
Fe⁺³-doped Anatase TiO₂ with d-d Transition, Oxygen Vacancies and Ti⁺³ Centers: Synthesis, Characterization, UV-vis Photocatalytic and Mechanistic Studies

Hayat Khan^{*}, Imran Khan Swati

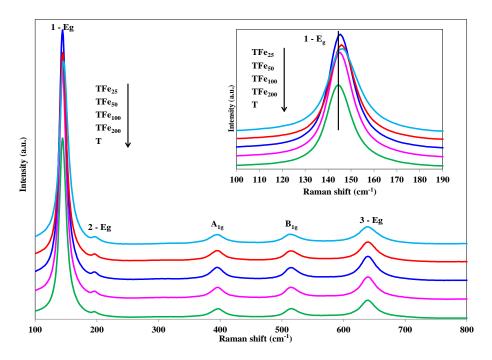

Supplementary Information

Figure S1 DRS UV-vis absorption spectra of the powders calcined at 300 (i) and 500 $^{\circ}$ C (ii), the samples are (a) T, (b) TFe₂₀₀, (c) TFe₁₀₀, (d) TFe₅₀ and (e) TFe₂₅.

1.1. Raman Spectroscopy

Raman spectroscopy experiments were carried out to further confirm the structural phases of undoped and doped TiO₂ nanoparticles calcined at 300 °C (Figure S2). As can be seen the Raman features recorded for undoped TiO₂ confirms the presence of basically the anatase TiO₂ crystalline phase, as evidence by the presence of mainly five Raman peaks corresponding to the six active modes expected for the anatase tetragonal structure $(3E_g, 2B_{1g}, 1A_{2g})$.¹⁻³ The Raman bands were observed at 144, 196.5, 396.1, 515.7 and 639.1 cm⁻¹ for undoped TiO₂, Fe⁺³ doped nanoparticles exhibited a Raman peak pattern similar to that of undoped TiO₂ (anatase structured). Any peak related to iron oxide (α -Fe₂O₃, TiFe₃O₄) were not detected, this means that Raman spectral results are in accordance with powder XRD observation, moreover, Fe-TiO₂ nanoparticles preserved the anatase structure, which indicates that Fe⁺³ dopant is substitutionally incorporated into the TiO₂ frame work replacing Ti⁺⁴ cations. However, it was observed that the Raman band at 144 cm⁻¹ (1-E_{σ}) tend to shift to the high wavenumber with peak broadening as the iron content increases, as shown in Figure 8 insert. The unusual broadening and shifts of the Raman bands are associated with changes in structure, particle size, calcination temperature, nonstoichiometery and nature of defects, any dominant change in the above parameters firstly effect the lowest frequency vibrational mode at 144 cm^{-1 2,3}. From XRD analysis it is clear that TiO₂ crystallite size decrease with increase in dopant amount, this happens due to the change in force constant and vibrational amplitude caused by the volume contraction effect (as a result of difference in the ionic radii of Fe^{+3} and Ti^{+4}). In addition, PL analysis showed oxygen vacancies induced defects resulting into the change in oxygen stoichiometry for the TiO₂ nanoparticles with different Fe^{+3} content. Thus, it can be argued that the present shifting in the Raman band $(1-E_{\sigma})$ is due to the change in particle size and oxygen vacancies as a result of Fe⁺³ doping in TiO₂.

Figure S2. Raman spectra of the indicated samples calcined at 500 $^{\circ}$ C; (insert) Raman shift in 1-E_g mode.

1.2. N₂ Physisorption

 N_2 adsorption-desorption isotherms measured at 77 K were compared to investigate the microstructural changes due to the presence of Fe⁺³ in TiO₂ structure. Figure S3 shows the physisorption isotherms of undoped (T) and doped titania (TFe₅₀) calcined at 500 °C, while the insert display the pore size distribution curve measured by BJH (Barret-Joyner-Halender) method. All the samples showed type-IV adsorption-desorption isotherm according to IUPAC classification with a H4 hysteresis loop caused by capillary condensations within the mesopores. The textural parameters shown in Table S1 illustrates that compared to undoped TiO₂, doped powders have high specific surface area, the BET (Brunauer-Emmett-Teller) results are consistent with the XRD analysis which indicates that Fe⁺³ ions results in the inhibition of crystallite growth. The Fe⁺³-doped TiO₂ nanoparticles had a uniform pore size distribution (Table S1), the pore size followed a decreasing trend with increase in Fe content, which resulted in the increase of S_{BET}. Moreover, in all the catalyst powders, external surface area (S_{ET}) is greater than specific surface area (S_{BET}), this means that the solid contains macropores. Therefore, it can be concluded that Fe-TiO₂ catalysts have large surface area consisting of mesoporous and macroporous structure and wide pore size distribution, which will promote

adsorption, desorption and diffusion of reactants and products ⁴, thus high photocatalytic activity of doped samples is expected. Table S1 also showed that a decrease in specific surface area is observed with increase in annealing temperature, because TiO_2 crystallite size increases with increase in calcination temperature.

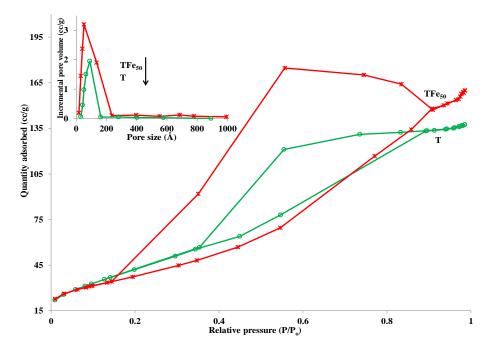


Figure S3 N_2 adsorption-desorption isotherm, (insert) BJH pore size distribution of the indicated samples calcined at 500 °C.

Table S1. Comparison of BET specific surface area (S_{BET}), external surface area (S_{EXT}), mesopores volume, BJH pore size and BJH pore volume of undoped and Fe⁺³-doped TiO₂ powders, calcined at 300 and 500 °C.

Catalyst	Temperature	S _{BET}	S _{EXT}	Mesopores	BJH pore	BJH pore
sample	(°C)	(m^2/g)	(m^2/g)	volume (cm^3/g)	size (Å)	volume (cc/g)
Т		178	247	0.186	147.0	2.0
TFe ₂₀₀		166	230	0.102	136.0	2.1
TFe ₁₀₀	300	203	273	0.187	161.0	2.6
TFe ₅₀		236	331	0.203	216.0	3.2
TFe ₂₅		262	367	0.245	187.0	2.3
Т		157	224	0.156	95.0	1.7
TFe ₂₀₀		143	203	0.121	111.0	2.0
TFe ₁₀₀	500	182	237	0.157	127.0	2.1
TFe ₅₀		201	284	0.172	161.0	2.5
TFe ₂₅		215	313	0.187	142.0	1.8

Table S2. Photocatalytic degradation of different pollutants in the presence of Fe^{+3} -TiO₂ (prepared by different methods) under UV and visible light irradiation

Synthesis method	Light source / power (W) / optimum	Pollutant	Concentration	Volume /	% degradation [*]
	amount of photocatalyst powder			catalyst (g/L)	/ time (min)
Hydrothermal ⁵	UV – 365 nm / unknown / 3.0 at.%	Rhodamine B	10 µM	40 ml / 0.05	17/120
	Simulated solar light / unknown / 3.0 at.%				14/120
Sol-gel with	UV high pressure Hg lamp – 365nm / 300 /	Active yellow	100 mg/L	60 mL /0.06	80/60
hydrothermal ⁴	0.04 mass%	XRG	_		
	Visible light (>365 nm) using glass filter				82/420
	as cut-off / 300 / 0.15 mass%				
Microemulsion ⁶	UV high pressure Hg lamp – 365 nm / 500	Phenol	500 ppm	1L/0.5	65 ^{**} / 300
	/ 0.7 wt.%				
	No visible light activity experiment were				
	performed				
Precipitation	UV high pressure Hg lamp (365 nm) / 300	Rhodamine B	20 mg/L	50 mL / 0.05	75 / 120
hydrothermal ⁷	/ 0.5		_		
	Halogen lamp as visible light (>420 nm)				85 / 240
	using glass optical filter as cut-off / 1000 /				
	0.5				
Co-precipitation ⁸	Osram Xenon short arc optic lamp was	Methylene blue	0.02 mM	200 mL /	80 / 180
	used as simulated solar light / 1000 / 0.1			0.24	
	wt.%				
Sol-gel ⁹	High pressure Hg lamp (> 400 nm) with	Methylene blue	10 mg/L	100 mL / 0.4	70 / 180
	cut-off filter was used as visible light				
	source / 125 / 0.5% (atom ratio)				
Sol-gel ¹⁰	Xenon lamp, UV (300-380 nm) / 300 / 0.5	Methyl orange	0.025 mM	100 mL / 1.0	44 / 60
	mol ratio				
	Same lamp was used for visible light using				25 / 60
	cut-off filter (>420 nm) / 300 / 1.0 mol				
	ratio				
Incipient wet	No UV experiments were performed				
impregnation ¹¹	Black light fluorescence lamps / 5 x 8 /	4-Nitrophenol	0.001 mol/L	0.6 L / 0.2	80 / 120

	0.25 wt%				
Solution combustion method ¹²	UV medium pressure Hg lamp (360 nm) / 125 / 7.5 at.%	4-Nitrophenol	0.5 mM	190 mL / 1.0 0.4 L / 1.0	90 / 60
	Visible experiments were carried out with direct sun light having average intensity of $0.753 \text{ KW/m}^2 / 7.5 \text{ at.}\%$				30 / 200
Metallorganic chemical vapor	UV Hg lamp (365 nm) / 100 / 1.0 at.%	2-Chlorophenol	50 mg/L	9.42 L / 1.0	100 / 120
deposition (MOCVD) ¹³	No visible light activity experiments are performed				
Wet impregnation ¹⁴	UV medium-pressure Hg lamp / 125 / 1.0 mol of Fe ions over 100 mol of Ti ions No visible light activity experiments were performed	4-Nitrophenol	20 mg/L	0.5 L / 1.4	90 / 350
Coprecipitation ¹⁵	UV lamp – 300-400 nm / 6 / 0.5 v/v% No visible light experiments were performed	Methylene blue	46 mg/L	50 mL / 0.01	39 / 300
Sol-gel – present work	UV light – 254 nm / 11 / 50 mol ratio	Methylene blue	7.5 mg/L	2.4 L / 0.1	98 / 60
	Hg-medium pressure lamp as visible light – 420-660 nm / 180 / 50 mol ratio	4-Chlorophenol	35 mg/L	0.85 L / 0.1	90 / 10

* Approximated value taken by reading the C/C_o figure

** Approximated value taken by reading the [TOC]/[TOC]_o figure

References

1. Zhang, W. F.; He, Y. L.; Zhang, M. S.; Yin, Z.; Chen, Q., Raman scattering study on anatase TiO₂ nanocrystals. *J.Phys. D: Appl. Phys.* **2000**, 33, 912-916.

2. M.Popa; Diamandescu, L.; Vasiliu, F.; Teodorescu, C. M.; Cosoveanu, V.; Baia, M.; Feder, M.; Baia, L.; Danciu, V., Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO₂ aerogels. *J. Mater. Sci.* **2009**, 44, 358-364.

3. Santara, B.; Pal, B.; Giri, P. K., Signature of strong ferromagnetism and optical properties of Co doped TiO₂ nanoparticles. *J. Appl. Phys.* **2011**, 110, 114322-114328.

4. Zhu, J.; Chen, F.; Zhang, J.; Chen, H.; Anpo, M., Fe³⁺-TiO₂ photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. *J. Photochem. Photobiol. A: Chem.* **2006**, 180, 196-204.

5. Yang, M.; Hume, C.; Lee, S.; Son, Y. H.; Lee, J. K., Correlation between photocatalytic efficacy and electronic band structure in hydrothermally grown TiO₂ nanoparticles. *J. Phys. Chem. C.* **2010**, 114, 15292-15297.

6. Adan, C.; Bahamonde, A.; Fernandez, M. F.; Arias, A. M., Structure and activity of nanosized iron-doped anatase TiO₂ catalysts for phenol photocatalytic degradation. *Appl. Catal. B: Environ.* **2007**, 72, 11-17.

7. Cong, Y.; Zhang, J.; Chen, F.; Anpo, M.; He, D., Preparation, photocatalytic activity, and mechanism of nano-TiO₂ co-doped with nitrogen andiIron (III). *J. Phys. Chem. C.* **2007**, 111, 10618-10623.

8. Ganesh, I.; Kumar, P. P.; Gupta, A. K.; Sekhar, P. S. C.; Radha, K.; Padmanabham, G.; Sundararajan, G., Preparation and characterization of Fe-doped TiO₂ powders for solar light response and photocatalytic applications. *Processing and Application of Ceramics.* **2012**, 6, 21-36.

9. Guo, J.; Gan, Z.; Lu, Z.; Liu, J.; Xi, J.; Wan, Y.; Le, L.; Liu, H.; Shi, J.; Xiong, R., Improvement of the photocatalytic properties of TiO₂ by (Fe+Mo) co-doping—A possible way to retard the recombination process. *J. Appl. Phys.* **2013**, 114, 104903-104909.

10. Qamar, M.; Merzougui, B.; Anjum, D.; Hakeem, A. S.; Yamani, Z. H.; Bahnemann, D., Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide. *J. Catal. Today* **2014**, 230, 158-165.

11. Yalcın, Y.; Kılıc, M.; Cınar, Z., Fe^{+3} doped TiO₂: A combined experimental and computational approach to the evaluation of visible light activity. *Appl. Catal. B: Environ.* **2010**, 99, 469-477.

12. Nagaveni, K.; Hegde, M. S.; Madras, G., Structure and photocatalytic activity of $Ti_{1-x}M_xO_{2\pm\delta}$ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method. *J. Phys. Chem. B.* **2004**, 108, 20204-20212.

13. Shah, S. I.; Li, W.; Huang, C. P.; Jung, O.; Ni, N., Study of Nd^{3+} , Pd^{2+} , Pt^{4+} , and Fe^{3+} dopant effect on photoreactivity of TiO₂ nanoparticles. *Proceedings of the National Academy of Sciences.* **2002**, 99, 6482-6486.

14. Paola, A. D.; Marci, G.; Palmisano, L.; Schiavello, M.; Uosaki, K.; Ikeda, S.; Ohtani, B., Preparation of polycrystalline TiO_2 photocatalysts impregnated with various transition metal Ions: Characterization and photocatalytic activity for the degradation of 4-Nitrophenol. *J. Phys. Chem. B.* **2001**, 106, 637-645.

15. Molea, A.; Popescu, V.; Rowson, N. A.; Cojocaru, I.; Dinescu, A.; Dehelean, A.; Lazar, M., Correlation of physicochemical properties with the catalytic performance of Fe-doped titanium dioxide powders. *J. Ind. Eng. Chem. Res.* **2015**, 54, 7346-7351.