Supplementary Material for Extrinsic local regression on
manifold-valued data

Appendix

Proof of Theorem 4.1. Recall

Denote the denominator of F\(z) as
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It is standard to show
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where 2> indicates convergence in probability. For the numerator term of F (x), one has
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Noting that p(z) = (u1(z), ..., up(z)) € RP, we slightly abuse the integral notation above
meaning that the jth entry of E(n™'>"" | J(y;) Kp(x; — x)) is given by

/ 1) Ky (T — 2) fx (7)dT

Letting v = H~!(Z — x) by changing of variables, the above equations become
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By the multivariate Taylor expansion,

fx(x+ Hv) = fx(2) + (V) - (Hv) + R, (2)

where v/ f is the gradient of f and R is the remainder term of the expansion. The remainder
R can be shown to be bounded above by
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Note that p(xr + Hv) is a multivariate map valued in R”. We can make second order

multivariate Taylor expansions for u(z + Hv) = (ui(z + Hv), ..., up(x + Hv))" at each of
its entries p; for i =1,..., D. We have

pu(z + Hv) = p(z) + A(Hv) +V + R, (3)

where A is a D X m matrix whose ith row is given by the gradient of u; evaluated at x. V' is
a D-dimensional vector, whose ith term is given by $(Hv)'T;(Hv), where T; is the Hessian
matrix of y;(x) and R is the remainder vector. T hus
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= fx(x)p(z) + fx(x /K A(Hv)dv + fx(x /K YWdv (4)

T () / (Vf) - (Ho)K (v)dv + / (Vf) - (Ho)K () A(Hv)do + / (Vf) - (Ho)K (0)Vdo.
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By the property of the kernel function, we have [ K(u)udu = 0; therefore the second term



of equation is zero by simple algebra. To evaluate the third term of equation , we
first calculate for [ K (v)Vdv. From here onward until the end of the proof, we denote x =
(x',...,2™) where z' is the ith coordinate of z. Note that the ith term of V (i = 1,..., D)

1
is given by —(Hv)'T;(Hv), where T; is the Hessian matrix of p;, which is precisely
2
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Therefore, the ith entry of the third term of equation (4] is given by
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The first term of equation is given by

() / (7 f) - (Ho) K (v)dv = / (hm% bt B

The ith entry of the second term of equation is given by
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The third term of equation ([5)) can be shown to be zero, since odd moments of symmetric
kernels are 0. Therefore, we have

E (% S I K~ x>) ~ fx(@)u(x) + Z, (®)

where the ith coordinate of 7 is
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combining equations @ and . The reminder term of is of order o(max{hy,...,hn})
and each entry of the remainder vector in (3)) is of order o(max{h?, ..., h2,}).

We now look at the covariance matrix of n=' > " | J(y;) Ku(x; — x), which we denote
by ¥(z). Denote the jth entry (j = 1,...,D) of J(y;) as J;(y;). Denote o(y’,y") as the



conditional covariance between the ith entry and jth entry of y. We have
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By the change of variable v = H~!(x; — x), the above equation becomes
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By (1] , and (| ., and applying central limit theorem and Slustky’s theorem, one has
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where fi(z) = p(x) + fXL(I) and the ith entry (i = 1,..., D) of Z is given by () and
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One can show

VAlH] (Fu(w) = P (i) ) = Vol HldgP (F(x) = filx)) + op(1).
Therefore, one has
VilHldgyP (o) = filw)) & N(0,S()), (13)

Here S(z) = BTS(2)B, where B is the D x d matrix of the differential dji(z)P with respect
to given orthonormal bases of Tﬁ(x)RD and Tpgp)M .
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Proof of Corollary 4.2. In choosing the optimal order of bandwidth, one can consider choos-
ing (hy,...,hy) such that the mean integrated squared error is minimized. Note that

Fp(z) — F(z) = Jacob(P) () (ﬁ(:c) — u(:c)) + 0,(1). (14)

Here Jacob(P) is the Jacobian matrix of the projection map P. One has
MISE(Fy(z)) = /EuﬁE(m) ~ F(2)|Pde

= [ Bl3acob(P)yio) (Fla) = (o)) + 0,(1) P

= / B Z(Zm @(@—m(@)) +op(1) | do
=O(1/n|H|) + ...+ 01 /n|H|) + O(h}) + ...+ O(h).

The last terms follow from Fatou’s lemma, and that the Jacobian map is differentiable at
w(x) for every x. Therefore, if h;’s (1 = 1,...,m) are taken to be of the same order, that is,
of O(n=Y(m*+4)) then one can obtain MISE(Fx(z)) with an order of O(n=4(m+4). O

Proof of Theorem 4.3. Let B be the D x d matrix of the differential dp,)P with respect

to given orthonormal basis of tangent space Tﬁ(m)RD and tangent space Tpp(,) M. Given a
canonical choice of basis for tangent space T;(,)R”, one has the representation for

sup )P (Flx) — B(F(@)) || = sup Z(zBT (Fi(a) - B(Fy(a >>)) (1)

Note that the projection map is differentiable around the neighborhood of p(z) and X is
compact, so Bj;(x) are bounded. Let Cj; = sup,cx(B};)*(z) and C' = maxCj;. For each



term note that, by Cauchy-Schwarz inequality,

By Theorem 2 in Hansen| (2008), one can see that

sup | (Fy(@) = B (F(@)) )| = O(ra), (18)
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where 7, = log"/?n/+/n|H|. Then one has

supi (Z (By (Fifa) —E (3(@)))) = 0(r2). (19)

Then one has

sup |y P (F(x) = E(F(@))) || = sup Edj (EDJ (B (i) - 2 (7@))))
= 0(r,) = O (log"*n/v/nlH]).
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Proof of Theorem 4.4. Given the higher order smoothness assumption on u(x), one can make
higher order approximations and using a local polynomial regression estimate would result in
the reduction of bias term in estimating p(x). The asymptotic distribution for multivariate
local regression estimator for Euclidean responses has been derived (Gu et al., 2014; Ruppert
and Wand, (1994; Masry, |1996), and we leverage on some of their results in our proof.

Note that F(z) = (ﬁl(x),...,ﬁD(x)> e R?, B(F(z)) = (E(E(x)),...,E(z?D(x)))T

and the expectation taken in each component is with respect to the marginal distribution of
P(dy|z). Then by Theorem 1 of |Gu et al.| (2014), the following holds:

(1) If p is odd, then for j =1,...,D

Bias; (F(x)) = B(Fj(x)) — p;(x)

= (M, 'B, 1 H" m! () (20)

1 )

which is of order O(||h||P*!). Here (-); represents the first entry of the vector inside
the parenthesis;



(2) If p is even, then for j =1,..., D
Bias;(F(x)) = E(Fj(x)) — p;(z) (21)
[~ filz)
) (Z M) M

which is of order O(||h]||P*2).

For any k € {0,1,...,p}. Let N, = (kjr:f;l) and N, = > 7_ Ni. Here M, is a N, x N,
matrix whose (i, j)th block (0 < ,j < p) is given by [o,, w' VK (u)du and ML (I =1,...,m)
is a N, x N, matrix whose (i, j)th block (0 <4, j < p) is given by [, wu'™7 K(u)du. By
is a N, x Npy1 matrix whose (i,p+ 1)th (i =1,...,p) block is given by [,,, w7 K (u)du
and l’)’pJrl (I =1,...,m)is a N, X Npy1 matrix whose (i,p+ 1)th (i = 1,...,p) block is
given by [p., wuPT K (u)du. We have H®™D = Diag{h}*',... htH} fi(z) = aj:;;(lx)
and m;_l_l(x) (7 =1,...,D) is the vector of all the p + 1 order partial derivatives of j;(z),
that is, m?_ () = (aﬂpﬂ(m) a'upﬂ( ) . a'upﬂ( )>
p+1 a(xl)p+1 ’ 3( )pa(x2)’ ’ a(xm)p—f—l

With Biasj(ﬁ(:c)) (j=1,...,D) given above, one has

Bias(z) = E(F(z)) — u(z) = (Biasl<ﬁ(x)), o BiasD(ﬁ(x)))T. (22)

Although higher order polynomial regression results in the reduction in the order of bias
with the higher order smoothness assumptions on p(z), the order and expression of the
covariance remains the same. That is,

ij = COV( ( ) Fk(:c
= 1/(n[H|) fx(x /K (o), Ji(yo))dv + 0 (1/(n|H])) , (23)

where o(J;(yy), Jk(y») is the covariance between J;(y,) and Ji(y,).
Applying the central limit theorem, one has

nlH| (ﬁ(x) () — Bias(x)) L N(0,5()) (24)

where the jth (j =1,..., D) entry of Bias(z) is given in (20]) or (21)) depending on whether
p is odd or even, and
o(J;(yw), Ji(yw)) [ K (v)*dv

w fx(z) ' (25)
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Letting pi(z) = p(x) + Bias(x), one has

VAlH] (Fu(w) = P (i) ) = Vol HldgP (F(x) = fi(x)) + op(1).

Therefore, by applying Slutsky’s theorem, one has
~ _ L ~
VlHl gy P (Ple) = file)) & N(0,5()), (26)

Here () = BTS(z)B where B is the D x d matrix of the differential dji(z)P with respect

to given orthonormal bases of the tangent space Ty(;)R” and tangent space Ty, M.
O
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