Cryo-Electron Microscopy

Architecting the process

What is Cryo-Electron Microscopy?

What is the scope?

Compute and Storage Requirements

- ~1TB data set/sample ~400-800 files
- Pipeline analysis with internal external tools
- Require large memory gpu > 8GB
- Require large system memory > 64GB
- Require cpu cores 200 400
- Parallel file reads and writes

Options for Computation

Workstation

Pro

Full user control

Con

Limited by single machine

Cloud

Pro

Scales easily

Con

Cost, complexity, data movement

HPC

Pro

Huge resources

Con

Tightly controlled, shared

Sounds like a HPC problem ... or is it?

Where can we help?

Motion Correction

The electron beam drifts during collection and the results need to be shifted to account for it.

http://www.ncbi.nlm.nih.gov/pubmed/23644547

Software: motioncorr 2.1

3.4 GB of raw movie data (15 movies)

218MB of corrected micrographs (15 images)

Processing Time:- 109s

Single Nvidia K80

How to achieve maximum processing speed?

GPUs = # raw movies

Storage I/O > Processing I/O

Case study - Motion Correction 10x speedup!

Using local desktop :- ~3hrs

Limited by local storage and network access, single gpu

Using remote dekstop on MASSIVE:- ~45mins

Limited by GPU (2 per desktop)

Using an inhouse parallel scripted version:- ~4.5mins

Limited by file system bandwidth (1-2 GB/s)

So ... what is the solution?

Solution

- GPU cluster
- Large high performance file system
- Remote desktop with access to cluster (for GPU and storage)
- HPC and domain experts optimising pipeline for systems

Outcome

- Data processing faster than collection!
- Shared resource for optimal use

Questions?