Supplementary Information for: "Photoisomerization of β -Ionone Protonated Schiff Base in the Gas Phase"

N. J. A. Coughlan, C. M. Wallace, B. D. Adamson, E. J. Bieske School of Chemistry, The University of Melbourne, 3010, Australia * email: evanjb@unimelb.edu.au

1 Calculated structures and collision cross sections

Figure S.1: Representative geometric isomers of β -ionone protonated Schiff base (BIPSB).

(a) bicyclic BIPSB — C(S), N(S) (b) bicyclic BIPSB — C(S), N(R)

Figure S.2: Diastereomers of the bicyclic BIPSB structure. The stereochemistry at each chiral centre is indicated.

Figure S.3: Representative geometric isomers of γ -ionone protonated Schiff base (GIPSB). Note that the ionone ring can adopt either a boat or chair conformation.

Table S.1: Relative energies (ΔE) and collision cross sections with N₂ at 295 K for isomers of β -ionone. Energies and geometries were determined at the DFT M06-2X/cc-PVDZ level. Note that we could not locate a 7,8s,9-*tricis*-6s-*cis*(-) minimum. Collision cross sections were determined using the trajectory method in Mobcal^{1,2} with collision parameters taken from ref. 3.

species	ΔE	$\overline{\Omega}_{calc}$	
	(kJ/mol)	(Å ²)	
β -ionone protor	β -ionone protonated Schiff base		
all-trans-6s-cis(-)	9.4	173.6	
all- <i>trans</i> -6s- <i>cis</i> (+)	7.4	173.9	
all-trans-6s-trans	6.7	172.5	
7-cis-6s-cis(-)	17.8	167.6	
7-cis-6s-cis(+)	20.9	165.6	
7-cis-6s-trans	19.1	166.2	
8s-cis-6s-cis(-)	17	172.7	
8s-cis-6s-cis(+)	14.0	172.7	
8s-cis-6s-trans	14.0	171.4	
9-cis-6s-cis(-)	6.3	172.6	
9-cis-6s-cis(+)	5.6	171.7	
9-cis-6s-trans	0.0	171.1	
7,8s-cis-6s-cis(-)	10.3	165.4	
7,8s-cis-6s-cis(+)	9.7	163.7	
7,8s-cis-6s-trans	61.3	164.5	
7,9-cis-6s-cis(-)	20.7	166.2	
7,9-cis-6s-cis(+)	20.4	165.7	
7,9-cis-6s-trans	19.6	165.7	
8s,9-cis-6s-cis(-)	19.2	172.3	
8s,9-cis-6s-cis(+)	19.9	172.3	
8s,9-cis-6s-trans	19.0	171.4	
7,8s,9-cis-6s-cis(-)	*	*	
7,8s,9-cis-6s-cis(+)	19.8	160.2	
7,8s,9-cis-6s-trans	22.0	167.6	
bicyclic isomer			
S,S (chair)	14.7	162.5	
S,R (chair)	22.7	160.6	
retro- γ -ionone protonated Schiff base			
all- <i>trans</i> (chair)	66.6	172.6	
all-trans (boat)	72.6	169.6	
6-cis (chair)	31.0	166.2	
6-cis (boat)	59.2	170.4	
9-cis (chair)	68.0	172.5	
9-cis (boat)	73.9	171.2	
6,9 <i>-cis</i> (chair)	38.5	166.9	
6,9- <i>cis</i> (boat)	57.4	171.4	

2 Effective collision cross sections for *trans*, 7-*cis*, 9-*cis*, and 7,9-*cis* isomers of BIPSB

Effective collision cross sections for a BIPSB isomer in a particular configuration of the $C_7=C_8$ and $C_9=N$ double bonds are estimated by averaging over their respective 6s and 8s conformations. That is:

$$\overline{\Omega}_{calc} = \sum_{i=1}^{5} \Omega_i e^{\frac{-\Delta E_i}{RT}} / \sum_{i=1}^{5} e^{\frac{-\Delta E_i}{RT}}$$
(1)

where the sum is over the 6s-*cis*(-), 6s-*cis*(+) and 6s-*trans*, 8s-*trans*, and 8s-*cis* isomers with the input data given in Table S1. In each case, ΔE_i is the relative energy corrected for vibrational zero point energy and T=300 K (approximately the effective temperature in the drift region). The averaged cross sections are given in Table S2.

Table S.2: Average collision cross sections with N_2 at 300 K for *trans*, 7-*cis*, 9-*cis*, and 7,9-*cis* isomers of BIPSB obtained through a Boltzmann average over contributing 6s and 8s isomers listed in Table S1.

BIPSB	$\overline{\Omega}_{calc}$
isomer	(Å ²)
trans	173.1
7-cis	164.5
9-cis	171.3
7,9-dicis	164.6

Figure S.4: Calculated collision cross sections for BIPSB isomers in N_2 buffer gas, plotted against measured collision cross sections for isomers corresponding to peaks A–D. A linear fit is shown in red. Data are provided in Table 1 of the paper.

3 Transition states for cyclization and [1-5] sigmatropic H shift

Figure S.5: Top - transition state between the 7,9-*dicis* isomer and bicyclic isomer. Bottom - transition state between the *trans* isomer and γ -ionone protonated Schiff base. Calculations are at the DFT M06-2X/cc-PVDZ level with energies (in kJ/mol) corrected for zero point vibrational energy. For computational expediency the butyl chain attached to the N atom was replaced by a methyl group.

4 Fitted BIPSB arrival time distribution

Figure S.6 shows the ATD for BIPSB which can be fitted to a sum of 4 Gaussian peaks corresponding to isomers A, B, C and D. The electrosprayed solution had been exposed to UV light to enhance the concentrations of isomers C and D.

Figure S.6: ATD for electrosprayed β -ionone protonated Schiff base (N₂ buffer gas, *P*=6.4 Torr), fitted with four Gaussian peaks (A, B, C and D). The peak widths correspond to a resolution of \approx 80 for the ion mobility spectrometer.

References

- [1] Mesleh, M.; Hunter, J.; Shvartsburg, A.; Schatz, G.; Jarrold, M. J. Phys. Chem. 1996, 100, 16082–16086.
- [2] Shvartsburg, A. A.; Jarrold, M. F. Chem. Phys. Lett. 1996, 261, 86–91.
- [3] Campuzano, I.; Bush, M. F.; Robinson, C. V.; Beaumont, C.; Richardson, K.; Kim, H.; Kim, H. I. Anal. Chem. 2012, 84, 1026–1033.