Ecological Archives E091-211-A1

T. M. Bezemer, M. T. Fountain, J. M. Barea, S. Christensen, S. C. Dekker, H. Duyts, R. van Hal, J. A. Harvey, K. Hedlund, M. Maraun, J. Mikola, A. G. Mladenov, C. Robin, P. C. de Ruiter, S. Scheu, H. Setälä, P. Šmilauer, and W. H. van der Putten. 2010. Divergent composition but similar function of soil food webs of individual plants: plant species and community effects. Ecology 91:3027–3036.

Appendix A. Tables showing plant species sown at the start of the experiment in 1996 in plots sown with 15 or 4 species in each block; characteristics of the plant communities in 2003 in plots sown originally with 15 or 4 species and unsown plots; Wald F values obtained from linear mixed model analyses for nematode community similarity underneath 8 diffferent plant species; results from a permutation test following a multivariate redundancy analysis of the entire nematode community associated to individual plants; results from multivariate redundancy analysis of root feeding, bacterial feeding, fungal feeding, or omnivorous and carnivorous nematode communities associated to individual plants; soil organisms identified in the food webs and mean number of organisms per 100 g soil; results from multivariate partial canonical correspondence analyses for the effect of plant community identity and host plant biomass on the composition of different taxonomic groups of soil organisms, phospholipids, and microbial functioning; distribution of enchytraeid species among individual Lotus corniculatus and Plantago lanceolata plants growing in plots sown originally with 15 or 4 species and unsown plots; Wald F and P values obtained from linear mixed model analyses for the effects of plant species, sowing treatment, and their interaction on enchytraeid biomass, density, and richness underneath individual plants; Wald F and P values obtained from linear mixed model analyses for the effects of plant species, sowing treatment, and their interaction on carbon and nitrogen mineralization and food web stability of individual plant food webs; and critical loops in food webs from the rhizosphere soil of L. corniculatus and P. lanceolata growing in plots sown in 1996 with 15, 4, or 0 species.

TABLE A1. Plant species sown at the start of the experiment in 1996 in plots sown with 15 or 4 species in each block (B).

Functional group

Plant species

15 species

4 species

B1–B5

B1

B2

B3

B4

B5

Grasses

Festuca rubra

X

X

X

Phleum pratense

X

X

X

Poa pratensis

X

X

X

Agrostis capillaris

X

X

X

Anthoxanthum odoratum

X

X

X

 

Legumes

Lotus corniculatus

X

X

Trifolium pratense

X

X

Trifolium dubium

X

X

Trifolium arvense

X

X

Vicia cracca

X

X

 

Other forbs

Plantago lanceolata

X

X

 

Tanacetum vulgare

X

X

Hypericum perforatum

X

X

Hypochaeris radicata

X

X

Linaria vulgaris

X

X

 

TABLE A2. Characteristics of the plant communities in 2003 in plots sown originally with 15 or 4 species and unsown plots. Means are shown (± SE) and F and P values obtained from linear mixed models. Within rows, means followed by identical letters are not significantly different based on a Tukey HSD test. For aboveground (Ag) biomass and legume cover data were log-transformed to fulfill requirements for normality. Data for other forbs cover, evenness and Shannon diversity were analyzed using a Kruskal-Wallis ANOVA since requirements for normality could not be met even after transformation. For these variables χ2 values are presented.

Number of species sown

15

4

0

F / χ2

P

Species richness (m2)

10.5 ± 0.6 ab

9.8 ± 0.5 a

12.7 ± 0.8 b

4.58

0.047

Shannon diversity

1.7 ± 0.05 a

1.5 ± 0.11 a

2.0 ± 0.04 b

8.57

0.014

Shannon evenness

0.72 ± 0.01 a

0.68 ± 0.05 a

0.81 ± 0.01 b

10.18

0.006

Ag Biomass (kg/m)

0.76 ± 0.10 a

0.47 ± 0.11 b

0.36 ± 0.05 b

10.59

0.006

Grass cover (%)

53.8 ± 3.6

56.3 ±11.0

36.9 ± 4.5

3.0

0.11

Legume cover (%)

40.3 ±1.2 a

24.1 ± 8.3 b

24.4 ± 3.5 b

4.54

0.048

Other forbs cover (%)

47.0 ± 7.2

57.4 ± 19.8

41.6 ± 3.3

2.14

0.34

 

TABLE A3. Wald F values obtained from linear mixed model analyses (asymptotically similar to F values) for nematode community similarity underneath eight different plant species. Similarities were determined for nematode communities underneath the same or two different plant species (species effect) growing in the same or a different plant community (Community effect). For each plant species, nematode communities were determined for two individual plants growing in the same plant community. Plant community identity (plot) was entered in the model as random effect.

Species effect

Community effect

Species × community

Plant species

Wald F

P

Wald F

P

Wald F

P

F. rubra

34.44

<0.001

9.46

0.003

0.45

0.51

H. lanatus

23.62

<0.001

10.17

0.002

1.18

0.28

A. odoratum

43.26

<0.001

50.79

<0.001

8.15

0.005

L. vulgare

29.95

<0.001

4.25

0.043

0.39

0.83

P. lanceolata

6.22

0.015

8.17

0.005

0.03

0.87

T. vulgare

0.58

0.45

3.83

0.054

0.04

0.84

V. cracca

28.02

<0.001

25.96

<0.001

1.75

0.19

L. corniculatus

38.34

<0.001

5.70

0.019

0.22

0.64

 

TABLE A4. Results from a permutation test following a multivariate Redundancy Analysis (RDA) of the entire nematode communities associated to individual plants. Nematode communities were determined underneath individual plants of eight species that were growing in 15 different plant communities. Within each plant community two individuals of each plant species were sampled. The analysis tests whether the nematode community of each plant species differs significantly from the other plant species growing within the same plot (permutations were restricted within plot). Shown are ‘pseudo-F’ statistics and P values. Similarly to classical F test statistics, a Monte Carlo permutation test measures the strength of the relation between (multivariate) response variables and the tested predictors, however, it has no implied distribution under H0 and the corresponding Type-I error is estimated by the Monte Carlo permutation test.

Plant species

F

P

F. rubra

6.82

0.001

H. lanatus

6.44

0.001

A. odoratum

7.02

0.001

L. vulgare

6.27

0.001

P. lanceolata

5.90

0.001

T. vulgare

3.53

0.001

V. cracca

5.67

0.001

L. corniculatus

7.67

0.001

 

TABLE A5. Results from multivariate Redundancy Analysis (RDA) of root feeding, bacterial feeding, fungal feeding, or omnivorous and carnivorous nematode communities associated to individual plants. Nematode communities were determined underneath individual plants of eight species that were growing in 15 different plant communities. Within each plant community two individuals of each plant species were sampled. The analysis tests whether each plant species differs significantly from the other species growing within the same plot (permutations were restricted within plant plot).  Shown are ‘pseudo-F’ statistics and P values.

Root feeders

Bacterial feeders

Fungal feeders

Omnivores and carnivores

Plant species

F

P

F

P

F

P

F

P

F. rubra

1.96

0.09

10.18

0.001

0.62

0.64

7.66

0.001

H. lanatus

2.38

0.04

5.97

0.001

1.55

0.20

10.68

0.001

A. odoratum

1.76

0.12

5.99

0.001

1.35

0.27

10.21

0.001

L. vulgare

1.93

0.10

7.65

0.001

2.37

0.07

8.76

0.001

P. lanceolata

1.10

0.37

6.69

0.001

1.05

0.34

6.79

0.001

T. vulgare

1.72

0.10

4.54

0.001

0.89

0.45

4.65

0.001

V. cracca

2.03

0.08

9.16

0.001

0.20

0.94

4.57

0.001

L. corniculatus

3.39

0.009

6.36

0.001

2.17

0.07

11.17

0.001

 

TABLE A6. Soil organisms identified in the food webs and mean number of organisms per 100 g soil. Fatty acids are expressed as nmols per 100 g soil. RTU indicates recognizable taxonomic unit.

Group

“Taxonomic” identification

Number . 100g soil-1

Herbivorous nematodes

Tylenchorhynchus (Dolichodoridae)

32

Herbivorous nematodes

Meloidogyne (Meloidogynidae)

3

Herbivorous nematodes

Paratylenchus (Paratylenchidae)

346

Herbivorous nematodes

Pratylenchus (Pratylenchidae)

4

Herbivorous nematodes

Trichodorus (Trichodoridae)

2

Herbivorous nematodes

Filenchus (Tylenchidae)

32

Herbivorous nematodes

Other Tylenchidae

36

Fungivorous nematodes

Ditylenchus (Anguinidae)

5

Fungivorous nematodes

Aphelenchus (Aphelenchidae)

47

Fungivorous nematodes

Aphelenchoides (Aphelenchoididae)

22

Fungivorous nematodes

Diphtherophora (Diphtherophoridae)

44

Bacterivorous nematodes

Alaimidae

43

Bacterivorous nematodes

Buonema (Bunonematidae)

2

Bacterivorous nematodes

Acrobeloides (Cephalobidae)

203

Bacterivorous nematodes

Acrolobus (Cephalobidae)

185

Bacterivorous nematodes

Cervidellus (Cephalobidae)

78

Bacterivorous nematodes

Heterocephalobus (Cephalobidae)

1

Bacterivorous nematodes

Other Cephalobidae

283

Bacterivorous nematodes

Diplogasteridae

1

Bacterivorous nematodes

Cylindrolaimus (Diplopeltidae)

21

Bacterivorous nematodes

Microlaimus (Microlaimidae)

1

Bacterivorous nematodes

Eumonhystera (Monhysteridae)

47

Bacterivorous nematodes

Pristionchus (Neodiplogasteridae)

11

Bacterivorous nematodes

Drilocephalobus (Ostellidae)

3

Bacterivorous nematodes

Panagrolaimidae

5

Bacterivorous nematodes

Anaplectus (Plectidae)

137

Bacterivorous nematodes

Plectus (Plectidae)

162

Bacterivorous nematodes

Wilsonema (Plectidae)

48

Bacterivorous nematodes

Prismatolaimus (Prismatolaimidae)

115

Bacterivorous nematodes

Rhabditidae

289

Bacterivorous nematodes

Teratocephalus (Teratocephalidae)

8

Omnivorous nematodes

Dorylaimoidae

544

Carnivorous nematodes

Mononchidae

141

Carnivorous nematodes

Tripyla (Tripylidae)

20

Predacious mites

Gamasina

13

Predacious mites

Prostigmata

4

Predacious mites

Uropodina

0.25

Detritivorous mites

Astigmata

0.06

Oribatid mites

Oribatida (juveniles)

0.88

Oribatid mites

Liochthonius

2

Oribatid mites

Oppiella

1

Oribatid mites

Tectocepheus

2

Oribatid mites

Platynothrus

0.10

Oribatid mites

Brachychthonius

0.26

Oribatid mites

Trichoribates

0.06

Oribatid mites

Oribatula

0.01

Oribatid mites

Suctobelbella

0.02

Enchytraeids

Fridericia bulbosa

0.28

Enchytraeids

Fridericia bulboides

0.22

Enchytraeids

Fridericia callosa

0.32

Enchytraeids

Fridericia bisetosa

0.047

Enchytraeids

Fridericia maculata

0.34

Enchytraeids

Fridericia paroniana

0.033

Enchytraeids

Fridericia razelli

0.26

Enchytraeids

Fridericia saculata

0.066

Enchytraeids

Fridericia (other sp.)

0.79

Enchytraeids

Enchytraeus buchholzi

1.48

Enchytraeids

Enchytraeus (other sp.)

0.034

Enchytraeids

Henlea perpusilla

0.46

Enchytraeids

Henlea nasuta

0.37

Enchytraeids

Henlea (other sp.)

0.021

Enchytraeids

Hemifridericia parva

0.21

Enchytraeids

Other enchytraeids

0.14

Mollusks

Cochlicopa lubrica

0.014

Mollusks

Cochlicopa lubricella

0.007

Mollusks

Deroceras reticulatum

0.025

Mollusks

Arion sp.

0.004

Collembola

Brachystomella parvula

0.89

Collembola

Xenylla boerneri

0.014

Collembola

Friesea mirabilis

0.70

Collembola

Micranurida pygmaea

0.10

Collembola

Protophurura armata

3.20

Collembola

Mesaphorura krausbaueri

22.44

Collembola

Paratullbergia callipygos

0.70

Collembola

Paratullbergia macdougalli

0.014

Collembola

Stenaphurura lubbocki

0.69

Collembola

Entomobrya lanuginosa

0.014

Collembola

Lepidocyrtus cyaneus

0.60

Collembola

Entomobryidae sp. (RTU1)

0.014

Collembola

Cryptopygos sp. (RTU2)

2.24

Collembola

Folsomia fimetaria

4.50

Collembola

Folsomia bisetosa/inoculata

0.057

Collembola

Folsomia sp. (RTU3)

0.014

Collembola

Parisotoma notabilis

15.40

Collembola

Isotoma viridis

0.072

Collembola

Isotomiella minor

0.014

Collembola

Isotomurus sp.

0.014

Collembola

Arrhopalites sp.

0.029

Collembola

Sphaeridia pumilis

2.07

Collembola

Sminthurinus viridis

0.057

Collembola

Isotomid (juvenile)

0.35

Collembola

Podurid (Juvenile)

1.85

Collembola

Symphypleona (juvenile)

0.12

Detritivorous arthropods

Diplopoda

0.003

Detritivorous arthropods

Isopoda

0.018

Detritivorous arthropods

Pauropoda

0.034

Detritivorous arthropods

Protura

5.08

Detritivorous arthropods

Symphyla

0.34

Herbivorous arthropods

Agriotes sp.

0.048

Herbivorous arthropods

Coleoptera (other sp.)

0.026

Herbivorous arthropods

Chrysomelidae

0.015

Herbivorous arthropods

Curculionoidea

0.010

Herbivorous arthropods

Diptera

0.59

Herbivorous arthropods

Heteroptera

0.003

Herbivorous arthropods

Homoptera

0.27

Herbivorous arthropods

Lepidoptera

0.005

Herbivorous arthropods

Thysanoptera

0.020

Predacious arthropods

Formicidae

0.037

Predacious arthropods

Araneae

0.11

Predacious arthropods

Carabidae

0.093

Predacious arthropods

Chilopoda

0.002

Predacious arthropods

Elateridae (other sp.)

0.11

Predacious arthropods

Staphylinidae

0.27

Earthworms

Lumbricus rubellus

0.027

Earthworms

Lumbricus terrestris

0.0016

Arbuscular mycorrhizal fungi (spores)

Acaulospora morrowiae

46.66

Arbuscular mycorrhizal fungi (spores)

Acaulospora sp. (RTU1)

7.90

Arbuscular mycorrhizal fungi (spores)

Acaulospora sp. (RTU 2)

6.07

Arbuscular mycorrhizal fungi (spores)

Acaulospora sp. (RTU 3)

1.34

Arbuscular mycorrhizal fungi (spores)

Acaulospora sp. (RTU 4)

17.59

Arbuscular mycorrhizal fungi (spores)

Acaulospora sp. (RTU 5)

0.69

Arbuscular mycorrhizal fungi (spores)

Glomus mosseae

0.79

Arbuscular mycorrhizal fungi (spores)

Glomus constrictum

0.31

Arbuscular mycorrhizal fungi (spores)

Glomus sp. (RTU6)

4.03

Arbuscular mycorrhizal fungi (spores)

Glomus sp. (RTU 7)

0.59

Arbuscular mycorrhizal fungi (spores)

Glomus sp. (RTU 8)

0.52

Arbuscular mycorrhizal fungi (spores)

Scutellospora calospora

0.83

Phospholipid fatty acids

i14:0

89

Phospholipid fatty acids

14:0

115

Phospholipid fatty acids

i15:0

650

Phospholipid fatty acids

a15:0

438

Phospholipid fatty acids

15:0

66

Phospholipid fatty acids

br16:0

25

Phospholipid fatty acids

i16:0

266

Phospholipid fatty acids

16:1ω9

150

Phospholipid fatty acids

16:1ω7c

758

Phospholipid fatty acids

16:1ω7t

43

Phospholipid fatty acids

16:1ω5

484

Phospholipid fatty acids

16:0

1349

Phospholipid fatty acids

br17:0

37

Phospholipid fatty acids

10Me16:e

285

Phospholipid fatty acids

10Me16:0

306

Phospholipid fatty acids

i17:0

153

Phospholipid fatty acids

a17:0

137

Phospholipid fatty acids

cy17:0

301

Phospholipid fatty acids

17:0

42

Phospholipid fatty acids

br18:0

63

Phospholipid fatty acids

10Me17:0

65

Phospholipid fatty acids

18:2ω6

238

Phospholipid fatty acids

18:1ω9

686

Phospholipid fatty acids

18:1ω7

939

Phospholipid fatty acids

18:0

255

Phospholipid fatty acids

10Me18:0

205

Phospholipid fatty acids

cy19:0

234

Phospholipid fatty acids

20:4

59

Phospholipid fatty acids

20:5

47

Phospholipid fatty acids

20:3

33

Phospholipid fatty acids

20:0

92

Neutral lipid fatty acids

16:1ω5

1494

Bacterial density

Colony forming units (log)

617

 

TABLE A7. Results from multivariate partial Canonical Correspondence Analyses (CCA) for the effect of plant community identity and host plant biomass on the composition of different taxonomic groups of soil organisms, phospholipids (PLFA) and microbial functioning (Biolog). Results are shown from permutation tests to determine significant differences between the 15 plant communities. The effects of plant species identity (P. lanceolata or L. corniculatus) and sowing treatment (15,4,0 species, for plant community identity effects only) were removed by including them as covariables. Shown are ‘pseudo-F’ statistics and P values.

Plant community identity

Plant biomass

F

P

F

P

Enchytraeids

0.62

> 0.10

1.43

> 0.10

Bacteria and fungi (PLFA)

1.43

0.08

1.25

> 0.10

Collembola

1.05

> 0.10

0.93

> 0.10

Nematodes

1.49

0.001

1.18

> 0.10

Mites

1.43

0.004

1.05

> 0.10

Microbial functioning (Biolog)

1.19

0.06

1.08

> 0.10

Soil macrofauna

0.91

> 0.10

1.35

> 0.10

AMF spores

1.39

0.014

0.89

> 0.10

 

TABLE A8. Distribution of enchytraeid species among individual L. corniculatus and P.lanceolata plants growing in plots sown originally with 15 or 4 species and unsown plots. Presented is the number of plants where each species was recorded. There were five replicate plots per treatment and from each plot two plants were sampled (except for L. corniculatus which was present in 4 plots sown with 4 species).

L. corniculatus

P. lanceolata

15

4

0

15

4

0

Fridericia bulbosa

8

0

0

0

0

0

Fridericia bulboides

0

0

6

3

0

5

Fridericia callosa

0

0

0

0

0

10

Fridericia bisetosa

0

3

0

0

0

0

Fridericia maculata

0

0

1

0

7

3

Fridericia paroniana

0

2

0

0

0

0

Fridericia razelli

0

0

0

6

0

9

Fridericia saculata

0

0

0

4

0

3

Fridericia (other sp.)

7

3

4

1

7

10

Enchytraeus buchholzi

8

4

7

9

1

10

Enchytraeus (other sp.)

0

0

0

0

0

1

Henlea perpusilla

4

0

0

3

3

5

Henlea nasuta

0

7

0

0

6

0

Henlea (other sp.)

0

1

0

0

0

0

Hemifridericia parva

6

0

6

0

0

0

Other enchytraeids

0

0

1

2

3

3

 

TABLE A9. Wald F and P values obtained from linear mixed model analyses for the effects of plant species (L. corniculatus vs P. lanceolata), sowing treatment (15, 4, 0 species) and their interaction on enchytraeid biomass, density, and richness underneath individual plants. Plant community identity (plot) was entered in the model as random effect.

Plant species

Sowing treatment

Plant species * Sowing treatment

Response variable

Wald F

P

Wald F

P

Wald F

P

Biomass

47.58

<0.001

7.49

0.008

16.09

<0.001

Density

7.77

0.008

1.40

0.29

13.33

<0.001

Richness

11.09

0.002

5.85

0.017

14.56

<0.001

 

TABLE A10. Wald F and P values obtained from linear mixed model analyses for the effects of plant species (L. corniculatus and P. lanceolata), sowing treatment (15, 4, 0 species) and their interaction on carbon and nitrogen mineralization and food web stability of individual plant food webs. Plant community identity (plot) was entered in the model as random effect.

Plant species

Sowing treatment

Plant species × sowing treatment

Wald F

P

Wald F

P

Wald F

P

Nitrogen mineralization

0.16

0.69

9.30

0.004

0.96

0.39

Carbon mineralisation

1.44

0.24

0.71

0.51

0.14

0.87

Food web stability

0.99

0.32

0.01

0.99

1.17

0.32

 

TABLE A11. Critical loops in food webs from the rhizosphere soil of L. corniculatus and P. lanceolata, growing in plots sown in 1996 with 15, 4, or 0 species. The critical loop is the loop composed of interactions between feeding groups that influences food web stability most, based on food web model analyses. Differences between plant species were tested using a Fisher’s exact test and differences between sowing treatments with a chi-square test.

L. corniculatus

P. lanceolata

Plant

Sowing

Critical Loop

Total

15

4

0

15

4

0

Species

treatment

Bacteria - bacterivorous nematodes - predacious nematodes - omnivorous nematodes

25

4

2

3

7

1

8

0.06

0.02

Bacteria - bacterivorous nematodes - omnivorous nematodes

11

1

1

4

2

2

1

0.51

0.69

Bacteria - protozoa - omnivorous nematodes

4

0

0

0

0

4

0

0.03

0.008

Bacteria - omnivorous nematodes - predacious nematodes - bacterivorous nematodes

3

0

1

1

0

1

0

0.36

0.30

Bacteria - bacterivorous nematodes - uropodina - omnivorous nematodes

1

0

1

0

0

0

0

-

-

Bacteria - ominovorous nematodes - uropodina - bacterivorous nematodes

1

1

0

0

0

0

0

-

-

Collembola - prostigmata - predacious arthropods

13

4

3

2

1

2

1

0.05

0.60


[Back to E091-211]