# LOWER SERUM NON-ESTERIFIED EICOSAPENTAENOIC ACID (EPA) IS ASSOCIATED WITH INSULIN RESISTANCE IN THE PROMISE COHORT

**Luke W. Johnston**, Sheena Kayaniyil, Christine Lee, Stewart B. Harris, Ravi Retnakaran, Bernard Zinman, Richard P. Bazinet, Anthony J. Hanley

> Department of Nutritional Sciences University of Toronto, Canada

#### Type 2 diabetes mellitus — Pathophysiology



#### Risk factors for diabetes include...



#### ... and total non-esterified FA (NEFA)



Paolisso and Howard (1998), Cnop (2008), Capurso and Capurso (2012).

#### However, NEFA are physiologically diverse<sup>2</sup>



<sup>&</sup>lt;sup>2</sup>Kato et al. (2008), Xiao et al. (2006)

# Meta-analysis of cohorts examining association of *consumption* of fish and diabetes<sup>3</sup>

| Risk ratio Study or subgroup IV, fixed, 95% CI                                     |                        | Risk ratio<br>IV, fixed, 95% CI |  |  |
|------------------------------------------------------------------------------------|------------------------|---------------------------------|--|--|
| 5.13.1 Oily fish                                                                   | 1V, IIXeu, 95% CI      | 1V, lixed, 95% C1               |  |  |
| Nanri et al., 2011 [12]                                                            | 0.86 [0.71, 1.04]      |                                 |  |  |
| Patel et al., 2009 [16]                                                            | 0.94 [0.78, 1.13]      |                                 |  |  |
| Patel et al., 2012 [21]                                                            | 0.87 [0.78, 0.97]      |                                 |  |  |
| Van Woudenbergh, 2009 [18]                                                         | 0.99 [0.71, 1.38]      |                                 |  |  |
| Subtotal (95% CI)                                                                  | 0.89 [0.82, 0.96]      | •                               |  |  |
| Heterogeneity: $\chi^2 = 1.01$ , df = 3 (P =                                       | $(0.80); I^2 = 0\%$    |                                 |  |  |
| Test for overall elect: $Z = 2.84$ ( $P = 0$                                       |                        |                                 |  |  |
| 5.13.2 Lean fish                                                                   |                        |                                 |  |  |
| Nanri et al., 2011 [12]                                                            | 1.04 [0.85, 1.27]      |                                 |  |  |
| Patel et al., 2009 [16]                                                            | 0.87 [0.73, 1.04]      |                                 |  |  |
| Patel et al., 2012 [21]                                                            | 1.04 [0.88, 1.23]      |                                 |  |  |
| Van Woudenbergh, 2009 [18]                                                         | 1.30 [1.01, 1.67]      |                                 |  |  |
| Subtotal (95% CI)                                                                  | 1.02 [0.93, 1.12]      | •                               |  |  |
| Heterogeneity: $\chi^2 = 6.79$ , df = 3 ( $P =$                                    | $0.08$ ); $I^2 = 56\%$ |                                 |  |  |
| Test for overall effect: $Z=0.37$ ( $P=$                                           | 0.71)                  |                                 |  |  |
| Total (95% CI)                                                                     | 0.94 [0.88, 1.00]      | •                               |  |  |
| Heterogeneity: $\chi^2 = 12.31$ , df = 7 (P = 0.09); $I^2 = 43\%$                  |                        |                                 |  |  |
| Test for overall effect: $Z = 1.92$ ( $P = 0.06$ )                                 |                        | 0.5 0.7 1 1.5                   |  |  |
| Test for subgroup differences: $\chi^2 = 4.51$ , df = 1 (P = 0.03); $I^2 = 77.8\%$ |                        | Favours normal Favours T2D      |  |  |

<sup>&</sup>lt;sup>3</sup>Zhang et al. (2013)

Meta-analysis of cohorts using n-3 highly-unsaturated FA (HUFA) biomarkers (i.e. phospholipid / cholesteryl ester)<sup>4</sup>

<sup>&</sup>lt;sup>4</sup>Wu et al. (2012)

# Meta-analysis of cohorts using n-3 highly-unsaturated FA (HUFA) biomarkers (i.e. phospholipid / cholesteryl ester)<sup>4</sup>



<sup>4</sup>Wu et al. (2012)

#### Research gaps

- Studies on FA often study diabetes, few on pathophysiology
  - → insulin resistance?
  - $\rightarrow \beta$ -cell function?
- No human studies on non-esterified n-3 HUFA
  - Studies often examine phospholipids or cholesteryl esters<sup>5</sup>)

 $<sup>^{5}</sup>$ Kim et al. (2013), Wang et al. (2003), Van Woudenbergh et al. (2012)

#### Objective of study:

To examine the association of individual non-esterified n-3 HUFA with insulin resistance and  $\beta$ -cell dysfunction

#### Specifically:

- 20:5 n-3, eicosapentaenoic acid (EPA)
- 22:5 n-3, docosapentaenoic acid (DPA)
- 22:6 n-3, docosahexaenoic acid (DHA)
- Total n-3 HUFA

# Methods: PROspective Metabolism and ISlet cell Evaluation (PROMISE) Cohort<sup>6</sup>

#### Longitudinal observational cohort

#### Participants:

- Toronto and London, Canada
- Older than 30 yrs (mean at baseline: 50.6 yrs)
- At-risk for diabetes (e.g. central obesity, family history)
- Clinic vists/3yrs
- Extensively characterized

<sup>&</sup>lt;sup>6</sup>Hanley et al. (2009), Kayaniyil et al. (2011)

#### Methods: Metabolic characterization

#### Metabolic

8–12hr fasting 75g oral glucose tolerance test (OGTT)

- 3 blood samples collected: 0, 30, and 120 min
- Glucose, insulin measured from OGTT
- Fatty acids (EPA, DHA, etc.) from fasting sample
  - TLC with GC-FID → baseline sample only (n=476)
  - Current analysis → cross-sectional

#### Methods: Metabolic characterization

#### Metabolic

8–12hr fasting 75g oral glucose tolerance test (OGTT)

- 3 blood samples collected: 0, 30, and 120 min
- Glucose, insulin measured from OGTT
- Fatty acids (EPA, DHA, etc.) from fasting sample
  - TLC with GC-FID → baseline sample only (n=476)
  - Current analysis → cross-sectional

#### **Anthropometrics**

- Anthropometrics (waist, height, weight)
- Sociodemographics using structured questionnaires (73.5% female, 70% Caucasian)

#### Metabolic measures (outcome variables)

#### Insulin sensitivity<sup>7</sup>

- Hepatic resistance → Homeostasis Model of Assessment (HOMA-IR)
- Whole body sensitivity → Insulin Sensitivity Index using OGTT (ISI)

Matthews et al. (1985), Matsuda and DeFronzo (1999)

<sup>&</sup>lt;sup>8</sup>Wareham et al. (1995), Retnakaran et al. (2009)

#### Metabolic measures (outcome variables)

#### Insulin sensitivity<sup>7</sup>

- Hepatic resistance → Homeostasis Model of Assessment (HOMA-IR)
- Whole body sensitivity → Insulin Sensitivity Index using OGTT (ISI)

#### *β*-cell function<sup>8</sup>

- 1st phase insulin response → Insulinogenic Index over HOMA-IR (IGI/IR)
- Analogous to the disposition index → Insulin Secretion Sensitivity Index 2 (ISSI-2)

Matthews et al. (1985), Matsuda and DeFronzo (1999)

<sup>&</sup>lt;sup>8</sup>Wareham et al. (1995), Retnakaran et al. (2009)

### Analysis: Linear regression and confounder selection

#### **Outcomes**

Insulin sensitivity and  $\beta$ -cell function

#### **Exposures**

EPA, DPA, DHA, n-3 HUFA

#### Confounders

Determined using systematic directed acyclic graph<sup>9</sup>

 Sex, age, ethnicity, waist, physical activity, presence of other chronic diseases (e.g. hypertension), and n-6 HUFA.

<sup>9</sup> Shrier and Platt (2008)

### Results: Correlation heatmap of key variables with the n-3 HUFA



### Results: Correlation heatmap of key variables with the n-3 HUFA



## Regression results: EPA is associated with insulin resistance, not with $\beta$ -cell function

|                                      | %EPA                          |                    | %DHA*                        |                |
|--------------------------------------|-------------------------------|--------------------|------------------------------|----------------|
|                                      | β (SE)                        | Р                  | β (SE)                       | Р              |
| HOMA-IR<br>Model 1<br>Model 2<br>ISI | -0.53 (0.22)<br>-0.51 (0.23)  | 0.017<br>0.029     | 0.14 (0.16)<br>0.33 (0.19)   | 0.366<br>0.094 |
| Model 1<br>Model 2<br>IGI/IR         | 0.54 (0.22)<br>0.52 (0.23)    | 0.013<br>0.022     | -0.08 (0.16)<br>-0.23 (0.19) | 0.613<br>0.232 |
| Model 1<br>Model 2<br>ISSI-2         | <b>0.63 (0.3)</b> 0.47 (0.32) | <b>0.035</b> 0.137 | 0.31 (0.22)<br>0.15 (0.26)   | 0.147<br>0.573 |
| Model 1<br>Model 2                   | 0.24 (0.14)<br>0.18 (0.15)    | 0.089<br>0.229     | 0.15 (0.1)<br>0.11 (0.13)    | 0.141<br>0.390 |

n=455-466. HOMA-IR, ISI, IGI/IR, and ISSI-2 were log transformed. Model 1: Age, sex, ethnicitly, and WC-to-height ratio. Model 2: Model 1 + presence of other chronic diseases (i.e. hypertension, cancer, myocardial infarction, or stroke), physical activity, and % total n-6 HUFA. Note: \* %DPA and total n-3 HUFA showed similar non-significance as %DHA.

# Results: Fully-adjusted partial residual plots depicting higher EPA with lower insulin sensitivity



# Conclusion — Greater EPA is associated with greater insulin sensitivity

# Conclusion — Greater EPA is associated with greater insulin sensitivity



#### Conclusion — Limitations and caveats



#### Thank you!

- **Supervisor**: Dr. Anthony Hanley
- Co-Supervisor: Dr. Richard Bazinet
- Hanley Lab: Sheena Kayaniyil, Ingrid Santaren, Sudaba Mansuri, Christine Lee
- Bazinet Lab: Chuck Chen, Katie Hopperton, Marco Trepanier, Anthony Domenichiello, Alex Kitson, Lauren Lin, Lin Lin, Zhen Liu
- Research Nurses: Jan Neuman, Paula Van Nostrand, Stella Kink, Annette Barnie, Sheila Porter, Mauricio Marin
- This research was supported by funds from: Canadian Institutes of Health Research, Canadian Diabetes Association, Ontario Graduate Scholarship, University of Toronto (School of Graduate Studies, Department of Nutritional Sciences)



Further comments/questions? Contact: luke.johnston@mail.utoronto.ca

#### **Equations**

$$\begin{split} \mathrm{HOMA\text{-}IR} &= \frac{\mathrm{G}_{\mathrm{0min}} \times \mathrm{I}_{\mathrm{0min}}}{22.5} \\ &\mathrm{ISI} = \frac{10000}{\sqrt{\left(\mathrm{G}_{\mathrm{0min}} \times \mathrm{I}_{\mathrm{0min}}\right) \times \left(\mathrm{G}_{\mathrm{mean}} \times \mathrm{I}_{\mathrm{mean}}\right)}} \\ &\mathrm{IGI/IR} = \frac{\frac{\mathrm{I}_{\mathrm{30min}} - \mathrm{I}_{\mathrm{0min}}}{\mathrm{G}_{\mathrm{30min}} - \mathrm{G}_{\mathrm{0min}}}}{\mathrm{HOMA\text{-}IR}} \\ &\mathrm{ISSI\text{-}2} = \left(\frac{\mathrm{Insulin}\;\mathrm{AUC}}{\mathrm{Glucose}\;\mathrm{AUC}}\right) \times \mathrm{ISI} \end{split}$$

# Analysis: Confounder selection (directed acyclic graphs) for linear regression



#### Results: Some basic bivariate characteristics



#### Results: Density plots of the n-3 neHUFAs

