Supporting Information

pH-Sensitive Vesicles Formed by Amphiphilic Grafted Copolymers with Tunable Membrane Permeability for Drug Loading/Release: A Multiscale Simulation Study

Zhonglin Luo ${ }^{\dagger, \ddagger}$, Yan $\mathrm{Li}^{\dagger}{ }^{\dagger}$ Biaobing Wang, ${ }^{\dagger}$ and Jianwen Jiang ${ }^{*} \ddagger$
${ }^{\dagger}$ School of Material Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
${ }^{\ddagger}$ Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore

Table S1. Molecular weights and coarse-grained beads.

Component	MW $(\mathrm{g} / \mathrm{mol})$	Volume per repeat unit $\left(\AA^{3}\right)$	Number of repeat units (molecules) per bead	Number of beads
PAE	3822	480.4	1	14
PEG	2100	67.8	6	8
PLA	$288 \sim 1152$	111.3	4	$1 \sim 4$
$\mathrm{H}_{2} \mathrm{O}$	18	31.2	16	1
THF	72	140.2	3	1
DOX•HCl	580	723.8	0.66	1

Table S2. Solubility parameters (δ), van de Walls (δ_{vdW}) and electric ($\delta_{\text {ele }}$) terms for PEG, PLA, PAE and PAEH blocks.

	δ	$\delta_{\text {vdW }}$	$\delta_{\text {ele }}$
PEG	20.93	19.48	7.67
PLA	19.73	18.25	7.49
PAE	19.27	18.38	5.81
PAEH	19.73	15.32	12.43

$\delta^{2}=\delta_{\text {vdw }}^{2}+\delta_{\text {ele }}^{2}$

Figure S1. Morphology of $4 \% \mathrm{PAE}_{14}-\mathrm{g}-\mathrm{P}\left(\mathrm{EG}_{8}\right)\left(\mathrm{LA}_{3}\right)_{13}$ in $\mathrm{H}_{2} \mathrm{O}$ (a) equilibrium snapshot and (b) section view. PEG, PAE and PLA are in cyan, blue and red, respectively. $\mathrm{H}_{2} \mathrm{O}$ is not shown.

Figure S2. Dynamic assembly of $4 \% \mathrm{PAE}_{14}-\mathrm{g}-\mathrm{P}\left(\mathrm{EG}_{8}\right)\left(\mathrm{LA}_{3}\right)_{13}$ in $\mathrm{H}_{2} \mathrm{O}$. PEG, PAE and PLA are in cyan, blue and red, respectively. $\mathrm{H}_{2} \mathrm{O}$ is not shown.

Figure S3. Morphologies of $4 \% \mathrm{PAE}_{14}-\mathrm{g}-\mathrm{P}\left(\mathrm{EG}_{8}\right)\left(\mathrm{LA}_{3}\right)_{13}$ formed after THF/ $\mathrm{H}_{2} \mathrm{O}$ exchange with $t_{\mathrm{eq}}=6.5$ ns and various v_{ex} : (a) 2.5% (b) 3.3% (c) 5% and (d) 10%. (e)-(h) are the section views of the largest vesicles in (a-d). PEG, PAE and PLA are in cyan, blue and red, respectively. $\mathrm{H}_{2} \mathrm{O}$ is not shown.

Figure S4. Dynamic fusion of $4 \% \mathrm{PAE}_{14}-\mathrm{g}-\mathrm{P}\left(\mathrm{EG}_{8}\right)\left(\mathrm{LA}_{3}\right)_{13}$ after multi-stage THF/ $\mathrm{H}_{2} \mathrm{O}$ exchange, first with $v_{\mathrm{ex}}=2.5 \%$ and $t_{\mathrm{eq}}=6.5 \mathrm{~ns}$ until 10% THF left, then with $v_{\mathrm{ex}}=0.05 \%$ until 5% THF left, finally with $v_{\text {ex }}=0.025 \%$ until $\phi_{\text {THF }}=4.325 \% ~\left(\phi_{\mathrm{H}_{2} \mathrm{O}}=95.675 \%\right)$. PEG, PAE and PLA are in cyan, blue and red, respectively. $\mathrm{H}_{2} \mathrm{O}$ and THF are not shown.

$$
\phi_{\mathrm{p}}=4 \%
$$

$\phi_{\mathrm{p}}=5 \%$
$\phi_{\mathrm{p}}=6 \%$
$\phi_{\mathrm{p}}=8 \%$

Figure S5. Typical vesicles formed by $\mathrm{PAE}_{14}-\mathrm{g}-\mathrm{P}\left(\mathrm{EG}_{8}\right)\left(\mathrm{LA}_{3}\right)_{13}$ at various ϕ_{p}. PEG, PAE and PLA are in cyan, blue and red, respectively. $\mathrm{H}_{2} \mathrm{O}$ is not shown.

Figure S6. Loading efficiency and volume fraction of $\mathrm{DOX} \cdot \mathrm{HCl}$ in vesicle interior versus ϕ_{p}.

