
Supplementary Material for Extrinsic local regression on
manifold-valued data

Appendix

Proof of Theorem 4.1. Recall

F̂ (x) =
1
n

∑n
i=1 J(yi)KH(xi − x)

1
n

∑n
i=1KH(xi − x)

.

Denote the denominator of F̂ (x) as

f̂(x) =
1

n

n∑
i=1

KH(xi − x) =
1

n | H |

n∑
i=1

K(xi − x).

It is standard to show

f̂(x)
P−→ fX(x) (1)

where
P−→ indicates convergence in probability. For the numerator term of F̂ (x), one has

E

(
1

n

n∑
i=1

J(yi)KH(xi − x)

)
=

1

n

n∑
i=1

E (J(yi)KH(xi − x))

=
1

n

n∑
i=1

∫
E (J(yi)KH(xi − x) | xi) fX(xi)dxi

=
1

n

n∑
i=1

∫
µ(xi)KH(xi − x)fX(xi)dxi

=

∫
µ(x̃)KH(x̃− x)fX(x̃)dx̃.
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Noting that µ(x) = (µ1(x), . . . , µD(x))′ ∈ RD, we slightly abuse the integral notation above
meaning that the jth entry of E (n−1

∑n
i=1 J(yi)KH(xi − x)) is given by∫

µj(x̃)KH(x̃− x)fX(x̃)dx̃.

Letting v = H−1(x̃− x) by changing of variables, the above equations become

E

(
1

n

n∑
i=1

J(yi)KH(xi − x)

)
=

∫
µ(x+Hv)K(v)fX(x+Hv)dv.

By the multivariate Taylor expansion,

fX(x+Hv) = fX(x) + (5f) · (Hv) +R, (2)

where 5f is the gradient of f and R is the remainder term of the expansion. The remainder
R can be shown to be bounded above by

R ≤ C

2
‖Hv‖2, ‖Hv‖ = |h1v1|+ . . . |hmvm|.

Note that µ(x + Hv) is a multivariate map valued in RD. We can make second order
multivariate Taylor expansions for µ(x + Hv) = (µ1(x + Hv), . . . , µD(x + Hv))′ at each of
its entries µi for i = 1, . . . , D. We have

µ(x+Hv) = µ(x) + A(Hv) + V +R, (3)

where A is a D×m matrix whose ith row is given by the gradient of µi evaluated at x. V is
a D-dimensional vector, whose ith term is given by 1

2
(Hv)tTi(Hv), where Ti is the Hessian

matrix of µi(x) and R is the remainder vector. Thus,

E

(
1

n

n∑
i=1

J(yi)KH(xi − x)

)
≈
∫

((fX(x) + (5f) · (Hv))K(v)(µ(x) + A(Hv) + V )) dv

= fX(x)µ(x) + fX(x)

∫
K(v)A(Hv)dv + fX(x)

∫
K(v)V dv (4)

+ µ(x)

∫
(5f) · (Hv)K(v)dv +

∫
(5f) · (Hv)K(v)A(Hv)dv +

∫
(5f) · (Hv)K(v)V dv.

(5)

By the property of the kernel function, we have
∫
K(u)udu = 0; therefore the second term
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of equation (4) is zero by simple algebra. To evaluate the third term of equation (4), we
first calculate for

∫
K(v)V dv. From here onward until the end of the proof, we denote x =

(x1, . . . , xm) where xi is the ith coordinate of x. Note that the ith term of V (i = 1, . . . , D)

is given by
1

2
(Hv)tTi(Hv), where Ti is the Hessian matrix of µi, which is precisely

1

2
h21v

2
1

(
∂2µi
∂(x1)2

+ . . .+
∂2µi
∂xmx1

)
+ . . .+

1

2
h2mv

2
m

(
∂2µi
∂x1xm

+ . . .+
∂2µi
∂(xm)2

)
.

Therefore, the ith entry of the third term of equation (4) is given by

Ui =
1

2
fX(x)

(
h21

(
∂2µi
∂(x1)2

+ . . .+
∂2µi
∂xmx1

)∫
v21K1(v1)dv1 + . . . (6)

+ h2m

(
∂2µi
∂x1xm

+ . . .+
∂2µi
∂(xm)2

)∫
v2mKm(vm)dvm

)
.

The first term of equation (5) is given by

µ(x)

∫
(5f) · (Hv)K(v)dv =

∫ (
h1v1

∂f

∂x1
+ . . .+ hmvm

∂f

∂xm

)
K(v)dv = 0.

The ith entry of the second term of equation (5) is given by

h21
∂f

∂x1
∂µi
∂x1

∫
v21K1(v1)dv1 + . . .+ h2m

∂f

∂xm
∂µi
∂xm

∫
v2mKm(vm)dvm. (7)

The third term of equation (5) can be shown to be zero, since odd moments of symmetric
kernels are 0. Therefore, we have

E

(
1

n

n∑
i=1

J(yi)KH(xi − x)

)
≈ fX(x)µ(x) + Z, (8)

where the ith coordinate of Z is

Zi =h21

{
∂f

∂x1
∂µi
∂x1

+
1

2
fX(x)

(
∂2µi
∂(x1)2

+ . . .+
∂2µi
∂xmx1

)}∫
v21K1(v1)dv1

+ . . .

+ h2m

{
∂f

∂xm
∂µi
∂xm

+
1

2
fX(x)

(
∂2µi
∂x1xm

+ . . .+
∂2µi
∂(xm)2

)}∫
v2mKm(vm)dvm (9)

combining equations (6) and (7). The reminder term of (2) is of order o(max{h1, . . . , hm})
and each entry of the remainder vector in (3) is of order o(max{h21, . . . , h2m}).

We now look at the covariance matrix of n−1
∑n

i=1 J(yi)KH(xi − x), which we denote
by Σ(x). Denote the jth entry (j = 1, . . . , D) of J(yi) as Jj(yi). Denote σ(yj, yk) as the
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conditional covariance between the ith entry and jth entry of y. We have

Σjk = E
[( 1

n

n∑
i=1

Jj(yi)KH(xi − x)− E

(
1

n

n∑
i=1

Jj(yi)KH(xi − x)

))
(

1

n

n∑
i=1

Jk(yi)KH(xi − x)− E

(
1

n

n∑
i=1

Jk(yi)KH(xi − x)

))]
= E

[( 1

n

n∑
i=1

(
Jj(yi)KH(xi − x)−

∫
µj(x̃)KH(x̃− x)fX(x̃)dx̃

))
(

1

n

n∑
i=1

(
Jk(yi)KH(xi − x)−

∫
µk(x̃)KH(x̃− x)fX(x̃)dx̃

))]
=

1

n

∫
E
[(

Jj(y1)KH(x1 − x)−
∫
µj(x̃)KH(x̃− x)fX(x̃)dx̃

)
(
Jk(y1)KH(x1 − x)−

∫
µk(x̃)KH(x̃− x)fX(x̃)dx̃

)
| x1
]
fX(x1)dx1

=
1

n

∫
σ(Jj(y1)KH(x1 − x), Jk(y1)KH(x1 − x)fX(x1)dx1

=
1

n

∫
KH(x1 − x)2σ(Jj(y1), Jk(y1))fX(x1)dx1.

By the change of variable v = H−1(x1 − x), the above equation becomes

Σjk =
1

n|H|

∫
K(v)2σ(Jj(yv), Jk(yv))fX(Hv + x)dv

=
1

n|H|

∫
K(v)2σ(Jj(yv), Jk(yv)) (fX(x) +5f · (Hv) + o(max{h1, . . . , hm})) dv

=
1

n|H|

∫
K(v)2σ(Jj(yv), Jk(yv))fX(x))dv + o

(
1

n|H|

)
. (10)

By (1), (8) and (23), and applying central limit theorem and Slustky’s theorem, one has√
n|H|

(
F̂ (x)− µ̃(x)

)
L−→ N(0, Σ̄(x)), (11)

where µ̃(x) = µ(x) + Z
fX(x)

and the ith entry (i = 1, . . . , D) of Z is given by (9) and

Σ̄jk =
σ(Jj(yv), Jk(yv))

∫
K(v)2dv

fX(x)
. (12)
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One can show√
n|H|

(
F̂E(x)− P (µ̃(x))

)
=
√
n|H|dµ̃(x)P

(
F̂ (x)− µ̃(x)

)
+ oP (1).

Therefore, one has √
n|H|dµ̃(x)P

(
F̂ (x)− µ̃(x)

)
L−→ N(0, Σ̃(x)). (13)

Here Σ̃(x) = BT Σ̄(x)B, where B is the D × d matrix of the differential dµ̃(x)P with respect

to given orthonormal bases of Tµ̃(x)RD and TPµ̃(x)M̃ .

Proof of Corollary 4.2. In choosing the optimal order of bandwidth, one can consider choos-
ing (h1, . . . , hm) such that the mean integrated squared error is minimized. Note that

F̂E(x)− F (x) = Jacob(P)µ(x)

(
F̂ (x)− µ(x)

)
+ op(1). (14)

Here Jacob(P) is the Jacobian matrix of the projection map P . One has

MISE(F̂E(x)) =

∫
E‖F̂E(x)− F (x)‖2dx

=

∫
E‖Jacob(P)µ(x)

(
F̂ (x)− µ(x)

)
+ op(1)‖2dx

=

∫
E

 D∑
i=1

(
D∑
j=1

Pij
(
F̂j(x)− µj(x)

))2

+ op(1)

 dx

= O(1/n|H|) + . . .+O(1/n|H|) +O(h41) + . . .+O(h4m).

The last terms follow from Fatou’s lemma, and that the Jacobian map is differentiable at
µ(x) for every x. Therefore, if hi’s (i = 1, . . . ,m) are taken to be of the same order, that is,

of O(n−1/(m+4)), then one can obtain MISE(F̂E(x)) with an order of O(n−4/(m+4)).

Proof of Theorem 4.3. Let B be the D × d matrix of the differential dµ̃(x)P with respect

to given orthonormal basis of tangent space Tµ̃(x)RD and tangent space TPµ̃(x)M̃ . Given a
canonical choice of basis for tangent space Tµ̃(x)RD, one has the representation for

sup
x
‖dµ̃(x)P

(
F̂ (x)− E(F̂ (x))

)
‖ = sup

x

√√√√ d∑
i=1

(
D∑
j=1

BT
ij

(
F̂j(x)− E(F̂j(x))

))2

. (15)

Note that the projection map is differentiable around the neighborhood of µ(x) and X is
compact, so BT

ij(x) are bounded. Let Cij = supx∈X (BT
ij)

2(x) and C = maxCij. For each
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term note that, by Cauchy-Schwarz inequality,

sup
x∈X

(
D∑
j=1

(
BT
ij

(
F̂j(x)− E

(
F̂j(x)

))))2

≤ sup
x

D∑
j=1

(BT
ij)

2
(
F̂j(x)− E

(
F̂j(x)

))2
(16)

≤ C
D∑
j=1

sup
x∈X

(
F̂j(x)− E

(
F̂j(x)

))2
. (17)

By Theorem 2 in Hansen (2008), one can see that

sup
x∈X
|
(
F̂j(x)− E

(
F̂j(x)

))
| = O(rn), (18)

where rn = log1/2 n/
√
n|H|. Then one has

sup
x∈X

d∑
i=1

(
D∑
j=1

(
Bij

(
F̂j(x)− E

(
F̂j(x)

))))2

= O(r2n). (19)

Then one has

sup
x
‖dµ̃(x)P

(
F̂ (x)− E(F̂ (x))

)
‖ = sup

x∈X

√√√√ d∑
i=1

(
D∑
j=1

(
Bij

(
F̂j(x)− E

(
F̂j(x)

))))2

= O(rn) = O
(

log1/2 n/
√
n|H|

)
.

Proof of Theorem 4.4. Given the higher order smoothness assumption on µ(x), one can make
higher order approximations and using a local polynomial regression estimate would result in
the reduction of bias term in estimating µ(x). The asymptotic distribution for multivariate
local regression estimator for Euclidean responses has been derived (Gu et al., 2014; Ruppert
and Wand, 1994; Masry, 1996), and we leverage on some of their results in our proof.

Note that F̂ (x) =
(
F̂1(x), . . . , F̂D(x)

)
∈ RD, E(F̂ (x)) =

(
E(F̂1(x)), . . . , E(F̂D(x))

)T
and the expectation taken in each component is with respect to the marginal distribution of
P̃ (dy|x). Then by Theorem 1 of Gu et al. (2014), the following holds:

(1) If p is odd, then for j = 1, . . . , D

Biasj(F̂ (x)) = E(F̂j(x))− µj(x)

=
(
M−1

p Bp+1H
(p+1)mj

p+1(x)
)
1
, (20)

which is of order O(‖h‖p+1). Here (·)1 represents the first entry of the vector inside
the parenthesis;
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(2) If p is even, then for j = 1, . . . , D

Biasj(F̂ (x)) = E(F̂j(x))− µj(x) (21)

=

(
m∑
l=1

hl
fl(x)

fX(x)

(
M−1

p Blp+1 −M−1
p Ml

pM−1
p Bp+1

)
H(p+1)mj

p+1(x) +M−1
p Bp+2H

(p+2)mj
p+2(x)

)
1

,

which is of order O(‖h‖p+2).

For any k ∈ {0, 1, . . . , p}. Let Nk =
(
k+m−1
m−1

)
and Np =

∑p
k=0Nk. Here Mp is a Np × Np

matrix whose (i, j)th block (0 ≤ i, j ≤ p) is given by
∫
Rm ui+jK(u)du andMl

p (l = 1, . . . ,m)
is a Np ×Np matrix whose (i, j)th block (0 ≤ i, j ≤ p) is given by

∫
Rm ulu

i+jK(u)du. Bp+1

is a Np ×Np+1 matrix whose (i, p+ 1)th (i = 1, . . . , p) block is given by
∫
Rm ui+p+1K(u)du

and Blp+1 (l = 1, . . . ,m) is a Np × Np+1 matrix whose (i, p + 1)th (i = 1, . . . , p) block is

given by
∫
Rm ulu

i+p+1K(u)du. We have H(p+1) = Diag{hp+1
1 , . . . , hp+1

m }, fl(x) =
∂fX(x)

∂xl

and mj
p+1(x) (j = 1, . . . , D) is the vector of all the p+ 1 order partial derivatives of µj(x),

that is, mj
p+1(x) =

(
∂µp+1

j (x)

∂(x1)p+1
,
∂µp+1

j (x)

∂(x1)p∂(x2)
, . . . ,

∂µp+1
j (x)

∂(xm)p+1

)
.

With Biasj(F̂ (x)) (j = 1, . . . , D) given above, one has

Bias(x) = E(F̂ (x))− µ(x) =
(

Bias1(F̂ (x)), . . . ,BiasD(F̂ (x))
)T

. (22)

Although higher order polynomial regression results in the reduction in the order of bias
with the higher order smoothness assumptions on µ(x), the order and expression of the
covariance remains the same. That is,

Σjk = Cov(F̂j(x), F̂k(x))

= 1/(n|H|)fX(x)−1
∫
K(v)2σ(Jj(yv), Jk(yv))dv + o (1/(n|H|)) , (23)

where σ(Jj(yv), Jk(yv) is the covariance between Jj(yv) and Jk(yv).
Applying the central limit theorem, one has√

n|H|
(
F̂ (x)− µ(x)− Bias(x)

)
L−→ N(0, Σ̄(x)) (24)

where the jth (j = 1, . . . , D) entry of Bias(x) is given in (20) or (21) depending on whether
p is odd or even, and

Σ̄jk =
σ(Jj(yv), Jk(yv))

∫
K(v)2dv

fX(x)
. (25)
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Letting µ̃(x) = µ(x) + Bias(x), one has√
n|H|

(
F̂E(x)− P (µ̃(x))

)
=
√
n|H|dµ̃(x)P

(
F̂ (x)− µ̃(x)

)
+ oP (1).

Therefore, by applying Slutsky’s theorem, one has√
n|H|dµ̃(x)P

(
F̂ (x)− µ̃(x)

)
L−→ N(0, Σ̃(x)). (26)

Here Σ̃(x) = BT Σ̄(x)B where B is the D × d matrix of the differential dµ̃(x)P with respect

to given orthonormal bases of the tangent space Tµ̃(x)RD and tangent space Tµ̃(x)M̃ .
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