Supporting Information

pH-Sensitive Vesicles Formed by Amphiphilic Grafted Copolymers with Tunable Membrane Permeability for Drug Loading/Release: A Multiscale Simulation Study

Zhonglin Luo^{†,‡}, Yan Li,[†] Biaobing Wang,[†] and Jianwen Jiang^{*,‡}

Table S1. Molecular weights and coarse-grained beads.

Component	MW (g/mol)	Volume per repeat unit (ų)	Number of repeat units (molecules) per bead	Number of beads
PAE	3822	480.4	1	14
PEG	2100	67.8	6	8
PLA	288 ~ 1152	111.3	4	1 ~ 4
H_2O	18	31.2	16	1
THF	72	140.2	3	1
DOX-HC1	580	723.8	0.66	1

Table S2. Solubility parameters (δ), van de Walls (δ_{vdW}) and electric (δ_{ele}) terms for PEG, PLA, PAE and PAEH blocks.

	δ	$\delta_{ m vdW}$	$\delta_{ m ele}$
PEG	20.93	19.48	7.67
PLA	19.73	18.25	7.49
PAE	19.27	18.38	5.81
PAEH	19.73	15.32	12.43

$$\delta^2 = \delta_{\rm vdw}^2 + \delta_{\rm ele}^2$$

[†]School of Material Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China

[‡]Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore

Figure S1. Morphology of 4% PAE_{14} -g- $P(EG_8)(LA_3)_{13}$ in H_2O (a) equilibrium snapshot and (b) section view. PEG, PAE and PLA are in cyan, blue and red, respectively. H_2O is not shown.

Figure S2. Dynamic assembly of 4% PAE₁₄-g-P(EG₈)(LA₃)₁₃ in H₂O. PEG, PAE and PLA are in cyan, blue and red, respectively. H₂O is not shown.

Figure S3. Morphologies of 4% PAE₁₄-g-P(EG₈)(LA₃)₁₃ formed after THF/H₂O exchange with $t_{\rm eq} = 6.5$ ns and various $v_{\rm ex}$: (a) 2.5% (b) 3.3% (c) 5% and (d) 10%. (e)-(h) are the section views of the largest vesicles in (a–d). PEG, PAE and PLA are in cyan, blue and red, respectively. H₂O is not shown.

Figure S4. Dynamic fusion of 4% PAE₁₄-g-P(EG₈)(LA₃)₁₃ after multi-stage THF/H₂O exchange, first with $v_{\rm ex} = 2.5\%$ and $t_{\rm eq} = 6.5$ ns until 10% THF left, then with $v_{\rm ex} = 0.05\%$ until 5% THF left, finally with $v_{\rm ex} = 0.025\%$ until $\phi_{\rm THF} = 4.325\%$ ($\phi_{\rm H_2O} = 95.675\%$). PEG, PAE and PLA are in cyan, blue and red, respectively. H₂O and THF are not shown.

Figure S5. Typical vesicles formed by PAE₁₄-g-P(EG₈)(LA₃)₁₃ at various ϕ_p . PEG, PAE and PLA are in cyan, blue and red, respectively. H₂O is not shown.

Figure S6. Loading efficiency and volume fraction of DOX·HCl in vesicle interior versus ϕ_p .