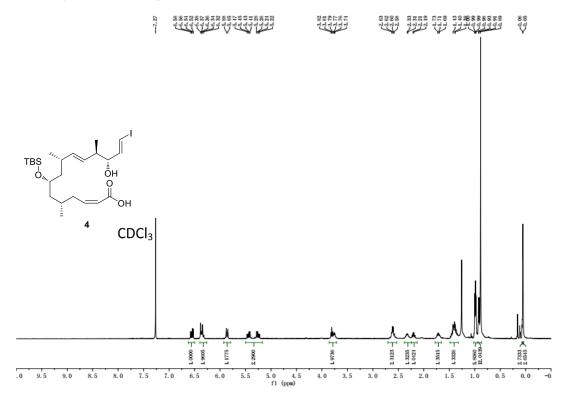


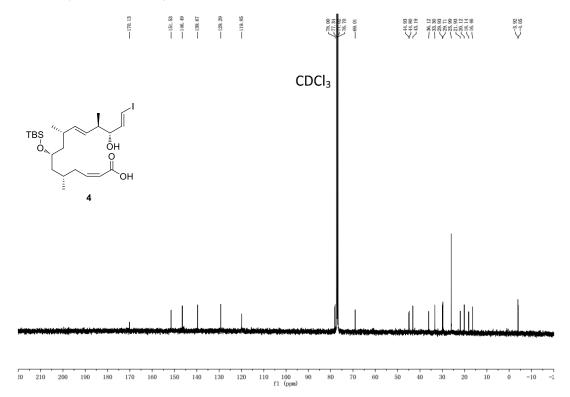
¹³C NMR (CDCl₃, 125 MHz)

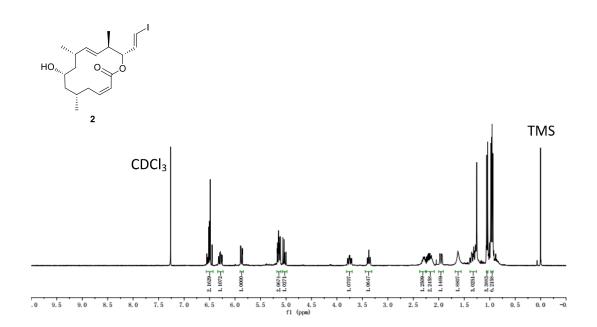


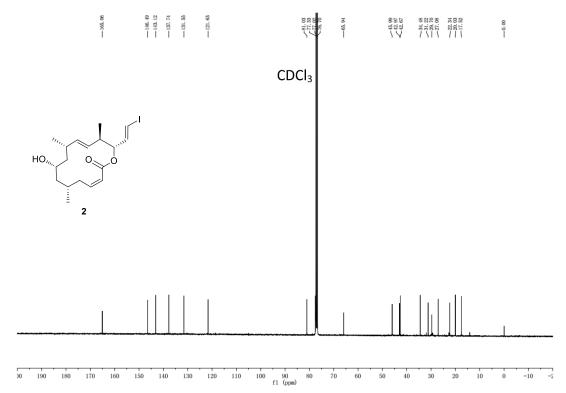


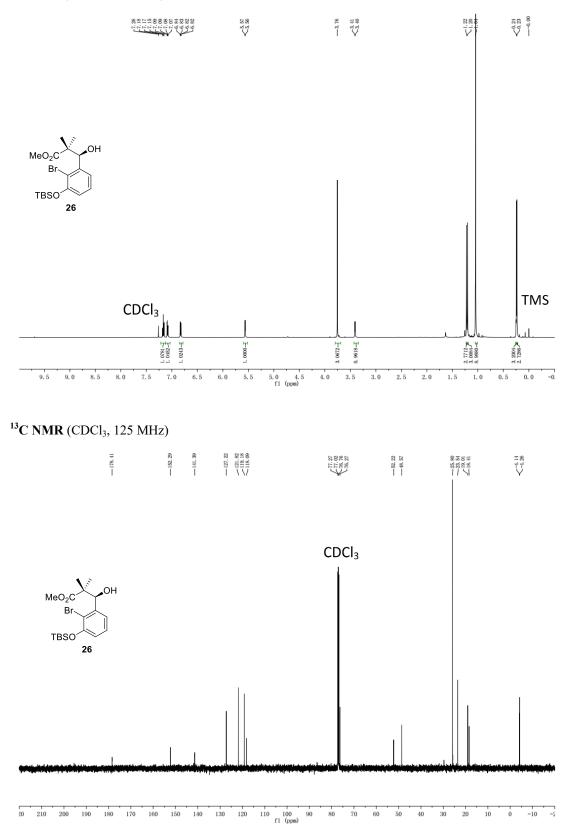

¹³C NMR (CDCl₃, 125 MHz)

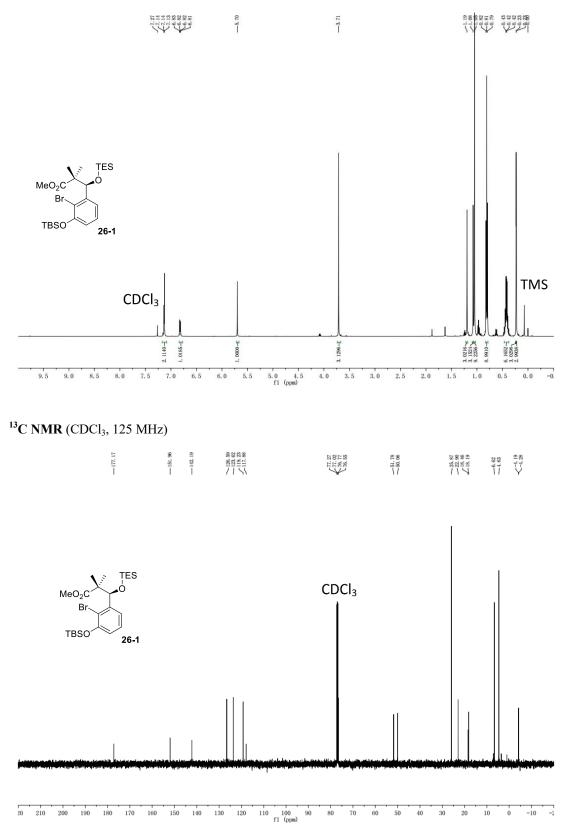


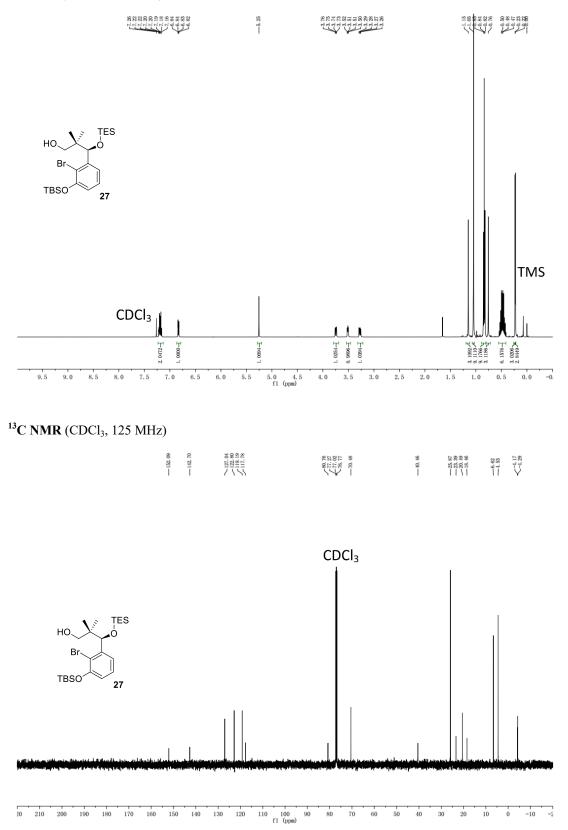


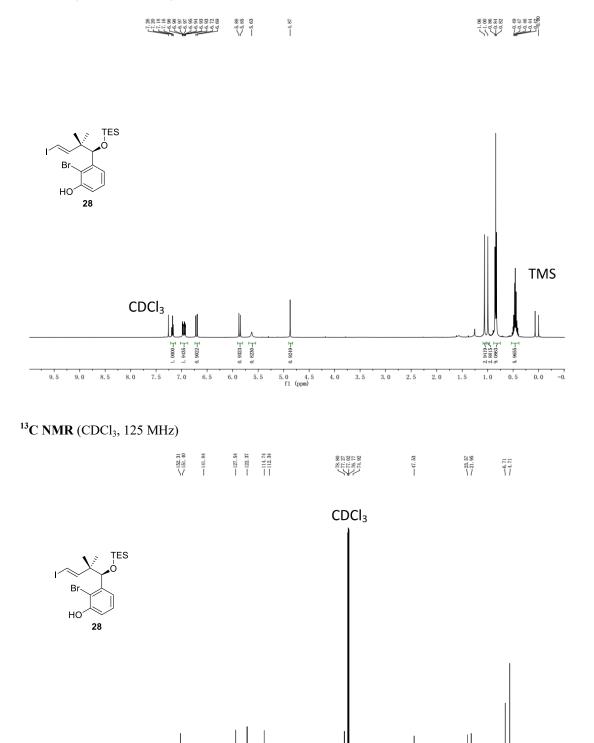

¹³C NMR (CDCl₃, 125 MHz)

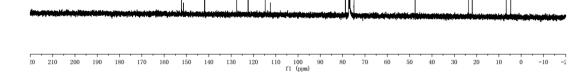


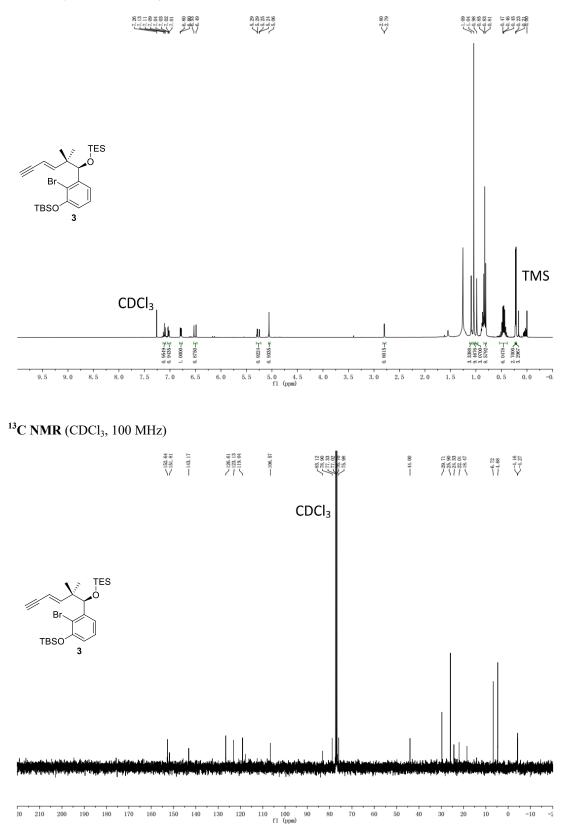

¹³C NMR (CDCl₃, 100 MHz)

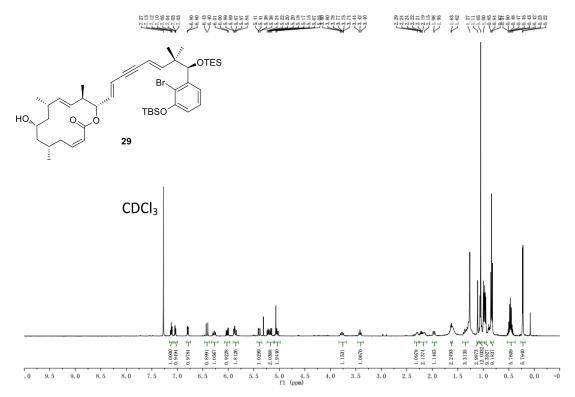


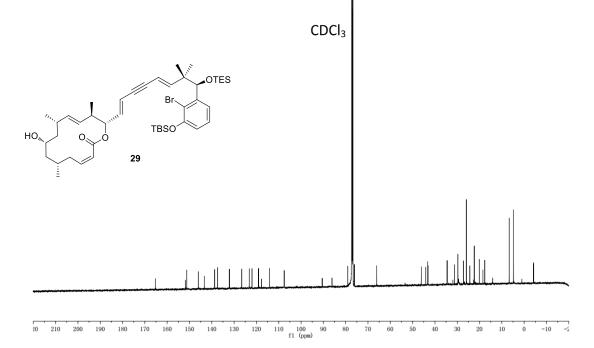


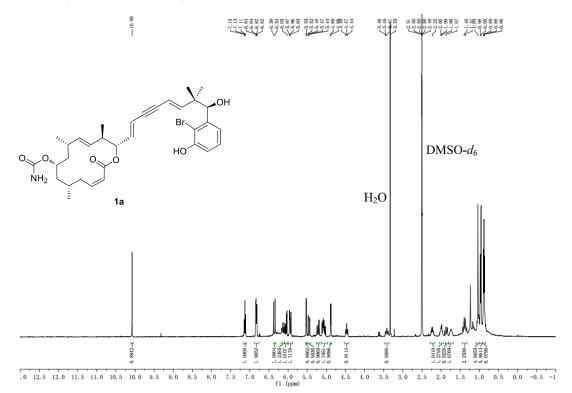

¹³C NMR (CDCl₃, 100 MHz)

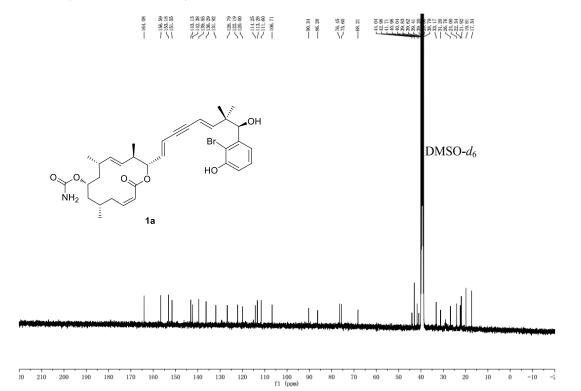


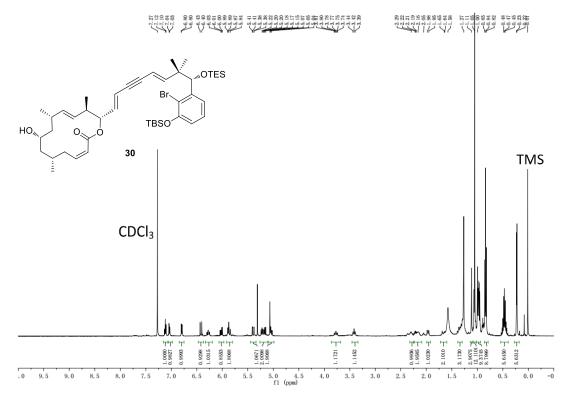


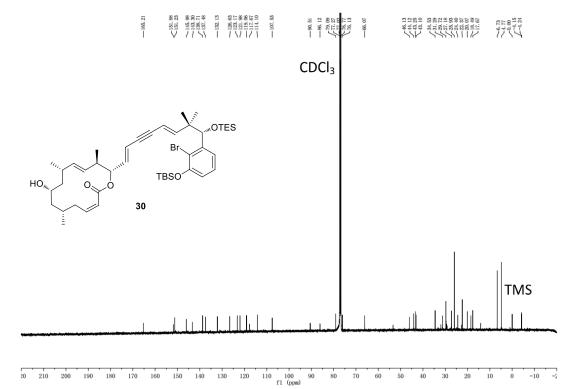


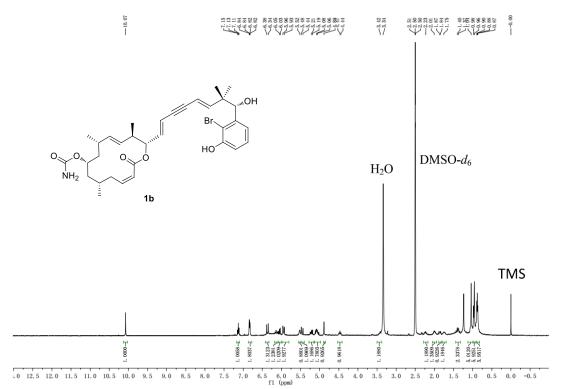



S-59

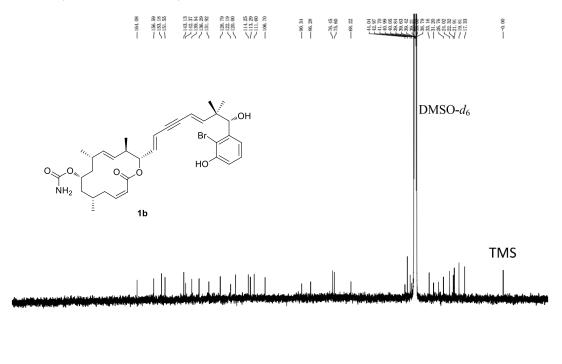

¹³C NMR (CDCl₃, 125 MHz)






¹³C NMR (DMSO-*d6*, 100 MHz)

¹³C NMR (CDCl₃, 125 MHz)



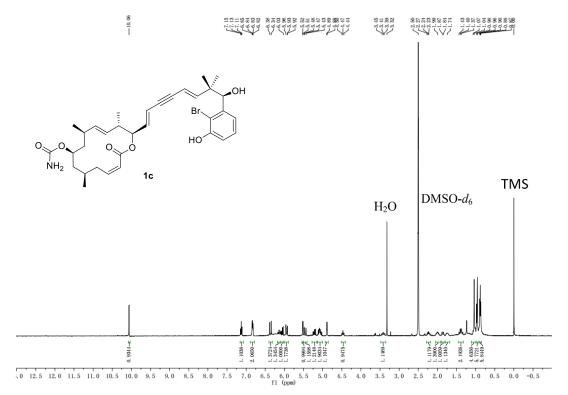
¹³C NMR (DMSO-*d6*, 100 MHz)

20 210

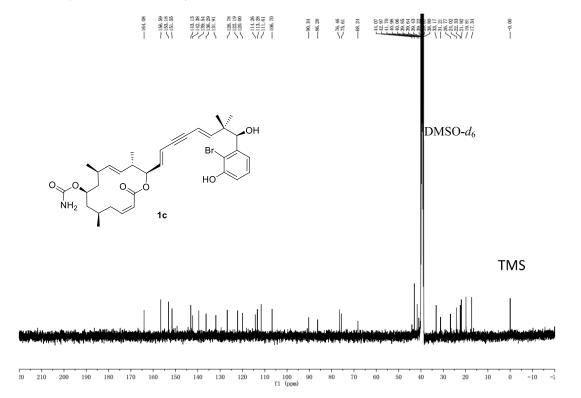
200 190 180 170 160

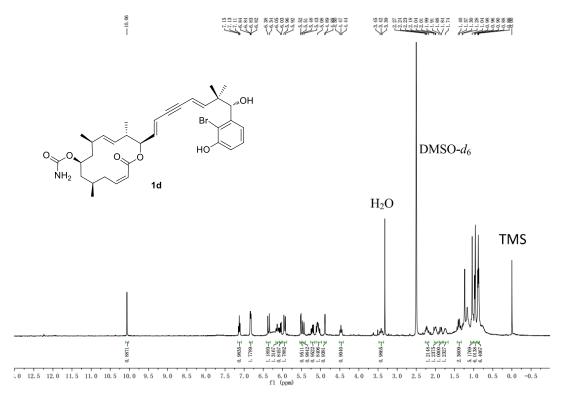
60 50

-10 -2

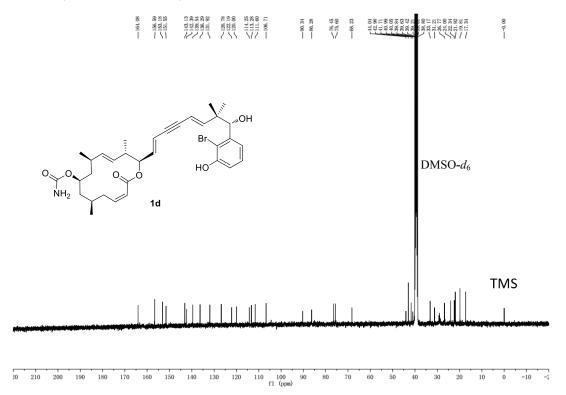

10

ò


30 20


40

150 140 130 120 110 100 90 80 70 f1 (ppm)



¹³C NMR (DMSO-*d6*, 100 MHz)

¹³C NMR (DMSO-*d6*, 100 MHz)

