Managing instrument data in a scalable way

Grischa Meyer - Monash eResearch Centre

Data capture with MyTardis

At the instrument, MyData captures data automatically

- To be transferred and stored securely
- It can then be accessed by authorised researchers immediately
- It can be shared with collaborators around the world

And published

And integrated with other publication services

Data processing

- MyTardis at Monash is integrated with the MASSIVE HPC facility and the CVL virtual desktops
- Selected data can be pushed to these resources with the press of a button on the web interface

MyTardis at Monash

- Store.Monash
- So far 8 facilities, 38 instruments, e.g.:
 - Microscopy
 - Cryo-EM
 - MRIs
 - Bioinformatics
- Some more numbers:
 - Experiments: 2,815
 - # of files: 2,502,420
 - Data total: 53.1 TB
 - Average file: 21 MB

System architecture

- The components of MyTardis can be parallelised and distributed
- Using the Monash zones of the NeCTAR Cloud
- Orchestrated with Heat and SaltStack
- Configuration version controlled, changes reviewed
- Regularly scheduled maintenance windows

Compute & Storage

- 1 SaltStack master
- 2 database servers
- 1 database router
- 1 task queue
- 4+ task workers
- 4+ filter runners
- 8+ web workers
- 2+ SFTP servers
- 2 load balancers

- Dynamic storage handling
- Data migrations
- Currently active backends:
 - Mounted network storage, NFS, SSHFS
 - S3 compatible storage
 - SFTP storage

New http://mytardis.org

