Supplementary Material for Extrinsic local regression on manifold-valued data

Appendix

Proof of Theorem 4.1. Recall

$$\widehat{F}(x) = \frac{\frac{1}{n} \sum_{i=1}^{n} J(y_i) K_H(x_i - x)}{\frac{1}{n} \sum_{i=1}^{n} K_H(x_i - x)}.$$

Denote the denominator of $\widehat{F}(x)$ as

$$\widehat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K_H(x_i - x) = \frac{1}{n \mid H \mid} \sum_{i=1}^{n} K(x_i - x).$$

It is standard to show

$$\widehat{f}(x) \xrightarrow{P} f_X(x)$$
 (1)

where \xrightarrow{P} indicates convergence in probability. For the numerator term of $\widehat{F}(x)$, one has

$$E\left(\frac{1}{n}\sum_{i=1}^{n}J(y_{i})K_{H}(x_{i}-x)\right) = \frac{1}{n}\sum_{i=1}^{n}E\left(J(y_{i})K_{H}(x_{i}-x)\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}\int E\left(J(y_{i})K_{H}(x_{i}-x)\mid x_{i}\right)f_{X}(x_{i})dx_{i}$$

$$= \frac{1}{n}\sum_{i=1}^{n}\int \mu(x_{i})K_{H}(x_{i}-x)f_{X}(x_{i})dx_{i}$$

$$= \int \mu(\widetilde{x})K_{H}(\widetilde{x}-x)f_{X}(\widetilde{x})d\widetilde{x}.$$

Noting that $\mu(x) = (\mu_1(x), \dots, \mu_D(x))' \in \mathbb{R}^D$, we slightly abuse the integral notation above meaning that the jth entry of $E(n^{-1}\sum_{i=1}^n J(y_i)K_H(x_i-x))$ is given by

$$\int \mu_j(\widetilde{x}) K_H(\widetilde{x} - x) f_X(\widetilde{x}) d\widetilde{x}.$$

Letting $v = H^{-1}(\widetilde{x} - x)$ by changing of variables, the above equations become

$$E\left(\frac{1}{n}\sum_{i=1}^{n}J(y_i)K_H(x_i-x)\right) = \int \mu(x+Hv)K(v)f_X(x+Hv)dv.$$

By the multivariate Taylor expansion,

$$f_X(x + Hv) = f_X(x) + (\nabla f) \cdot (Hv) + R, \tag{2}$$

where ∇f is the gradient of f and R is the remainder term of the expansion. The remainder R can be shown to be bounded above by

$$R \le \frac{C}{2} ||Hv||^2, ||Hv|| = |h_1 v_1| + \dots + |h_m v_m|.$$

Note that $\mu(x + Hv)$ is a multivariate map valued in \mathbb{R}^D . We can make second order multivariate Taylor expansions for $\mu(x + Hv) = (\mu_1(x + Hv), \dots, \mu_D(x + Hv))'$ at each of its entries μ_i for $i = 1, \dots, D$. We have

$$\mu(x + Hv) = \mu(x) + A(Hv) + V + R,$$
(3)

where A is a $D \times m$ matrix whose ith row is given by the gradient of μ_i evaluated at x. V is a D-dimensional vector, whose ith term is given by $\frac{1}{2}(Hv)^tT_i(Hv)$, where T_i is the Hessian matrix of $\mu_i(x)$ and R is the remainder vector. Thus,

$$E\left(\frac{1}{n}\sum_{i=1}^{n}J(y_{i})K_{H}(x_{i}-x)\right)$$

$$\approx \int \left(\left(f_{X}(x)+(\nabla f)\cdot(Hv)\right)K(v)(\mu(x)+A(Hv)+V)\right)dv$$

$$=f_{X}(x)\mu(x)+f_{X}(x)\int K(v)A(Hv)dv+f_{X}(x)\int K(v)Vdv$$

$$+\mu(x)\int(\nabla f)\cdot(Hv)K(v)dv+\int(\nabla f)\cdot(Hv)K(v)A(Hv)dv+\int(\nabla f)\cdot(Hv)K(v)Vdv.$$
(5)

By the property of the kernel function, we have $\int K(u)udu = 0$; therefore the second term

of equation (4) is zero by simple algebra. To evaluate the third term of equation (4), we first calculate for $\int K(v)Vdv$. From here onward until the end of the proof, we denote $x = (x^1, \ldots, x^m)$ where x^i is the *i*th coordinate of x. Note that the *i*th term of V $(i = 1, \ldots, D)$ is given by $\frac{1}{2}(Hv)^tT_i(Hv)$, where T_i is the Hessian matrix of μ_i , which is precisely

$$\frac{1}{2}h_1^2v_1^2\left(\frac{\partial^2\mu_i}{\partial(x^1)^2}+\ldots+\frac{\partial^2\mu_i}{\partial x^mx^1}\right)+\ldots+\frac{1}{2}h_m^2v_m^2\left(\frac{\partial^2\mu_i}{\partial x^1x^m}+\ldots+\frac{\partial^2\mu_i}{\partial(x^m)^2}\right).$$

Therefore, the *i*th entry of the third term of equation (4) is given by

$$U_{i} = \frac{1}{2} f_{X}(x) \left(h_{1}^{2} \left(\frac{\partial^{2} \mu_{i}}{\partial (x^{1})^{2}} + \dots + \frac{\partial^{2} \mu_{i}}{\partial x^{m} x^{1}} \right) \int v_{1}^{2} K_{1}(v_{1}) dv_{1} + \dots \right.$$

$$+ h_{m}^{2} \left(\frac{\partial^{2} \mu_{i}}{\partial x^{1} x^{m}} + \dots + \frac{\partial^{2} \mu_{i}}{\partial (x^{m})^{2}} \right) \int v_{m}^{2} K_{m}(v_{m}) dv_{m} \right).$$

$$(6)$$

The first term of equation (5) is given by

$$\mu(x)\int (\nabla f)\cdot (Hv)K(v)dv = \int \left(h_1v_1\frac{\partial f}{\partial x^1} + \ldots + h_mv_m\frac{\partial f}{\partial x^m}\right)K(v)dv = 0.$$

The *i*th entry of the second term of equation (5) is given by

$$h_1^2 \frac{\partial f}{\partial x^1} \frac{\partial \mu_i}{\partial x^1} \int v_1^2 K_1(v_1) dv_1 + \ldots + h_m^2 \frac{\partial f}{\partial x^m} \frac{\partial \mu_i}{\partial x^m} \int v_m^2 K_m(v_m) dv_m.$$
 (7)

The third term of equation (5) can be shown to be zero, since odd moments of symmetric kernels are 0. Therefore, we have

$$E\left(\frac{1}{n}\sum_{i=1}^{n}J(y_i)K_H(x_i-x)\right)\approx f_X(x)\mu(x)+Z,\tag{8}$$

where the ith coordinate of Z is

$$Z_{i} = h_{1}^{2} \left\{ \frac{\partial f}{\partial x^{1}} \frac{\partial \mu_{i}}{\partial x^{1}} + \frac{1}{2} f_{X}(x) \left(\frac{\partial^{2} \mu_{i}}{\partial (x^{1})^{2}} + \dots + \frac{\partial^{2} \mu_{i}}{\partial x^{m} x^{1}} \right) \right\} \int v_{1}^{2} K_{1}(v_{1}) dv_{1}$$

$$+ \dots$$

$$+ h_{m}^{2} \left\{ \frac{\partial f}{\partial x^{m}} \frac{\partial \mu_{i}}{\partial x^{m}} + \frac{1}{2} f_{X}(x) \left(\frac{\partial^{2} \mu_{i}}{\partial x^{1} x^{m}} + \dots + \frac{\partial^{2} \mu_{i}}{\partial (x^{m})^{2}} \right) \right\} \int v_{m}^{2} K_{m}(v_{m}) dv_{m}$$
 (9)

combining equations (6) and (7). The reminder term of (2) is of order $o(\max\{h_1,\ldots,h_m\})$ and each entry of the remainder vector in (3) is of order $o(\max\{h_1^2,\ldots,h_m^2\})$.

We now look at the covariance matrix of $n^{-1}\sum_{i=1}^n J(y_i)K_H(x_i-x)$, which we denote by $\Sigma(x)$. Denote the jth entry $(j=1,\ldots,D)$ of $J(y_i)$ as $J_j(y_i)$. Denote $\sigma(y^j,y^k)$ as the

conditional covariance between the *i*th entry and *j*th entry of y. We have

$$\Sigma_{jk} = E\left[\left(\frac{1}{n}\sum_{i=1}^{n}J_{j}(y_{i})K_{H}(x_{i}-x) - E\left(\frac{1}{n}\sum_{i=1}^{n}J_{j}(y_{i})K_{H}(x_{i}-x)\right)\right)$$

$$\left(\frac{1}{n}\sum_{i=1}^{n}J_{k}(y_{i})K_{H}(x_{i}-x) - E\left(\frac{1}{n}\sum_{i=1}^{n}J_{k}(y_{i})K_{H}(x_{i}-x)\right)\right)\right]$$

$$= E\left[\left(\frac{1}{n}\sum_{i=1}^{n}\left(J_{j}(y_{i})K_{H}(x_{i}-x) - \int\mu_{j}(\widetilde{x})K_{H}(\widetilde{x}-x)f_{X}(\widetilde{x})d\widetilde{x}\right)\right)\right]$$

$$\left(\frac{1}{n}\sum_{i=1}^{n}\left(J_{k}(y_{i})K_{H}(x_{i}-x) - \int\mu_{k}(\widetilde{x})K_{H}(\widetilde{x}-x)f_{X}(\widetilde{x})d\widetilde{x}\right)\right]$$

$$= \frac{1}{n}\int E\left[\left(J_{j}(y_{1})K_{H}(x_{1}-x) - \int\mu_{j}(\widetilde{x})K_{H}(\widetilde{x}-x)f_{X}(\widetilde{x})d\widetilde{x}\right) | x_{1}\right]f_{X}(x_{1})dx_{1}$$

$$= \frac{1}{n}\int\sigma(J_{j}(y_{1})K_{H}(x_{1}-x), J_{k}(y_{1})K_{H}(x_{1}-x)f_{X}(x_{1})dx_{1}$$

$$= \frac{1}{n}\int K_{H}(x_{1}-x)^{2}\sigma(J_{j}(y_{1}), J_{k}(y_{1}))f_{X}(x_{1})dx_{1}.$$

By the change of variable $v = H^{-1}(x_1 - x)$, the above equation becomes

$$\Sigma_{jk} = \frac{1}{n|H|} \int K(v)^2 \sigma(J_j(y_v), J_k(y_v)) f_X(Hv + x) dv$$

$$= \frac{1}{n|H|} \int K(v)^2 \sigma(J_j(y_v), J_k(y_v)) (f_X(x) + \nabla f \cdot (Hv) + o(\max\{h_1, \dots, h_m\})) dv$$

$$= \frac{1}{n|H|} \int K(v)^2 \sigma(J_j(y_v), J_k(y_v)) f_X(x) dv + o\left(\frac{1}{n|H|}\right).$$
(10)

By (1), (8) and (23), and applying central limit theorem and Slustky's theorem, one has

$$\sqrt{n|H|}\left(\widehat{F}(x) - \widetilde{\mu}(x)\right) \xrightarrow{L} N(0, \bar{\Sigma}(x)),$$
 (11)

where $\widetilde{\mu}(x) = \mu(x) + \frac{Z}{f_X(x)}$ and the *i*th entry (i = 1, ..., D) of Z is given by (9) and

$$\bar{\Sigma}_{jk} = \frac{\sigma(J_j(y_v), J_k(y_v)) \int K(v)^2 dv}{f_X(x)}.$$
(12)

One can show

$$\sqrt{n|H|}\left(\widehat{F}_E(x) - \mathcal{P}\left(\widetilde{\mu}(x)\right)\right) = \sqrt{n|H|}d_{\widetilde{\mu}(x)}\mathcal{P}\left(\widehat{F}(x) - \widetilde{\mu}(x)\right) + o_P(1).$$

Therefore, one has

$$\sqrt{n|H|}d_{\widetilde{\mu}(x)}\mathcal{P}\left(\widehat{F}(x) - \widetilde{\mu}(x)\right) \xrightarrow{L} N(0, \widetilde{\Sigma}(x)). \tag{13}$$

Here $\widetilde{\Sigma}(x) = B^T \overline{\Sigma}(x) B$, where B is the $D \times d$ matrix of the differential $d_{\widetilde{\mu}(x)} \mathcal{P}$ with respect to given orthonormal bases of $T_{\widetilde{\mu}(x)} \mathbb{R}^D$ and $T_{\mathcal{P}\widetilde{\mu}(x)} \widetilde{M}$.

Proof of Corollary 4.2. In choosing the optimal order of bandwidth, one can consider choosing (h_1, \ldots, h_m) such that the mean integrated squared error is minimized. Note that

$$\widehat{F}_E(x) - F(x) = \operatorname{Jacob}(\mathcal{P})_{\mu(x)} \left(\widehat{F}(x) - \mu(x) \right) + o_p(1). \tag{14}$$

Here $Jacob(\mathcal{P})$ is the Jacobian matrix of the projection map \mathcal{P} . One has

$$MISE(\widehat{F}_{E}(x)) = \int E \|\widehat{F}_{E}(x) - F(x)\|^{2} dx$$

$$= \int E \|\operatorname{Jacob}(\mathcal{P})_{\mu(x)} \left(\widehat{F}(x) - \mu(x)\right) + o_{p}(1)\|^{2} dx$$

$$= \int E \left(\sum_{i=1}^{D} \left(\sum_{j=1}^{D} \mathcal{P}_{ij} \left(\widehat{F}_{j}(x) - \mu_{j}(x)\right)\right)^{2} + o_{p}(1)\right) dx$$

$$= O(1/n|H|) + \dots + O(1/n|H|) + O(h_{1}^{4}) + \dots + O(h_{m}^{4}).$$

The last terms follow from Fatou's lemma, and that the Jacobian map is differentiable at $\mu(x)$ for every x. Therefore, if h_i 's (i = 1, ..., m) are taken to be of the same order, that is, of $O(n^{-1/(m+4)})$, then one can obtain $\mathrm{MISE}(\widehat{F}_E(x))$ with an order of $O(n^{-4/(m+4)})$.

Proof of Theorem 4.3. Let B be the $D \times d$ matrix of the differential $d_{\widetilde{\mu}(x)}\mathcal{P}$ with respect to given orthonormal basis of tangent space $T_{\widetilde{\mu}(x)}\mathbb{R}^D$ and tangent space $T_{\widetilde{\mu}(x)}\widetilde{M}$. Given a canonical choice of basis for tangent space $T_{\widetilde{\mu}(x)}\mathbb{R}^D$, one has the representation for

$$\sup_{x} \|d_{\widetilde{\mu}(x)} \mathcal{P}\left(\widehat{F}(x) - E(\widehat{F}(x))\right)\| = \sup_{x} \sqrt{\sum_{i=1}^{d} \left(\sum_{j=1}^{D} B_{ij}^{T}\left(\widehat{F}_{j}(x) - E(\widehat{F}_{j}(x))\right)\right)^{2}}.$$
 (15)

Note that the projection map is differentiable around the neighborhood of $\mu(x)$ and \mathcal{X} is compact, so $B_{ij}^T(x)$ are bounded. Let $C_{ij} = \sup_{x \in \mathcal{X}} (B_{ij}^T)^2(x)$ and $C = \max C_{ij}$. For each

term note that, by Cauchy-Schwarz inequality,

$$\sup_{x \in \mathcal{X}} \left(\sum_{j=1}^{D} \left(B_{ij}^{T} \left(\widehat{F}_{j}(x) - E\left(\widehat{F}_{j}(x) \right) \right) \right) \right)^{2} \leq \sup_{x} \sum_{j=1}^{D} (B_{ij}^{T})^{2} \left(\widehat{F}_{j}(x) - E\left(\widehat{F}_{j}(x) \right) \right)^{2}$$
 (16)

$$\leq C \sum_{j=1}^{D} \sup_{x \in \mathcal{X}} \left(\widehat{F}_j(x) - E\left(\widehat{F}_j(x)\right) \right)^2. \tag{17}$$

By Theorem 2 in Hansen (2008), one can see that

$$\sup_{x \in \mathcal{X}} |\left(\widehat{F}_j(x) - E\left(\widehat{F}_j(x)\right)\right)| = O(r_n), \tag{18}$$

where $r_n = \log^{1/2} n / \sqrt{n|H|}$. Then one has

$$\sup_{x \in \mathcal{X}} \sum_{i=1}^{d} \left(\sum_{j=1}^{D} \left(B_{ij} \left(\widehat{F}_{j}(x) - E \left(\widehat{F}_{j}(x) \right) \right) \right) \right)^{2} = O(r_{n}^{2}). \tag{19}$$

Then one has

$$\sup_{x} \|d_{\widetilde{\mu}(x)} \mathcal{P}\left(\widehat{F}(x) - E(\widehat{F}(x))\right)\| = \sup_{x \in \mathcal{X}} \sqrt{\sum_{i=1}^{d} \left(\sum_{j=1}^{D} \left(B_{ij}\left(\widehat{F}_{j}(x) - E\left(\widehat{F}_{j}(x)\right)\right)\right)\right)^{2}}$$
$$= O(r_{n}) = O\left(\log^{1/2} n / \sqrt{n|H|}\right).$$

Proof of Theorem 4.4. Given the higher order smoothness assumption on $\mu(x)$, one can make higher order approximations and using a local polynomial regression estimate would result in the reduction of bias term in estimating $\mu(x)$. The asymptotic distribution for multivariate local regression estimator for Euclidean responses has been derived (Gu et al., 2014; Ruppert and Wand, 1994; Masry, 1996), and we leverage on some of their results in our proof.

Note that $\widehat{F}(x) = (\widehat{F}_1(x), \dots, \widehat{F}_D(x)) \in \mathbb{R}^D$, $E(\widehat{F}(x)) = (E(\widehat{F}_1(x)), \dots, E(\widehat{F}_D(x)))^T$ and the expectation taken in each component is with respect to the marginal distribution of $\widetilde{P}(dy|x)$. Then by Theorem 1 of Gu et al. (2014), the following holds:

(1) If p is odd, then for $j = 1, \ldots, D$

$$\operatorname{Bias}_{j}(\widehat{F}(x)) = E(\widehat{F}_{j}(x)) - \mu_{j}(x)$$

$$= \left(\mathcal{M}_{p}^{-1}\mathcal{B}_{p+1}\boldsymbol{H}^{(p+1)}\boldsymbol{m}_{p+1}^{j}(x)\right)_{1}, \qquad (20)$$

which is of order $O(\|\boldsymbol{h}\|^{p+1})$. Here $(\cdot)_1$ represents the first entry of the vector inside the parenthesis;

(2) If p is even, then for j = 1, ..., D

$$\operatorname{Bias}_{j}(\widehat{F}(x)) = E(\widehat{F}_{j}(x)) - \mu_{j}(x)$$

$$= \left(\sum_{l=1}^{m} h_{l} \frac{f_{l}(x)}{f_{X}(x)} \left(\mathcal{M}_{p}^{-1} \mathcal{B}_{p+1}^{l} - \mathcal{M}_{p}^{-1} \mathcal{M}_{p}^{l} \mathcal{M}_{p}^{-1} \mathcal{B}_{p+1} \right) \boldsymbol{H}^{(p+1)} \boldsymbol{m}_{p+1}^{j}(x) + \mathcal{M}_{p}^{-1} \mathcal{B}_{p+2} \boldsymbol{H}^{(p+2)} \boldsymbol{m}_{p+2}^{j}(x) \right)_{1},$$

$$(21)$$

which is of order $O(\|\boldsymbol{h}\|^{p+2})$.

For any $k \in \{0, 1, \dots, p\}$. Let $N_k = \binom{k+m-1}{m-1}$ and $\mathcal{N}_p = \sum_{k=0}^p N_k$. Here \mathcal{M}_p is a $\mathcal{N}_p \times \mathcal{N}_p$ matrix whose (i, j)th block $(0 \le i, j \le p)$ is given by $\int_{\mathbb{R}^m} \mathbf{u}^{i+j} K(\mathbf{u}) d\mathbf{u}$ and \mathcal{M}_p^l $(l = 1, \dots, m)$ is a $\mathcal{N}_p \times \mathcal{N}_p$ matrix whose (i, j)th block $(0 \le i, j \le p)$ is given by $\int_{\mathbb{R}^m} u_l \mathbf{u}^{i+j} K(\mathbf{u}) d\mathbf{u}$. \mathcal{B}_{p+1} is a $\mathcal{N}_p \times \mathcal{N}_{p+1}$ matrix whose (i, p+1)th $(i = 1, \dots, p)$ block is given by $\int_{\mathbb{R}^m} \mathbf{u}^{i+p+1} K(\mathbf{u}) d\mathbf{u}$ and \mathcal{B}_{p+1}^l $(l = 1, \dots, m)$ is a $\mathcal{N}_p \times \mathcal{N}_{p+1}$ matrix whose (i, p+1)th $(i = 1, \dots, p)$ block is given by $\int_{\mathbb{R}^m} u_l \mathbf{u}^{i+p+1} K(\mathbf{u}) d\mathbf{u}$. We have $\mathbf{H}^{(p+1)} = \text{Diag}\{h_1^{p+1}, \dots, h_m^{p+1}\}$, $f_l(x) = \frac{\partial f_X(x)}{\partial x^l}$ and $\mathbf{m}_{p+1}^j(x)$ $(j = 1, \dots, D)$ is the vector of all the p+1 order partial derivatives of $\mu_j(x)$, that is, $m_{p+1}^j(x) = \frac{\partial \mu_j^{p+1}(x)}{\partial (x^1)^{p+1}}$, $\frac{\partial \mu_j^{p+1}(x)}{\partial (x^1)^{p}\partial (x^2)}$, \dots , $\frac{\partial \mu_j^{p+1}(x)}{\partial (x^m)^{p+1}}$.

With $\operatorname{Bias}_{i}(\widehat{F}(x))$ $(j=1,\ldots,D)$ given above, one has

$$\operatorname{Bias}(x) = E(\widehat{F}(x)) - \mu(x) = \left(\operatorname{Bias}_{1}(\widehat{F}(x)), \dots, \operatorname{Bias}_{D}(\widehat{F}(x))\right)^{T}.$$
 (22)

Although higher order polynomial regression results in the reduction in the order of bias with the higher order smoothness assumptions on $\mu(x)$, the order and expression of the covariance remains the same. That is,

$$\Sigma_{jk} = \text{Cov}(\widehat{F}_j(x), \widehat{F}_k(x))$$

$$= 1/(n|H|)f_X(x)^{-1} \int K(v)^2 \sigma(J_j(y_v), J_k(y_v)) dv + o(1/(n|H|)), \qquad (23)$$

where $\sigma(J_j(y_v), J_k(y_v))$ is the covariance between $J_j(y_v)$ and $J_k(y_v)$.

Applying the central limit theorem, one has

$$\sqrt{n|H|}\left(\widehat{F}(x) - \mu(x) - \operatorname{Bias}(x)\right) \xrightarrow{L} N(0, \bar{\Sigma}(x))$$
 (24)

where the jth (j = 1, ..., D) entry of Bias(x) is given in (20) or (21) depending on whether p is odd or even, and

$$\bar{\Sigma}_{jk} = \frac{\sigma(J_j(y_v), J_k(y_v)) \int K(v)^2 dv}{f_X(x)}.$$
(25)

Letting $\widetilde{\mu}(x) = \mu(x) + \text{Bias}(x)$, one has

$$\sqrt{n|H|}\left(\widehat{F}_{E}(x) - \mathcal{P}\left(\widetilde{\mu}(x)\right)\right) = \sqrt{n|H|}d_{\widetilde{\mu}(x)}\mathcal{P}\left(\widehat{F}(x) - \widetilde{\mu}(x)\right) + o_{P}(1).$$

Therefore, by applying Slutsky's theorem, one has

$$\sqrt{n|H|}d_{\widetilde{\mu}(x)}\mathcal{P}\left(\widehat{F}(x) - \widetilde{\mu}(x)\right) \xrightarrow{L} N(0, \widetilde{\Sigma}(x)). \tag{26}$$

Here $\widetilde{\Sigma}(x) = B^T \overline{\Sigma}(x) B$ where B is the $D \times d$ matrix of the differential $d_{\widetilde{\mu}(x)} P$ with respect to given orthonormal bases of the tangent space $T_{\widetilde{\mu}(x)} \mathbb{R}^D$ and tangent space $T_{\widetilde{\mu}(x)} \widetilde{M}$.

References

Gu, J., Li, Q., and Yang, J.-C. (2014). Multivariate local polynomial kernel estimators: leading bias and asymptotic distribution. *Econometric Reviews*. to appear.

Hansen, B. E. (2008). Uniform convergence rates for kernel estimation with dependent data. *Econometric Theory*, 24:726–748.

Masry, E. (1996). Multivariate local polynomial regression for time series:uniform strong consistency and rates. *Journal of Time Series Analysis*, 17(6):571–599.

Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression. *The Annals of Statistics*, 22(3):1346–1370.