Total Synthesis and Structural Elucidation of Khafrefungin

Takeshi Wakabayashi, Kouhei Mori, and Shū Kobayashi,* Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Supporting Information

Experimental Section

General

IR spectra were recorded on a JASCO FT/IR-610. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-LA300, JNM-LA400 or a JNM-LA500 spectrometer in CDCl_{3} unless otherwise noted. Tetramethylsilane (TMS) served as internal standard ($\delta 0$) for ${ }^{1} \mathrm{H}$ NMR, and CDCl_{3} was used as internal standard ($\delta 77.0$) for ${ }^{13} \mathrm{C}$ NMR. When $\mathrm{CD}_{3} \mathrm{OD}$ was used, $\mathrm{CD}_{3} \mathrm{OD}$ served as internal standard ($\delta 3.3$) for ${ }^{1} \mathrm{H}$ NMR, $(\delta$ 49.0) for ${ }^{13}$ C NMR. HPLC was carried out using a Shimazu C-R6A chromatopac, SPD-10A and LC-10AT. Optical rotations were recorded on a JASCO P-1010. Column chromatography was performed on Silica gel 60 (Merck). Mass spectra were recorded on a JEOL JMS-SX102A mass spectrometer. Preparative tin layer chromatography was performed on Wakogel B5F or using Silica gel $60 \mathrm{~F}_{254}$ (Merck). All non-aqueous reactions were performed under an oxygen-free atmosphere of argon with rigid exclusion of moisture from reagents and glassware. All solvents were purified according to standard procedures.

Synthesis of Mimic 1a-d

Thioester 4: To a mixture of tin(II) trifluoromethanesulfonate ($4.17 \mathrm{~g}, 10 \mathrm{mmol}$) and tin(II) oxide ($1.35 \mathrm{~g}, 10 \mathrm{mmol}$) in dichloromethane (350 ml) was added (S)-1-methyl-2-[(N-1-naphtylamino)methyl]pyrrolidine ($2.88 \mathrm{~g}, 12 \mathrm{mmol}$) in dichloromethane (50 $\mathrm{ml})$ at room temperature. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$, and a solution of decanal ($7.81 \mathrm{~g}, 50 \mathrm{mmol}$) and silyl enol ether 3 ($11.42 \mathrm{~g}, 60 \mathrm{mmol}$) in dichloromethane (200 ml) was slowly added over 4 h . After stirring for 1 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched with aqueous sodium hydrogen carbonate solution. After the reaction mixture was filtered through Celite, the phases were separated. The aqueous layer was extracted with dichloromethane and the combined organic extracts were washed with water and brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=20 / 1)$ to give $4(11.40 \mathrm{~g}, 83 \%$, syn/anti $=97 / 3,94 \%$ ee $($ syn $)$) as a colorless oil. IR (neat) $3433,2924,1685 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.52(\mathrm{~m}, 19 \mathrm{H}), 2.38(\mathrm{~d}$, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dq}, J=3.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.94(\mathrm{~m}$, 1H); 13C NMR $\delta 11.3,14.1,14.6,22.7,23.2,25.9,29.3,29.50,29.51,29.54,31.9$, 34.0, 52.9, 71.9, 204.4; MS (EI+) m/z 275; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 65.64 ; \mathrm{H}$, 11.02. Found: C, 65.38 ; H, 10.83 .
(S)-2-Methyl-1-decanol: To a solution of $\mathbf{4}(8.2 \mathrm{~g}, 30 \mathrm{mmol})$ in dichloroethane (100 $\mathrm{ml})$ were added phenyl chlorothionoformate ($15.5 \mathrm{~g}, 90 \mathrm{mmol}$) and pyridine $(9.5 \mathrm{~g}$, $120 \mathrm{mmol})$. The solution was heated at reflux for 10 min . After cooling to room temperature, the solution was poured into diethyl ether and was washed with 1 M aqueous HCl solution, water, and brine. The organic layer was dried over anhydrous
sodium sulfate, filtered, and concentrated under reduced pressure. The residue was dissolved in toluene (100 ml). To this solution were added tributyltin hydride $(26.2 \mathrm{~g}$, 90 mmol) and $2,2^{\prime}$-azobis(isobutyronitrile) ($1.48 \mathrm{~g}, 9.0 \mathrm{mmol}$). The solution was heated at reflux for 10 min . After cooling to the temperature, the solvent was evaporated and the residue was roughly chromatographed on silica gel (hexane/ethyl acetate $=30 / 1$). A solution of the resulting material in THF (50 ml) was added to a suspension of lithium aluminum hydride $(2.90 \mathrm{~g}, 76 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min . The reaction was quenched by the addition of water (2.9 ml), $15 \% \mathrm{NaOH}(2.9 \mathrm{ml})$, and water (11.6 ml). The mixture was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=10 / 1$) to give (S)-2-methyl-1-dodecanol ($5.17 \mathrm{~g}, 86 \%$ for 3 steps) as a colorless oil. $[\alpha]^{26} \mathrm{D}-10$ (c $0.50, \mathrm{EtOH}) ;$ IR (neat) $3360,2920 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-1.40(\mathrm{~m}, 18 \mathrm{H}), 1.47(\mathrm{brs}, 1 \mathrm{H}), 1.53-1.64(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=$ $6.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=5.9,10.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 13 \mathrm{C}$ NMR $\delta 14.1,16.6,22.7,27.0$, 29.3, 29.6, 29.7, 29.9, 31.9, 33.1, 35.7, 68.4; MS (EI+) m/z 199; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}: \mathrm{C}, 77.93 ; \mathrm{H}, 14.09$. Found: C, 77.69; H, 14.03.

Aldehyde 5: To a solution of oxalyl chloride ($2.59 \mathrm{~g}, 20 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{ml})$ was added a solution of dimethyl sulfoxide ($2.35 \mathrm{~g}, 30 \mathrm{mmol}$) in dichloromethane $(5 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. After stirring for 5 min at $-78{ }^{\circ} \mathrm{C}$, a solution of (S)-2-methyl-1-dodecanol ($2.03 \mathrm{~g}, 10 \mathrm{mmol}$) in dichloromethane (15 ml) was added. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, a solution of the triethylamine ($6.01 \mathrm{~g}, 60 \mathrm{mmol}$) in dichloromethane (10 ml) was added, and the mixture was warmed to room temperature. After stirring for 1 h at room temperature, the reaction was quenched
with water, and the aqueous layer was extracted with diethyl ether. The extract was washed with water and brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=20 / 1)$ to give $5(1.81 \mathrm{~g}, 91 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.40$ (m, 17H), 1.70-1.75 (m, 1H), 2.29-2.37 (m, 1H), $9.61(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 13.3, 14.1, 22.7, 26.9, 29.3, 29.4, 29.57, 29.62, 30.5, 31.9, 46.3, 205.4.

Alcohol from 6d: To a mixture of scandium trifluoromethanesulfonate ($98 \mathrm{mg}, 0.2$ mmol) and silyl enol ether $\mathbf{3}(571 \mathrm{mg}, 3.0 \mathrm{mmol})$ in propionitrile (12 ml) was added a solution of $\mathbf{5}(397 \mathrm{mg}, 2.0 \mathrm{mmol})$ in propionitrile $(8 \mathrm{ml})$ at $-45^{\circ} \mathrm{C}$. After stirring for 17 h at $-45{ }^{\circ} \mathrm{C}$, the reaction was quenched with an aqueous sodium hydrogen carbonate solution, and the aqueous layer was extracted with dichloromethane. The extract was washed with water and brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient elution, hexane/ethyl acetate $=20 / 1$ to $6 / 1$) to give $\mathbf{6}(582 \mathrm{mg}, 92 \%$, $\mathbf{6 a}: \mathbf{6 b}: \mathbf{6 c}: \mathbf{6 d}=22: 38: 9: 31)$ as a colorless oil. The easily separated $\mathbf{6 d}(1.30 \mathrm{~g}, 4.2 \mathrm{mmol})$ was dissolved in THF (15 ml). To this solution was added lithium borohydride ($462 \mathrm{mg}, 21 \mathrm{mmol}$) at $-15^{\circ} \mathrm{C}$, and the mixture was stirred for 12 h at $-5{ }^{\circ} \mathrm{C}$. The reaction mixture was poured into diethyl ether and 0.1 M aqueous HCl solution, and the aqueous layer was extracted with diethyl ether. The extract was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=4 / 1)$ to give the diol $7 \mathbf{d}(1.01 \mathrm{~g}$, $93 \%)$ as a white crystal. To a mixture of the diol $7 \mathbf{d}(1.01 \mathrm{~g}, 3.91 \mathrm{mmol})$ and p -
anisaldehyde dimethylacetal ($2.2 \mathrm{~g}, 11.8 \mathrm{mmol}$) in dichloromethane (15 ml) was added p-toluenesulfonic acid ($50 \mathrm{mg}, 0.26 \mathrm{mmol}$) at room temperature. After stirring for 12 h at the same temperature, the reaction was quenched with an aqueous sodium hydrogen carbonate solution, and the aqueous layer was extracted with dichloromethane. The extract was washed with water and brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=20 / 1$) to give the acetal $(1.30 \mathrm{~g}, 88 \%)$ as a colorless oil. To the solution of the acetal $(1.30 \mathrm{~g}, 3.45 \mathrm{mmol})$ in dichloromethane (20 ml) was added diisobutylaluminum hydride $(10 \mathrm{ml}$ of a 1.0 M solution in hexane, 10 mmol) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 15 min at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched with methanol. After an aqueous Rochelle Salt solution and diethyl ether were added, the mixture was warmed to room temperature and stirred vigorously until the resulting white slurry was completely dissolved. After the phases were separated, the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with water and brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient elution, hexane/ethyl acetate $=20 / 1$ to $6 / 1$) to give the alcohol ($1.28 \mathrm{~g}, 98 \%$) as a colorless oil. $[\alpha]^{22}{ }_{\mathrm{D}}+0.5$ (c 0.9, EtOH); IR (neat) $3439,1513,1295 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 1.15-1.45(\mathrm{~m}, 18 \mathrm{H}), 1.67-1.81(\mathrm{~m}, 1 \mathrm{H}), 1,92-2.04(\mathrm{~m}, 2 \mathrm{H}), 3.32$ (dd, $J=3.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=5.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=7.0,10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.48(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.7,14.1,15.7,22.7,27.2,29.3$, 29.61, $29.64,29.9,31.9,34.1,35.4,37.6,55.2,66.5,73.9,84.2,113.7,129.2,131.0,159.1$; HRMS (EI+) Calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{3}(\mathrm{M}+)$ 378.3134. Found 378.3133.

Alcohol from 6a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.58(\mathrm{~m}, 18 \mathrm{H}), 1.70-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.87($ brs, 1 H$), 3.20(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=5.6,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=3.5$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.47(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.1,15.9,16.7,22.7,27.6$, $29.3,29.6,29.7,29.9,31.8,31.9,36.0,36.8,55.2,66.3,74.6,89.5,113.8,129.4$, 130.5, 159.2.

Alcohol from 6b: $[\alpha]^{30}{ }_{\mathrm{D}}-0.2$ (c 1.0, EtOH); IR (neat) $3431,1513,1295 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.15-1.55(\mathrm{~m}, 18 \mathrm{H}), 1.63-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{brs}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J$ $=3.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=6.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=3.7,11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.1,14.4,15.5,22.7,27.6,29.3,29.6$, $29.7,29.9,31.9,34.6,36.2,37.5,55.2,66.7,74.8,88.4,113.8,129.4,130.5,159.2$; HRMS (EI+) Calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{3}(\mathrm{M}+$) 378.3134; Found 378.3119; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{42} \mathrm{O}_{3}: \mathrm{C}, 76.14 ; \mathrm{H}, 11.18$. Found: C, $76.11 ; \mathrm{H}, 11.11$.

Alcohol from 6c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.45(\mathrm{~m}, 17 \mathrm{H}), 1.59-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.88-$ $1.98(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{brs}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=2.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 4.46(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.0,14.1,16.2,22.7,27.2,29.3,29.6,29.66$, $29.69,30.1,31.9,32.8,35.6,37.3,55.2,66.7,73.8,84.1,113.7,129.2,131.0,159.1$.

Stereochemical Assignment of 6a-d: Asymmetric aldol reactions of $\mathbf{5}$ with $\mathbf{3}$ using chiral tin(II) Lewis acids were performed. The reactions are known to proceed under "chiral catalyst control (Cf. Ref. 6 in the text)," and the structures of $\mathbf{6 c}$ and $\mathbf{6 d}$ were
determined (Scheme $\mathrm{S}-1$). The $\mathrm{Sc}(\mathrm{OTf})_{3}$-catalyzed aldol reaction gave a mixture of 6a-d, which was separated and was converted to PMB ethers, respectively (Scheme S2). Aldol adducts $\mathbf{6 a}$ and $\mathbf{6 c}$ gave the same PMB ether, while $\mathbf{6 b}$ and $\mathbf{6 d}$ gave the same PMB ether. Based on this transformation, the structures of $\mathbf{6 a}$ and $\mathbf{6 b}$ were determined.

Scheme S-1. Stereochemical Assignment of 6a-d (1)

88\% yield; 6a:6d:6c:6d =<1:<1:3:>95

71\% yield; 6a:6d:6c:6d = 2:3:85:10

92\% yield; $\mathbf{6 a}: \mathbf{6 d} \mathbf{d} \mathbf{6 c}: \mathbf{6 d}=22: 38: 9: 31$
Reagents and conditions: (a) $\mathrm{Sn}(\mathrm{OTf})_{2}, \mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OAc})_{2}$,
(S)-1-methyl-2-[(N-1-naphthylamino)-methyl]pyrrolidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$;
(b) $\mathrm{Sn}(\mathrm{OTf})_{2}, \mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OAc})_{2}$,
(R)-1-methyl-2-[(N-1-naphthylamino)-methyl $]$ pyrrolidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$;
(c) cat. $\mathrm{Sc}(\mathrm{OTf})_{3}$.

Aldehyde 8d: To a solution of oxalyl chloride ($510 \mathrm{mg}, 4.0 \mathrm{mmol}$) in dichloromethane (6 ml) was added a solution of dimethyl sulfoxide ($470 \mathrm{mg}, 6.0$ $\mathrm{mmol})$ in dichloromethane (3 ml) at $-78^{\circ} \mathrm{C}$. After stirring for 5 min at $-78{ }^{\circ} \mathrm{C}$, a solution of the alcohol ($757 \mathrm{mg}, 2.0 \mathrm{mmol}$) in dichloromethane (6 ml) was added. After stirring for 1 h at $-78^{\circ} \mathrm{C}$, a solution of the triethylamine ($1.21 \mathrm{~g}, 12.0 \mathrm{mmol}$) in dichloromethane (3 ml) was added, and the mixture was warmed to room temperature.

After stirring for 1 h at the same temperature, the reaction was quenched with water, and the aqueous layer was extracted with diethyl ether. The extract was washed with

Scheme S-2. Stereochemical Assignment of 6a-d (2)

Reagents and conditions: (a) LiBH_{4}, THF, $-5^{\circ} \mathrm{C}, 93 \%$; $\mathrm{PMPCH}(\mathrm{OMe})_{2}$, cat. $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (b) TsCl , pyridine; (c) LiAlH_{4}.
water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=20 / 1$) to give $\mathbf{8 d}(693 \mathrm{mg}, 92 \%)$ as a colorless oil: 1 H NMR δ $0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.47$ $(\mathrm{m}, 18 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.70(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=4.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 3H), 4.43 ($\mathrm{s}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.77(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta, 8.9,14.1,15.3,22.7,27.1,29.3,29.59,29.62,29.9,31.9$,
33.7, 36.2, 49.2, 55.2, 73.4, 81.9, 113.7, 129.2, 130.5, 159.2, 204.8.

Aldehyde 8a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.79(\mathrm{~m}, 19 \mathrm{H}), 2.62-2.72(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 4.44(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.8,14.1,16.0,22.7$, $27.2,29.3,29.6,29.9,31.9,32.1,35.6,48.4,55.3,73.2,85.0,113.7,129.2,130.4$, 159.2, 204.9.

Aldehyde 8b: $[\alpha]^{29}{ }_{\mathrm{D}}-10(\mathrm{c} 1.0, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96$ (d, J $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.73(\mathrm{~m}, 19 \mathrm{H}), 2.62-2.73(\mathrm{~m}, 1 \mathrm{H}), 3.50$ (dd, $J=4.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.78(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.7,14.1,14.4,22.7,27.5,29.3,29.59,29.61,29.63,29.8,31.9,33.8,35.8$, 49.1, 55.2, 73.7, 84.2, 113.7, 129.2, 130.5, 159.2, 204.9.

Aldehyde 8c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.78(\mathrm{~m}, 19 \mathrm{H}), 2.53-2.60(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=3.3,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 4.38-4.51(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 9.77 (s, 1H); 13C NMR $\delta 14.1,16.1,22.7,27.0,29.3,29.6,29.7,30.0,31.9,32.6$, 36.0, 49.1, 55.2, 73.2, 81.9, 113.7, 129.3, 130.4, 159.2, 204.9.

Ester from 8d: To a solution of (carbethoxyethylidene)triphenylphosphorane (1.13 g , $3.11 \mathrm{mmol})$ in THF (10 ml) was added a solution of $\mathbf{8 d}(585 \mathrm{mg}, 1.6 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ at room temperature. After the solution was heated for 12 h at reflux, the solution was diluted with hexane. After the reaction mixture was filtered through Celite, the filtrate was evaporated. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=20 / 1)$ to give the ester $(637 \mathrm{mg}$,
$89 \%, E / Z=>95 / 5)$ as a colorless oil. 1 H NMR $\delta 0.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.47(\mathrm{~m}, 22 \mathrm{H}), 1.85(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H})$, 2.69-2.84 (m, 1H), $3.17(\mathrm{dd}, J=3.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.49(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dq}, J=1.5,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85-6.89(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13 \mathrm{C}}$ NMR $\delta 12.5,14.1,14.2,14.3,16.4$, 22.7, 27.5, 29.3, 29.6, 29.7, 29.9, 31.9, 34.7, 36.6, 37.0, 55.2, 60.5, 75.0, 86.4, 113.7, $126.5,129.3,131.0,145.0,159.1,168.3$.

Ester from 8a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.86-0.90(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.64(\mathrm{~m}$, $22 \mathrm{H}), 1.84(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.76-2.87(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 4.14-4.23 (m, 2H), $4.47(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.90(\mathrm{~m}$, $3 \mathrm{H}), 7.25(J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 12.5,14.0,14.3,16.2,17.6,22.6,27.3,29.3$, $29.6,30.0,31.9,32.0,36.0,36.1,55.1,60.3,74.2,87.4,113.6,126.7,129.1,131.1$, 144.7, 159.0, 168.3.

Ester from 8b: $[\alpha]^{24}{ }_{\mathrm{D}}-10.8$ (c 1.0, EtOH); IR (neat) 2923, $1713 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.88$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.44(\mathrm{~m}$, $21 \mathrm{H}), 1.60-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.83$ (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.74-2.88$ (m, 1H), 3.16 (dd, $J=$ $3.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 6.80-6.90(\mathrm{~m}$, 3H), 7.20-7.30 (m, 2H); 13C NMR $\delta 12.6,14.1,14.3,14.5,17.3,22.7,27.3,29.3$, 29.6, 29.7, 29.9, 31.9, 34.1, 35.9, 36.5, 55.2, 60.3, 74.4, 86.5, 113.6, 127.0, 129.2, 131.2, 145.2, 159.0, 168.4; MS (EI+) m/z 460; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{O}_{4}$: C, 75.61; H, 10.50. Found: C, 75.34; H, 10.65.

Ester from 8c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.61(\mathrm{~m}, 22 \mathrm{H}), 1.83(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.74-2.81(\mathrm{~m}, 1 \mathrm{H}), 3.08$ (dd, $J=4.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.14-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.50(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=1.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.6(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$
$(J=9.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 12.5,14.1,14.3,15.7,17.0,26.7,27.4,29.3,29.5,29.7$, $30.0,31.5,31.9,36.3,36.4,55.3,60.5,74.8,87.4,113.7,126.2,129.2,131.9,145.4$, 159.1, 168.3.

Enol from 8d: To a solution of the ester ($565 \mathrm{mg}, 1.23 \mathrm{mmol}$) in dichloromethane (15 ml) was added diisobutylaluminum hydride (3.8 ml of a 1.0 M solution in hexane, 3.8 mmol) at $-78^{\circ} \mathrm{C}$. After stirring for 15 min at $-78^{\circ} \mathrm{C}$, the reaction was quenched with methanol. After an aqueous Rochelle Salt solution and diethyl ether were added, the mixture was warmed to room temperature and stirred vigorously until the resulting white slurry was completely dissolved. After the phases were separated, the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with water and brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=9 / 1)$ to give the alcohol $(494 \mathrm{mg}, 96 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.20-1.50(\mathrm{~m}, 19 \mathrm{H}), 1.60(\mathrm{brs}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.60-2.75(\mathrm{~m}, 1 \mathrm{H}), 3.08$ (dd, $J=3.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=1.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(J=$ 8.7 Hz, 2H); 13C NMR $\delta 13.8,14.1,14.3,17.5,22.7,27.6,29.3,29.6,29.7,30.0$, $31.9,34.9,35.9,36.3,55.3,68.9,74.9,87.1,113.7,129.2,129.8,131.3,133.6,159.0$. Enol from 8a: 1H NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.47(\mathrm{~m}, 19 \mathrm{H}), 1.66(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.64-2.76(\mathrm{~m}, 1 \mathrm{H}), 3.03$ (dd, $J=4.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=1.3,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28(J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.8,14.1,16.7,17.3,22.7,27.5,29.3,29.6,29.7$,
30.0, 31.4, 31.9, 35.2, 36.2, 55.3, 68.9, 74.8, 88.4, 113.7, 129.3, 130.2, 131.3, 133.2, 159.0.

Enol from 8b: $[\alpha]^{22}{ }_{\mathrm{D}}-19.6$ (c 0.6, EtOH); IR (neat) 3403, 2922, 1613, $1513 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.18-1.33 (m, 19H), $1.65(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.77(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, 3H), 3.96 (d, $J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 13.9,14.1,14.8,18,4,22.7,27.3,29.3$, $29.3,29.6,29.7,30.0,31.9,34.2,35.3,36.0,55.2,69.1,74.6,87.3,113.6,129.1$, 129.5, 131.6, 134.0, 158.9; HRMS (EI+) Calcd for $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{3}(\mathrm{M}+)$ 418.3447. Found 418.3419

Enol from 8c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-1.63(\mathrm{~m}, 19 \mathrm{H}), 1.67(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.65-2.75(\mathrm{~m}, 1 \mathrm{H}), 3.03$ (dd, $J=4.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}$, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=1.1,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.1,16.7,17.3,22.7,27.5,29.3,29.7,30.0,31.4,31.9$, $35.2,36.2,55.3,68.9,74.9,88.4,113.7,129.3,130.2,131.3,133.2,159.0$.

Enal 9d: To a mixture of the alcohol ($761 \mathrm{mg}, 1.8 \mathrm{mmol}$), N-methyl molphorine N oxide ($316 \mathrm{mg}, 2.7 \mathrm{mmol}$) and molecular sieves 4A (1.26 g) in dichloromethane (10 $\mathrm{ml})$ were added tetrapropylammonium perruthenate $(64 \mathrm{mg}, 0.18 \mathrm{mmol})$ at room temperature. After stirring for 1 h at the same temperature, the reaction mixture was filtered through Celite, and then the filtrate was washed with aqueous sodium sulfite, water, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=20 / 1)$ to give $\mathbf{9 d}(680 \mathrm{mg}, 90 \%)$
as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.50(\mathrm{~m}, 19 \mathrm{H}), 1.76(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.90-3.05(\mathrm{~m}, 1 \mathrm{H})$, 3.23 (dd, $J=3.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=10.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=1.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(J=8.5 \mathrm{~Hz}$, 2H), 9.36 (s, 1H); 13C NMR $\delta 9.3,14.1,14.4,16.1,22.7,27.5,29.3,29.6,29.9,31.9$, $34.6,36.9,37.2,55.2,75.0,86.0,113.8,129.2,130.8,137.9,157.4,159.2,195.4$.

Enal 9a: 1H NMR $\delta 0.83-0.90(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.66(\mathrm{~m}, 19 \mathrm{H})$, $1.74(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.93-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=3.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 4.47$ (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.91(\mathrm{~m}, 3 \mathrm{H}), 7.27(J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.38(\mathrm{~s}, 1 \mathrm{H})$; 13C NMR $\delta 9.3,14.1,15.9,18.0,22.7,27.2,29.3,29.6$, 29.7, 30.0, 31.9, 32.6, 36.0, 36.6, 55.2, 74.4, 87.0, 113.7, 129.3, 130.8, 138.0, 157.3, 159.2, 195.7.

Enal 9b: 1H NMR $\delta 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.20-1.45(\mathrm{~m}, 18 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 2.92-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.22$ $(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.57(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 2 \mathrm{H}), 9.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 9.3,14.1,15.0,17.6,22.7,27.3,29.3,29.6,29.9,31.9,33.6,36.5,36.6,55.2$, 74.6, 86.6, 113.7, 129.2, 130.8, 138.3, 157.6, 159.1, 195.7.

Enal 9c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.14-1.74(\mathrm{~m}, 19 \mathrm{H}), 1.75(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.92-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{t}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-$ $6.92(\mathrm{~m}, 3 \mathrm{H}), 7.26(J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 9.34(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 9.3,14.1,15.4,16.9$, $22.7,27.4,29.3,29.6,30.0,31.7,31.9,36.5,36.6,55.3,74.8,87.0,113.8,129.3$, 130.7, 137.6, 157.9, 159.2, 195.5.

Ester from 9d: To a solution of (carbethoxyethylidene)triphenylphosphorane (1.77 g , $4.89 \mathrm{mmol})$ in THF (4 ml) was added a solution of $\mathbf{9 d}(680 \mathrm{mg}, 1.63 \mathrm{mmol})$ in THF (8 $\mathrm{ml})$ at room temperature. After the solution was heated for 12 h at reflux, the solution was diluted with hexane. After the reaction mixture was filtered through Celite, the filtrate was evaporated. The residue was purified by column chromatography on silica gel $($ hexane/ethyl acetate $=20 / 1)$ to give the ester $(676 \mathrm{mg}, 83 \%, E / Z=>95 / 5)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\delta 0.85-0.91(\mathrm{~m}, 6 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.66$ (m, 22H), 1.84 (brs, 3 H), 2.00 (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}$), 2.69-2.83 (m, 1H), 3.14 (dd, $J=$ $2.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 5.42(\mathrm{brd}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ (brs, 1H), 7.28 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.0,14.1,14.3,16.4,17.3,22.7,27.6,29.3,29.6,29.9,31.9,35.0,36.6,36.8,55.2$, $60.6,75.0,86.9,113.7,125.5,129.2,131.0,131.2,139.5,142.9,159.1,169.1$.

Ester from 9a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.85-0.89(\mathrm{~m}, 6 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.58(\mathrm{~m}$, $22 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.81(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 4.15-4.23 (m, 2H), $4.50(\mathrm{~s}, 2 \mathrm{H}), 5.77(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.9,14.1,14.3,16.30,16.31$, 18.5, 22.7, 27.3, 29.3, 29.6, 29.65, 29.67, 30.0, 31.9, 35.6, 36.5, 55.2, 60.5, 74.4, 87.9, 113.6, 124.9, 129.0, 131.1, 131.3, 139.6, 143.3, 158.9, 169.3.

Ester from 9b: $[\alpha]^{26}$ D -8.1 (c 0.45 , EtOH); IR (neat) 2926, 1714, $1615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.20-1.32(\mathrm{~m}, 22 \mathrm{H}), 1.84(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.99(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.73-2.85(\mathrm{~m}$, $1 \mathrm{H}), 3.11(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 5.70$ (brd, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13$ (brs, 1 H), 7.23 (d, $J=8.5 \mathrm{~Hz}$, 2H); 13C NMR $\delta 13.96,14.06,14.3,14.8,16.5,18.2,22.7,27.3,29.3,29.6,29.7$, $29.9,31.9,34.1,36.0,36.3,55.2,60.5,74.8,87.1,113.6,125.1,129.0,131.4,140.0$,
143.3, 159.0, 169.2; MS (EI+) m/z 500; Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{4}$: C, 76.75; H, 10.47. Found: C, 76.48; H, 10.27 .

Ester from 9c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.63(\mathrm{~m}, 22 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.82(\mathrm{~m}, 1 \mathrm{H})$, $3.07(\mathrm{dd}, J=4.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.21(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.0,14.1,14.3,16.4,16.7,17.4$, $22.7,27.5,29.4,29.6,30.0,31.2,31.9,36.1,36.4,55.3,60.6,74.9,88.3,113.7,125.4$, 129.2, 130.7, 131.1, 140.1, 143.0, 159.1, 169.2.

Alcohol from 9d: To a solution of the ester ($710 \mathrm{mg}, 1.42 \mathrm{mmol}$) in dichloromethane (8 ml) was added diisobutylaluminum hydride (4.3 ml of a 1.0 M solution in hexane, 4.3 mmol) at $-78^{\circ} \mathrm{C}$. After stirring for 15 min at $-78^{\circ} \mathrm{C}$, the reaction was quenched with methanol. After an aqueous Rochelle Salt solution and diethyl ether were added, the mixture was warmed to room temperature and stirred vigorously until the resulting white slurry was completely dissolved. After the phases were separated, the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with water and brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=10 / 1)$ to give the alcohol $(566 \mathrm{mg}, 87 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\delta 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.20-1.55(\mathrm{~m}, 19 \mathrm{H}), 1.60(\mathrm{brs}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H})$, 2.65-2.75 (m, 1H), $3.10(\mathrm{dd}, J=3.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}$, 2H), 5.12 (brd, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85$ (brs, 1H), 6.86 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13 \mathrm{C}} \mathrm{NMR} \delta 14.07,14.10,15.3,17.0,17.7,22.7,27.6,29.3,29.6,29.7$,
$30.0,31.9,35.1,36.4,36.6,55.2,69.4,75.0,87.3,113.7,129.2,129.5,131.0,131.3$, 134.2, 159.0.

Alcohol from 9a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.04$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.43(\mathrm{~m}, 19 \mathrm{H}), 1.60(\mathrm{brs}, 1 \mathrm{H}), 1.76(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.81$ (d, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.68-2.81(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=4.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $4.02(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 5.46(\mathrm{brd}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{brs}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.27(\mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 10.6,14.1,16.0,16.2,18.4,22.7,27.3$, $29.3,29.63,29.64,29.7,30.0,31.9,32.3,35.7,36.5,55.2,74.4,87.7,113.7,129.1$, 131.1, 132.0, 135.0, 144.5, 155.7, 159.1, 196.3.

Alcohol from 9b: $[\alpha]^{27}{ }_{\mathrm{D}}-2.5$ (c 0.3, EtOH); IR (neat) $3395,2925,1614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.18-1.60(\mathrm{~m}, 19 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.82(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=5.2$, $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 5.39(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.0,14.8,15.3,17.0,18.5$, 22.7, 27.3, 29.3, 29.62, 29.63, 29.7, 29.9, 31.9, 34.1, 35.8, 36.2, 55.2, 69.6, 74.4, 87.3, 113.5, 129.0, 129.8, 131.3, 131.6, 133.9, 134.0, 158.9; MS (EI+) m/z 457; Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{3}: \mathrm{C}, 78.55 ; \mathrm{H}, 10.99$. Found: $\mathrm{C}, 78.48 ; \mathrm{H}, 10.75$.

Alcohol from 9c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-1.69(\mathrm{~m}, 19 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.77(\mathrm{~m}, 1 \mathrm{H})$, $3.05(\mathrm{dd}, J=4.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27(J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$; 13 C NMR $\delta 14.1,15.3,16.9,17.0,17.5,22.7,27.5,29.3$, 29.6, 29.7, 30.0, 31.1, 31.9, 35.9, 36.3, 55.2, 69.5, 74.9, 88.7, 113.7, 128.3, 129.0, 129.2, 129.5, 130.7, 131.3, 134.2, 134.6, 159.0.

Dienal 10d: To a mixture of the alcohol ($560 \mathrm{mg}, 1.22 \mathrm{mmol}$), N-methyl molphorine N-oxide ($214 \mathrm{mg}, 1.83 \mathrm{mmol}$) and molecular sieves 4A (850 mg) in dichloromethane (9 ml) were added tetrapropylammonium perruthenate ($560 \mathrm{mg}, 0.12 \mathrm{mmol}$) at room temperature. After stirring for 1 h at the same temperature, the reaction mixture was filtered through Celite, and then the filtrate was washed with aqueous sodium sulfite, water, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=15 / 1$) to give $\mathbf{1 0 d}(518 \mathrm{mg}$, $93 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.48(\mathrm{~m}, 18 \mathrm{H}), 1.55-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~d}, J=0.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.98(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.75-2.85(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=3.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}), 4.50(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{brd}, J=10.1 \mathrm{~Hz}$, 1H), 6.69 (brs, 1H), $6.87(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 9.39(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 10.7,14.1,14.3,16.1,16.9,22.6,27.5,29.3,29.58,29.60,29.63,29.9$, $31.9,34.8,36.7,36.9,55.2,75.0,86.6,113.7,129.2,131.0,131.7,135.5,144.2$, 155.0, 159.1, 196.0.

Dienal 10a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.85-0.91(\mathrm{~m}, 6 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.60(\mathrm{~m}$, $19 \mathrm{H}), 1.95(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.77-2.89(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}$, $J=3.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.46(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.03$ (brd, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (brs, 1H), 6.84-6.89 (m, 2H), 7.23-7.29 (m, 2H), 9.36 (s, 1H); 13C NMR $\delta 10.6,14.1,16.0,16.2,18.4,22.7,27.3,29.3,29.63,29.64$, 29.7, 30.0, 31.9, 32.3, 35.7, 36.5, 55.2, 74.4, 87.7, 113.7, 129.1, 131.1, 132.0, 135.5, 144.5, 155.7, 159.1, 196.3.

Dienal 10b: 1 H NMR $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.45(\mathrm{~m}, 18 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~d}$,
$J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.78-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=5.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.45$ (d, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{brd}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{brs}$, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 10.6$, $14.1,14.8,16.1,18.1,22.7,27.3,29.3,29.6,29.7,29.9,31.9,33.9,36.1,36.3,55.2$, 74.6, 87.0, 113.6, 129.1, 131.2, 132.4, 135.1, 144.8, 155.7, 159.0, 196.3.

Dienal 10c: 1 H NMR $\delta 0.88$ (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 0.98 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.09 (d, $J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.66(\mathrm{~m}, 19 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.86(\mathrm{~m}, 1 \mathrm{H}), 3.11$ (dd, $J=4.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.47(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.74(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 9.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 10.6,14.0,15.2,16.0,16.2,17.1,22.6,27.4,29.3$, $29.59,29.62,29.9,31.4,31.9,36.1,36.4,55.2,74.8,87.8,113.7,129.2,130.9,131.4$, 135.5, 144.7, 155.0, 159.1, 196.0.

Thioester 11d: To a mixture of tin(II) trifluoromethanesulfonate ($1.32 \mathrm{~g}, 3.16 \mathrm{mmol}$) and (S)-1-methyl-2-[(N-1-naphthylamino)methyl]pyrrolidine ($911 \mathrm{mg}, 3.79 \mathrm{mmol}$) in dichloromethane (8 ml) was added a solution of dibutyltin diacetate $(1.24 \mathrm{~g}, 3.52$ $\mathrm{mmol})$ in dichloromethane $(4 \mathrm{ml})$ at room temperature. After the solution was cooled to $-78^{\circ} \mathrm{C}$, a solution of silyl enol ether $\mathbf{3}(601 \mathrm{mg}, 3.16 \mathrm{mmol}$) in dichloromethane (3 ml) was added followed by a solution of $\mathbf{1 0 d}$ ($481 \mathrm{mg}, 1.05 \mathrm{mmol}$) in dichloromethane (3 ml). After stirring for 16 h at $-78^{\circ} \mathrm{C}$, the reaction was quenched with an aqueous sodium hydrogen carbonate solution, and the aqueous layer was extracted with dichloromethane. The extract was washed with water and brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=9 / 1)$ to give $\mathbf{1 1 d}(545 \mathrm{mg}, 90 \%)$ as a colorless oil: 1 H NMR $\delta 0.87(\mathrm{t}, J=7.0$
$\mathrm{Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.48(\mathrm{~m}, 25 \mathrm{H}), 1.72$ $(\mathrm{d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 1 \mathrm{H}), 2.62-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.77-$ $2.95(\mathrm{~m}, 3 \mathrm{H}), 3.10(\mathrm{dd}, J=2.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{dq}, J=1.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{q}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.28(J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.9,14.10,14.11,14.4,14.6,17.0,17.7$, 22.7, 23.2, 27.6, 29.3, 29.6, 29.67, 29.68, 30.0, 31.9, 35.1, 36.4, 36.6, 51.4, 55.3, 75.0, $77.2,87.3,113.7,129.2,130.87,130.94,131.4,133.0,134.1,159.0,203.4$.

Thioester 11a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.84-0.90(\mathrm{~m}, 6 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.65(\mathrm{~m}$, $25 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{brs}, 1 \mathrm{H}), 2.68-2.91(\mathrm{~m}, 4 \mathrm{H}), 3.01-3.05(\mathrm{~m}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 5.42(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~s}$, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.9,14.1,14.3$, $14.6,16.4,17.0,18.8,22.7,23.2,27.3,29.6,29.68,29.71,30.0,31.9,35.5,36.4,51.4$, 55.2, 74.4, 77.5, 88.2, 113.6, 129.0, 130.9, 131.2, 131.6, 132.8, 133.4, 158.9, 203.3.

Thioester 11b: $[\alpha]^{24}{ }_{\mathrm{D}}+55.3$ (c 0.2, EtOH); IR (neat) $3502,2925,1681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.18-1.62(\mathrm{~m}, 25 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.90$ $4 \mathrm{H}), 3.07(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.29-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 11.9,14.1,14.4,14.6,14.8,15.2,17.1$, 18.4, 22.7, 27.3, 29.3, 29.6, 29.7, 30.0, 31.9, 34.2, 35.8, 36.2, 51.4, 55.2, 65.8, 74.4, 87.3, 113.7, 128.9, 131.20, 131.23, 132.8, 134.0, 158.9, 203.3; MS (EI+) m/z 574; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 73.12 ; \mathrm{H}, 10.17$. Found: C, $72.85 ; \mathrm{H}, 10.03$.

Thioester 11c: 1 H NMR $\delta 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.69(\mathrm{~m}, 25 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 2.39($ brs, 1 H$), 2,82-$ $2.83(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.88(\mathrm{~m}, 3 \mathrm{H}), 3.03(\mathrm{dd}, J=4.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.30(\mathrm{~d}$,
$J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=9.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $11.9,14.1,14.2,14.3,14.6,17.0,17.5,22.7,23.2,27.6,29.3,29.6,29.7,30.0,31.1$, $31.9,36.0,36.3,51.3,55.2,74.9,77.2,80.7,113.7,129.2,130.6,130.9,131.3,133.0$, 134.5, 159.0, 203.4.

TES Ether from 11d: To a mixture of 11d ($545 \mathrm{mg}, 0.95 \mathrm{mmol}$) and 2,6 -lutidine ($610 \mathrm{mg}, 5.69 \mathrm{mmol}$) in dichloromethane (4.5 ml) was added a solution of triethylsilyl trifluoromethanesulfonate ($753 \mathrm{mg}, 2.85 \mathrm{mmol}$) in dichloromethane $(1.5 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 30 min at room temperature, the reaction was quenched with an aqueous sodium hydrogen carbonate solution, and the aqueous layer was extracted with dichloromethane. The extract was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/benzene $=1 / 1$) to give the TES ether ($602 \mathrm{mg}, 92 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\delta 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$, $0.884(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.885(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.04(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.48(\mathrm{~m}$, $19 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09$ (dd, $J=2.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{dq}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $4.8,6.8,13.0,13.7,14.1,14.7,16.8,17.7,22.7,23.0,27.6,29.4,29.66,29.67,29.68$, $29.70,29.9,31.9,35.1,36.4,36.6,53.5,55.2,75.0,80.3,87.3,113.7,129.2,130.9$, 131.38, 131.41, 133.7, 134.7, 159.0, 201.8.

TES Ether from 11a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.57(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.80-1.05(\mathrm{~m}, 18 \mathrm{H}), 1.10-$ $1.60(\mathrm{~m}, 25 \mathrm{H}), 1.67(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.30-2.80(\mathrm{~m}, 4 \mathrm{H})$,
2.98-3.03 (m, 1H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 5.37(\mathrm{brd}, J=$ $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{brs}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.8,6.8,13.0,13.7,14.1,14.7,16.5,16.8,18.7,22.7,23.1,27.4,29.4,29.66,29.70$, $29.73,30.0,32.0,35.4,36.2,53.5,55.2,74.2,80.5,88.2,113.5,128.8,130.9,131.7$, 133.1, 133.3, 134.3, 158.8, 201.9.

TES Ether from 11b: $[\alpha]^{26}{ }_{\mathrm{D}}+28.9$ (c 0.22, EtOH); IR (neat) 2926, 1683, 1614, 1248 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.57(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.85-1.00(\mathrm{~m}, 18 \mathrm{H}), 1.13-1.45(\mathrm{~m}, 25 \mathrm{H})$, $1.69(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.76(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.65-2.88(\mathrm{~m}, 4 \mathrm{H}), 3.05(\mathrm{dd}, J=$ 5.0, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.50(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{brd}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{brs}, 1 \mathrm{H}), 6.82-6.88(\mathrm{~m}$, 2H), 7.20-7.26 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\delta 4.8,6.8,13.0,13.7,14.1,14.7,16.9,18.4,22.7$, $23.0,27.4,29.4,29.6,29.7,30.0,31.9,34.2,35.8,36.0,53.5,55.2,74.3,80.5,87.1$, 113.5, 128.9, 131.3, 131.7, 133.9, 134.4, 158.8, 201.8; FABMS ($\mathrm{M}^{+}+\mathrm{Na}$) 712; Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{72} \mathrm{O}_{4} \mathrm{SSi}$: C, 71.45 ; H, 10.53. Found: C, $71.26 ; \mathrm{H}, 10.75$.

TES Ether from 11c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.57(\mathrm{q}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.90-0.96(\mathrm{~m}, 15 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.61(\mathrm{~m}, 22 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.74$ (s, 3H), 2.69-2.85 (m, 4H), 3.02 (dd, $J=4.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.15$ (d, $J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.8,6.8,13.0,13.7,14.1,14.7,16.8,17.0$, 17.4, 22.7, 23.0, 27.6, 29.4, 29.6, 29.7, 30.0, 31.2, 31.9, 36.0, 36.3, 53.5, 55.3, 74.9, 80.4, 88.8, 113.7, 129.2, 130.7, 131.4, 134.2, 134.7, 159.0, 201.8.

Aldehyde 12d: To a solution of the TES ether ($98.1 \mathrm{mg}, 0.14 \mathrm{mmol}$) in dichloromethane (2 ml) was added diisobutylaluminum hydride $(0.3 \mathrm{ml}$ of a 0.95 M
solution in hexane, 0.28 mmol) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 5 min at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched with methanol. After an aqueous Rochelle Salt solution and diethyl ether were added, the mixture was warmed to room temperature and stirred vigorously until the resulting white slurry was completely dissolved. After the phases were separated, the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with water and brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=25 / 1$) to give $\mathbf{1 2 d}(86.0$ $\mathrm{mg}, 96 \%$) as a colorless oil. $[\alpha]^{27}{ }_{\mathrm{D}}-0.7$ (c 1.3, EtOH); ${ }^{1} \mathrm{H}$ NMR $\delta 0.59(\mathrm{q}, J=7.9 \mathrm{~Hz}$, $6 \mathrm{H}), 0.85-0.97(\mathrm{~m}, 15 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.60$ (m, 19H), $1.70(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.76(\mathrm{~m}, 1 \mathrm{H}), 3.10$ (dd, J $=2.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.69(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.8,6.8,8.9,14.08,14.12,14.14,16.9,17.6,22.7,27.6,29.3$, 29.6, 29.7, 29.9, 31.9, 35.0, 36.4, 36.6, 51.0, 55.2, 75.0, 77.9, 87.2, 113.7, 129.1, 130.7, 130.9, 131.4, 134.0, 134.3, 159.0, 204.5.

Aldehyde 12a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.57$ (q, $J=7.9 \mathrm{~Hz}, 6 \mathrm{H}$), 0.83-1.06 (m, 18H), 1.11-1.66 (m, 22H), 1.69-1.76 (m, 9H), 2.40-2.58 (m, 1H), 2.60-2.80 (m, 1H), $3.03(\mathrm{dd}, J=4.9$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.29$ (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 5.39(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, 1H), 5.86 (brs, 1H), 6.84 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 9.68 (d, $J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.8,6.8,8.9,14.1,14.2,16.5,17.0,18.7,22.7,27.4,29.4,29.6$, $29.69,29.72,30.0,31.9,35.5,36.2,50.9,55.2,74.3,78.1,88.2,113.6,128.9,130.8$, 131.2, 131.6, 133.5, 134.0, 158.9, 204.7.

Aldehyde 12b: $[\alpha]^{26}{ }_{\mathrm{D}}-13.1$ (c 1.0, EtOH); ${ }^{1} \mathrm{H}$ NMR $\delta 0.58$ (q, $J=7.8 \mathrm{~Hz}, 6 \mathrm{H}$), $0.84-$ 0.98 (m, 15H), 1.02-1.08 (m, 6H), 1.19-1.60 (m, 19H), 1.69-1.74 (m, 6H), 2.47-2.58
$(\mathrm{m}, 1 \mathrm{H}), 2.62-2.76(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~s}, 2 \mathrm{H}), 5.07(\mathrm{brd}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{brs}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 9.86(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.8,6.8,8.9,14.08,14.14,17.0,17.6$, $22.7,27.6,29.3,29.6,29.7,29.9,31.9,35.0,36.4,36.6,51.0,55.2,75.0,77.9,87.2$, $113.7,129.1,130.7,130.9,131.4,134.0,134.3,159.0,204.5$.

Aldehyde 12c: 1 H NMR $\delta 0.58(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-1.04$ $(\mathrm{m}, 15 \mathrm{H}), 1.11-1.60(\mathrm{~m}, 19 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.79$ $(\mathrm{m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=4.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}$, $2 \mathrm{H}), 5.15(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 9.69(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.8,6.8,9.0,14.0,14.1,16.90,16.93,17.2,22.7$, $27.6,29.4,29.66,29.68,29.71,30.0,31.3,31.9,35.9,36.3,50.9,55.2,74.9,77.9$, 88.6, 113.7, 129.2, 130.4, 131.1, 131.3, 134.35, 134.39, 159.0, 204.6.

Ester from 12d: To a solution of (carbethoxyethylidene)triphenylphosphorane (150 $\mathrm{mg}, 0.41 \mathrm{mmol})$ in THF (1 ml) was added a solution of $\mathbf{1 2 d}(86.0 \mathrm{mg}, 0.14 \mathrm{mmol})$ in THF (2 ml) at room temperature. After the solution was heated for 12 h at reflux, the solution was diluted with hexane. After the reaction mixture was filtered through Celite, the filtrate was evaporated. The residue was purified by column chromatography on silica gel (benzene) to give the ester $(84.0 \mathrm{mg}, 86 \%, E / Z=>95 / 5)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{25}+21.0(\mathrm{c} 1.5, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.59(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$, $0.86-0.93(\mathrm{~m}, 6 \mathrm{H}), 0.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.02-1.06(\mathrm{~m}, 6 \mathrm{H}), 1.24-1.45(\mathrm{~m}, 22 \mathrm{H})$, $1.62(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.60-2.71$ $(\mathrm{m}, 2 \mathrm{H}), 3.08(\mathrm{dd}, J=2.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-$ $4.25(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{dq}, J=0.7,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{q}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.55(\mathrm{dq}, J=1.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR $\delta 4.8,6.9,12.4,13.4,14.1,14.2,14.3,15.7,16.9,17.7,22.7,27.6,29.3,29.6$, 29.7, 29.9, 31.9, 35.0, 36.3, 36.6, 38.1, 55.2, 60.3, 74.9, 81.9, 87.3, 113.7, 129.2, $130.5,130.8,131.4,133.2,135.8,144.7,159.0,168.2$.

Ester from 12a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.59$ (q, $\left.J=7.8 \mathrm{~Hz}, 6 \mathrm{H}\right), 0.82-1.07$ (m, 21H), 1.12-1.60 $(\mathrm{m}, 22 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=5.0$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.81(\mathrm{~m}, 4 \mathrm{H}), 4.05-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.47-4.53(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.8,6.8,12.4,13.5,14.1,14.2,15.7,16.5,17.0,18.6$, 22.7, 27.4, 29.3, 29.6, 29.69, 29.72, 30.0, 31.9, 35.4, 36.1, 36.6, 38.1, 55.2, 60.3, 74.2, 82.1, 88.2, 113.5, 126.3, 128.8, 130.8, 130.9, 131.7, 132.9, 135.3, 144.8, 158.8, 168.3. Ester from 12b (22): $[\alpha]^{28}{ }_{\mathrm{D}}-8.6$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) 2925, 1709, $1246 \mathrm{~cm}-1 ; 1 \mathrm{H}$ NMR $\delta 0.59(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.85-1.00(\mathrm{~m}, 18 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-$ $1.38(\mathrm{~m}, 22 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.60-2.80(\mathrm{~m}, 2 \mathrm{H})$, 3.06 (dd, $J=4.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.83(\mathrm{~m}, 4 \mathrm{H}), 4.05-4.18(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=10.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{dq}, J$ $=1.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.89(\mathrm{~m}, 2 \mathrm{H}) 7.19-7.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.8,6.9,12.4$, $13.5,14.1,14.2,14.6,15.7,17.0,18.3,22.7,27.4,29.3,29.6,29.7,30.0,31.9,34.3$, 35.8, 36.0, 38.2, 55.2, 60.2, 74.2, 82.0, 87.1, 113.5, 126.4, 128.9, 130.9, 131.4, 131.7, 133.5, 135.4, 144.8, 158.8, 168.2; MS (EI+) m/z 685; Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{76} \mathrm{O}_{3} \mathrm{SSi}$: C, 74.10; H, 10.74. Found: C, 74.10; H, 10.50.

Ester from 12c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.59(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-$ $1.05(\mathrm{~m}, 18 \mathrm{H}), 1.24-1.54(\mathrm{~m}, 22 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $3 \mathrm{H}), 2.60-2.77(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{dd}, J=4.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.81(\mathrm{~m}, 4 \mathrm{H}), 4.09-4.20$ (m, 2H), $4.50(\mathrm{~s}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{dq}, J=1.4,10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.9,6.9,12.4$,
13.5, 14.1, 14.3, 15.7, 16.9, 17.4, 22.7, 27.6, 29.4, 29.66, 29.68, 29.7, 30.0, 31.2, 31.9, 35.9, 36.3, 38.2, 55.2, 60.3, 74.9, 81.9, 88.7, 113.7, 126.4, 129.2, 130.6, 130.7, 131.4, 133.7, 135.7, 144.8, 159.0, 168.2.

Alcohol 13d: To a solution of the ester ($55.6 \mathrm{mg}, 0.78 \mathrm{mmol}$) in ethanol (1.6 ml) was added a 1 M aqueous HCl solution (0.65 ml) at room temperature. After stirring for 12 h at room temperature, the reaction was quenched with an aqueous sodium hydrogen carbonate solution, and the aqueous layer was extracted with ethyl acetate. The extract was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography on silica gel (hexane/ethyl acetate $=4 / 1)$ to give $\mathbf{1 3 d}(43.8 \mathrm{mg}$, 94%) as a colorless oil. $[\alpha]^{27}{ }_{\mathrm{D}}+53.0$ (c 1.0, EtOH); ${ }^{1} \mathrm{H}$ NMR $\delta 0.86-1.00(\mathrm{~m}, 6 \mathrm{H})$, $1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.41(\mathrm{~m}, 22 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H})$, $1.68(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.64-2.79(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{dd}, J=2.9,8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{brd}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{dq}, J=1.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2H) $7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$; 13 C NMR $\delta 12.4,13.4,14.1,14.3,15.7,17.0,17.6$, 22.7, 27.6, 29.4, 29.6, 30.0, 31.9, 35.0, 36.4, 36.6, 37.2, 55.2, 60.4, 75.0, 81.4, 87.2, 113.7, 126.9, 129.2, 130.7, 131.2, 131.4, 133.9, 135.4, 143.8, 159.0, 168.2.

Alcohol 13a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.83-0.89(\mathrm{~m}, 6 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.15-1.60(\mathrm{~m}, 22 \mathrm{H}), 1.60-1.67$ (m, 6H), 1.83 (s, 3H), 2.65-2.78 (m, 2H), 3.02 (dd, $J=4.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.47$ ($\mathrm{s}, 2 \mathrm{H}$), 5.37 (brd, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84$ (brs, 1H), $6.56(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 12.4, 13.4, 14.1, $14.2,15.7,16.4,17.0,18.8,22.7,27.3,29.3,29.6,29.68,29.71,30.1,31.9,35.4,36.4$,
37.2, 55.2, 60.4, 74.4, 81.7, 88.2, 113.6, 126.9, 129.0, 130.8, 131.5, 131.6, 133.5, 135.0, 143.9, 158.9, 168.2.

Alcohol 13b: $[\alpha]^{31}{ }_{\mathrm{D}}+22.0(\mathrm{c} 1.0, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.63(\mathrm{~m}$, $22 \mathrm{H}), 1.67-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.84(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.68-2.79(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32($ brd, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.86($ brs, 1 H$)$, $6.58(\mathrm{dq}, J=1.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 12.4,13.6,14.1,14.2,14.8,15.6,17.1,18.4,22.7,27.3,29.3,29.6,29.7,30.0$, $31.9,34.2,35.8,36.2,37.3,55.2,60.4,74.1,81.4,87.3,113.6,126.9,129.0,131.2$, 131.5, 131.7, 134.0, 135.0, 144.0, 158.9, 168.2.

Alcohol 13c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.51(\mathrm{~m}, 22 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}$, $3 \mathrm{H}), 1.84(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.68-2.77(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{dd}, J=4.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{dq}, J=1.4,10.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 12.4,13.6,14.1,14.16,14.20,15.6,16.9,17.0,17.4,22.7$, 27.5, 29.3, 29.6, 29.7, 30.0, 31.2, 31.9, 35.9, 36.3, 37.3, 55.2, 60.4, 74.9, 81.3, 88.6, 113.7, 126.9, 129.2, 130.5, 131.2, 131.3, 134.5, 135.3, 143.9, 159.0, 168.1.

Ketone from 13d: To a mixture of $\mathbf{1 3 d}(36.7 \mathrm{mg}, 0.061 \mathrm{mmol})$, N-methyl molphorine N-oxide ($10.9 \mathrm{mg}, 0.092 \mathrm{mmol}$) and molecular sieves $4 \mathrm{~A}(88 \mathrm{mg})$ in dichloromethane $(2 \mathrm{ml})$ were added tetrapropylammonium perruthenate $(4.3 \mathrm{mg}, 0.012 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 15 h at $0^{\circ} \mathrm{C}$, the reaction mixture was filtered through Celite, and then the filtrate was washed with aqueous sodium sulfite, water and brine. The
organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography on silica gel $($ hexane/ethyl acetate $=4 / 1)$ to give the ketone $(28.0 \mathrm{mg}, 77 \%)$ as a colorless oil. $[\alpha]^{27}{ }_{\mathrm{D}}+10.2(\mathrm{c} 1.4, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.45(\mathrm{~m}, 25 \mathrm{H}), 1.87(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.93(\mathrm{~d}, J$ $=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.94(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.70-2.85(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=2.9,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.10-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.50(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.45(\mathrm{dq}, J=0.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dq}, J=1.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{q}, J=1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 12.7,13.5$, $14.1,14.2,16.6,17.2,17.6,22.7,27.6,29.3,29.6,29.7,30.0,31.9,35.0,36.7,36.9$, $40.3,55.3,60.7,75.0,86.8,113.7,127.8,129.2,131.0,131.1,134.0,140.6,141.7$, 143.5, 159.1, 167.8, 202.6.

Ketone from 13a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.85-0.90(\mathrm{~m}, 6 \mathrm{H}), 1.07(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.60$ $(\mathrm{m}, 25 \mathrm{H}), 1.87(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.91(\mathrm{brs}, 3 \mathrm{H}), 1.94(\mathrm{brs}, 3 \mathrm{H}), 2.75-2.85(\mathrm{~m}, 1 \mathrm{H})$, $3.09(\mathrm{dd}, J=3.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.12-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.43-4.55(\mathrm{~m}, 2 \mathrm{H})$, 5.81 (brd, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\operatorname{brd}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~s}$, 1H), 7.23-7.27 (m, 2H); 13C NMR $\delta 12.7,13.4,14.1,14.2,16.3,16.5,17.8,18.6$, 22.7, 27.3, 29.3, 29.6, 29.68, 29.70, 30.0, 31.9, 35.7, 36.6, 40.2, 55.3, 60.6, 74.5, 87.8, 113.7, 127.7, 129.1, 131.2, 131.3, 133.5, 140.8, 141.9, 144.0, 159.1, 167.9, 202.7.

Ketone from 13b: $[\alpha]^{28}{ }_{\mathrm{D}}-2.4$ (c 1.0, EtOH); 1 H NMR $\delta 0.88$ (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), 0.95 $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.62(\mathrm{~m}, 25 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.92$ $(\mathrm{d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.87(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H})$, 4.11-4.27 (m, 3H), $4.45(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.75$ (brd, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{bq}, J=1.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{brd}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $6.94(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 12.7, 13.4, 14.1, 14.2, 14.8, 16.7,
17.7, 18.2, 22.7, 27.3, 29.3, 29.6, 29.7, 29.9, 31.9, 34.0, 36.2, 36.3, 40.2, 55.2, 60.7, 74.6, 87.1, 113.6, 127.7, 129.0, 131.3, 131.5, 133.5, 141.2, 141.9, 144.0, 159.0, 167.8, 202.7.

Ketone from 13c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.59(\mathrm{~m}, 25 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 2.75-$ $2.84(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=4.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.12-4.22(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $12.6,13.5,14.1,14.2,16.5,16.6,17.3,17.6,22.7,27.5,29.3,29.65,29.67,30.0,31.3$, $31.9,36.3,36.4,40.3,55.3,60.7,74.9,88.0,113.7,127.7,129.2,130.7,131.1,133.9$, 141.3, 141.7, 143.5, 159.1, 167.8, 202.6.

Alcohol 1d: To a solution of the ketone ($25.0 \mathrm{mg}, 0.042 \mathrm{mmol}$) in dichloromethane (1 $\mathrm{ml})$ was added water (0.05 ml) followed by 2,3-dichloro-5,6-dicyano- p-benzoquinone $(18.6 \mathrm{mg}, 0.082 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min at the same temperature, aqueous sodium hydrogen carbonate solution was added. After the phases were separated, the aqueous layer was extracted with dichloromethane. The combined organic extracts were washed with water and brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography on silica gel (benzene/diethyl ether $=9 / 1$) to give $\mathbf{1 d}(17.5 \mathrm{mg}$, $88 \%) \cdot[\alpha]^{26}{ }_{\mathrm{D}}+38.5(\mathrm{c} 0.9, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.83(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.60(\mathrm{~m}$, $22 \mathrm{H}), 1.89-1.92(\mathrm{~m}, 9 \mathrm{H}), 2.62-2.69(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=2.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{dq}, J=6.7,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{brd}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dq}, J$ $=1.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06($ brs, 1 H$) ;{ }^{13 \mathrm{C}} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 12.9,13.5,13.7,14.46$,
$14.55,16.8,17.5,18.0,23.7,28.3,30.5,30.75,30.79,30.9,33.1,35.6,37.2,38.2$, 41.3, 61.9, 79.0, 129.2, 135.0, 141.2, 143.2, 145.4, 169.3, 204.7.

Alcohol 1a: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.83-0.90(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.19$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.50(\mathrm{~m}, 21 \mathrm{H}), 1.60-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.92(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.93$ (brs, 3H), 2.72-2.80 (m, 1H), $3.19(\mathrm{dd}, J=3.9,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.33-4.40(\mathrm{~m}, 1 \mathrm{H}), 5.71-5.79(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}$, $1 \mathrm{H}), 7.08$ (brs, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 12.8,13.7,14.4,14.5,16.6,16.7,18.0$, 18.4, 23.7, 28.1, 30.5, 30.8, 31.2, 33.1, 37.2, 38.2, 41.3, 61.9, 80.6, 129.2, 133.1, 134.7, 140.4, 143.3, 145.8, 159.1, 169.3, 204.8.

Alcohol 1b: $[\alpha]^{27}{ }_{\mathrm{D}}-10.2(\mathrm{c} 0.4, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.60$ $(\mathrm{m}, 22 \mathrm{H}), 1.90-1.94(\mathrm{~m}, 9 \mathrm{H}), 2.72-2.78(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{dq}, J=6.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{brd}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}$, $1 \mathrm{H}), 7.09$ (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 12.8,13.7,14.4,14.5,14.8,16.8,18.0$, $23.7,28.0,30.5,30.6,30.7,30.8,30.9,33.1,34.5,37.36,37.42,41.3,61.9,79.8$, 129.2, 133.1, 134.7, 141.6, 143.3, 145.9, 169.3, 204.8.

Alcohol 1c: $[\alpha]^{26}{ }_{\mathrm{D}}-31.9(\mathrm{c} 0.39, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-$ $1.60(\mathrm{~m}, 22 \mathrm{H}), 1.91-1.93(\mathrm{~m}, 9 \mathrm{H}), 2.65-2.75(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=3.9,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.16(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{dq}, J=6.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{brd}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.65-6.68 (m, 1H), 7.07 (brs, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 12.8,13.6,14.4,14.5,16.8$, $17.5,17.9,23.7,28.4,30.5,30.7,30.75,30.81,30.9,33.1,37.5,37.8,41.3,66.9,81.0$, 129.2, 132.3, 134.7, 142.4, 143.3, 145.7, 169.3, 204.6.

Synthesis of Mimic 2a-d

Alcohol 15a: To a solution of D-ribose ($1.50 \mathrm{~g}, 10 \mathrm{mmol}$) in allyl alcohol (25 ml) was added conc. sulfuric acid $(0.2 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After storage for 12 h at $4^{\circ} \mathrm{C}$, the solution was neutralized with Amberlite IR-400 (OH free). After the resin was filtered off, the filtrate was concentrated under reduced pressure to give the allyl ribofuranoside as pale yellow oil (1.82 g), which was used without further purification.

To a mixture of the allyl ribofuranoside and p-methoxybenzyl chloride ($10.3 \mathrm{~g}, 66$ mmol) in THF (30 ml were added 50% aqueous potassium hydroxide solution (30 ml) and tetrabutylammonium bromide ($154 \mathrm{mg}, 0.48 \mathrm{mmol}$). The solution was stirred for 5 h at $90^{\circ} \mathrm{C}$. After cooling to room temperature, water and diethyl ether were added. stirred for 30 min at $0^{\circ} \mathrm{C}$, and an aqueous sodium hydrogen carbonate solution was added. After the phases were separated, the aqueous layer was extracted with diethyl ether. The combined extracts were washed with water and brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient elution, hexane/ethyl acetate $=11 / 1$ to $2 / 1$) to give $\mathbf{1 4}$ as a colorless oil ($4.49 \mathrm{~g}, 82 \%$ for two steps).

To a mixture of $\mathbf{1 4}$ ($3.54 \mathrm{~g}, 6.4 \mathrm{mmol}$) and [1,3-bis(diphenylphosphino)propane]dichloronickel(II) ($35 \mathrm{mg}, 0.064 \mathrm{mmol}$) in diethyl ether 15 ml was added diisobutylaluminum hydride $(12 \mathrm{ml}$ of a 1.0 M solution in hexane, 12 mmol$)$ at $0^{\circ} \mathrm{C}$. After stirring for 6 h at room temperature, the reaction was quenched with methanol. After an aqueous Rochelle Salt solution and diethyl ether were added, the mixture was warmed to room temperature and stirred vigorously until the resulting white slurry was completely dissolved. After the phases were separated, the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with water and brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient elution,
hexane/ethyl acetate $=5 / 1$ to $1 / 3)$ to give the $\operatorname{diol}(2.87 \mathrm{~g}, 87 \%)$ as a colorless oil. $) ; 1 \mathrm{H}$ NMR $\delta 2.50-2.70(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.84(\mathrm{~m}, 11 \mathrm{H})$, 3.93-3.98 (m, 1H), 4.42 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.57(\mathrm{~m}$, $3 \mathrm{H}), 4.63(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.89(\mathrm{~m}, 6 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.26$ (m, 4H); 13C NMR $\delta 55.2,61.0,70.6,70.7,71.5,73.0,73.6,78.8,78.9,113.75$, $113.78,113.83,129.50,129.51,129.7,129.9,130.0,130.1,159.3$.

To a mixture of the diol ($1.13 \mathrm{~g}, 2.2 \mathrm{mmol}$) and triphenylmethyl chloride $(920 \mathrm{mg}, 3.3$ mmol) in dichloromethane (8 ml) was added a solution of triethylamine in dichloromethane $(2 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 15 h at room temperature, water was added. After the phases were separated, the aqueous layer was extracted with ethyl acetate. The combined organic extracts were washed with a 1 M aqueous HCl solution, water, and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient elution, hexane/ethyl acetate $=8 / 1$ to $2 / 1$) to give $\mathbf{1 5 a}(1.56 \mathrm{~g}, 94 \%)$ as a white amorphousness. $[\alpha]^{24}{ }_{\mathrm{D}}+17.0$ (c 0.12, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) 3433, 2920, 1612, $1513,1248 \mathrm{~cm}^{-1}, 1 \mathrm{H}$ NMR $\delta 2.81(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dd}, J=4.6,10.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.46-3.55 (m, 3H), 3.73-3.82 (m, 11H), 3.90-3.97 (m, 1H), 4.35-4.48 (m, 5H), 4.70 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.76-6.79(\mathrm{~m}, 6 \mathrm{H}), 7.17-7.29(\mathrm{~m}, 13 \mathrm{H})$, 7.43-7.50 (m, 6H); ${ }^{13} \mathrm{C}$ NMR $\delta 55.2,63.2,70.6,71.4,72.2,72.9,73.2,78.3,79.2$, 86.7, 113.5, 113.7, 126.9, 127.7, 128.8, 129.41, 129.44, 129.6, 130.1, 130.3, 144.0, 159.0, 159.10, 159.13.

Alcohol 15b: IR (neat) $3480,2934,1513,1250 \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ NMR $\delta 2.72(\mathrm{~d}, J=3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.25(\mathrm{dd}, J=6.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.68-3.80(\mathrm{~m}, 10 \mathrm{H}), 3.85-3.96$ $(\mathrm{m}, 2 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J$ $=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.87(\mathrm{~m}, 4 \mathrm{H})$,
6.90-6.96 (m, 2H), 7.19-7.30 (m, 13H), 7.39-7.43 (m, 6H); 13C NMR δ 55.2, 63.0, 69.9, 70.8, 72.6, 72.9, 73.2, 77.2, 77.4, 86.9, 113.4, 113.6, 113.7, 126.9, 127.7, 128.6, $129.4,129.8,129.9,130.07,130.14,130.2,143.8,159.0,159.1,159.2$.

Alcohol 15d: To a mixture of p-nitrobenzoic acid ($1.23 \mathrm{~g}, 7.4 \mathrm{mmol}$) and triphenyl phosphine ($1.94 \mathrm{~g}, 7.4 \mathrm{mmol}$) in THF (5 ml) was added a solution of 15a in THF (15 $\mathrm{ml})$ followed by a solution of diethyl azodicarboxylate ($1.29 \mathrm{~g}, 7.4 \mathrm{mmol}$) at room temperature. After stirring for 2.5 h at the same temperature, an aqueous sodium hydrogen carbonate solution was added. The solution was extracted with ethyl acetate, and the extract was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient elution, hexane/ethyl acetate $=9 / 1$ to $2 / 1)$ to give the ester $(3.23 \mathrm{~g}, 96 \%)$ as a white amorphousness.

To a solution of the ester ($3.23 \mathrm{~g}, 3.6 \mathrm{mmol}$) in dichloromethane (80 ml) was added diisobutylaluminum hydride (12 ml of a 0.9 M solution in hexane, 10.7 mmol) at -78 ${ }^{\circ} \mathrm{C}$. After stirring for 1 h at the same temperature, the reaction was quenched with methanol. After an aqueous Rochelle Salt solution and diethyl ether were added, the mixture was warmed to room temperature and stirred vigorously until the resulting white slurry was completely dissolved. After the phases were separated, the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with water and brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient elution, hexane/ethyl acetate $=8 / 1$ to $2 / 1$) to give $\mathbf{1 5 d}(2.30 \mathrm{~g}, 85 \%)$ as a white amorphousness. ${ }^{1} \mathrm{H}$ NMR $\delta 2.72(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=4.5,10.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.44-3.51 (m, 3H), 3.76-3.83 (m, 11H), 4.02-4.07 (m, 1H), $4.26(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.34(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ $(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.91$ (m, 6H), 7.20-7.30 (m, 13H), 7.44-7.48 (m, 6H); 13C NMR δ 55.22, 55.24, 62.9, 69.5, $70.8,71.4,72.6,72.9,73.2,76.5,78.3,86.7,113.5,113.71,113.74,126.9,127.7$, 128.8, 129.4, 129.5, 129.9, 130.0, 130.21, 130.24, 143.9, 159.1, 159.2.

Alcohol 15c: $[\alpha]^{21}{ }_{\mathrm{D}}-3.1\left(\mathrm{c} 0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (neat) 3462, 2923, 1514, $1250 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.47$ (brs, 1H), 3.22-3.33 (m, 3H), $3.34(\mathrm{dd}, J=4.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.79$ (m, 10H), 3.84-3.86 (m, 2H), $4.36(\mathrm{~s}, 2 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.84(\mathrm{~m}, 4 \mathrm{H}), 7.05-7.07(\mathrm{~m}$, 2H), 7.17-7.28 (m, 13H), 7.43-7.46 (m, 6H); 13C NMR δ 55.1, 62.7, 69.7, 70.6, 72.2, $72.6,74.2,77.5,78.8,86.7,113.5,113.57,113.60,126.5,126.9,127.7,127.8,128.0$, 128.6, 129.2, 129.6, 129.8, 130.1, 130.3, 143.8, 159.02, 159.05.

Ester from 15a: To a mixture of 15a ($1.67 \mathrm{~g}, 2.2 \mathrm{mmol}$) and trans-2-methyl-2pentadecenoic acid ($1.00 \mathrm{~g}, 3.9 \mathrm{mmol}$) in dichloromethane (17 ml) was added a solution of dicyclohexyl carbodiimide ($815 \mathrm{mg}, 3.9 \mathrm{mmol}$) followed by N, N dimethylaminopyridine ($478 \mathrm{mg}, 3.9 \mathrm{mmol}$). The solution was heated at reflux for 2.5 h . After cooling to room temperature, the solvent was evaporated and the residue was dissolved in ethyl acetate. The solution was washed with a 1 M aqueous HCl solution, water, and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient elution, hexane/ethyl acetate $=12 / 1$ to $4 / 1$) to give the ester ($1.85 \mathrm{~g}, 84$ as a white amorphousness. $[\alpha]^{24}{ }_{\mathrm{D}}+11.7$ (c $0.29, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) 2923, 1715, 1613, 1513, $1246 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.45(\mathrm{~m}, 20 \mathrm{H}), 1.82(\mathrm{~s}$,
$3 \mathrm{H}), 2.12-2.18(\mathrm{~m}, 2 \mathrm{H}), 3.22(\mathrm{dd}, J=5.2,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=2.2,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.60-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{dd}, J=3.4,8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.53-5.58 (m, 1H), 6.71-6.94 (m, 9H), 7.15-7.29 (m, 13H), 7.41-7.48 (m, 6H); ${ }^{13} \mathrm{C}$ NMR $\delta 12.6,14.1,22.7,28.6,28.7,29.3,29.4,29.5,29.6,29.7,31.9,55.2,63.3,68.2$, 72.0, 72.4, 72.6, 73.3, 78.0, 86.6, 113.5, 113.6, 113.7, 126.8, 127.6, 127.7, 128.8, 129.1, 129.4, 129.6, 130.3, 130.4, 130.5, 142.9, 144.1, 159.0, 159.6, 167.0.

Ester from 15b: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.49(\mathrm{~m}, 20 \mathrm{H}), 1.81(\mathrm{~s}$, $3 \mathrm{H}), 2.13-2.22(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{dd}, J=6.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=6.0,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.39(\mathrm{dd}, J=6.0,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.82(\mathrm{~m}, 12 \mathrm{H}), 4.00(\mathrm{dd}, J=3.2,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.16-5.25$ $(\mathrm{m}, 1 \mathrm{H}), 6.67-6.85(\mathrm{~m}, 7 \mathrm{H}), 6.91-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.31(\mathrm{~m}, 13 \mathrm{H}), 7.38-7.44(\mathrm{~m}$, 6H); ${ }^{13} \mathrm{C}$ NMR $\delta 12.5,14.2,22.7,28.6,28.8,29.3,29.5,29.6,29.7,31.9,55.2,63.3$, 68.0, 72.5, 72.6, 72.9, 74.1, 77.5, 86.9, 113.4, 113.5, 113.6, 126.9, 127.5, 127.8, 128.7, 129.2, 129.8, 129.9, 130.3, 143.0, 143.9, 159.0, 159.1, 167.2.

Ester from 15c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.39(\mathrm{~m}, 20 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H})$, 2.10-2.14 (m, 2H), 3.33 (dd, $J=5.1,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.74(\mathrm{~m}, 13 \mathrm{H}), 4.04(\mathrm{dd}, J=$ $4.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.57(\mathrm{~m}, 6 \mathrm{H}), 5.27-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.27-5.32(\mathrm{~m}, 1 \mathrm{H}), 6.71-6.82$ (m, 7H), 7.00-7.03 (m, 2H), 7.16-7.29 (m, 13H), 7.40-7.43 (m, 6H); 13C NMR δ 12.3, 14.0, 22.6, 28.4, 28.6, 29.2, 29.3, 29.4, 29.5, 31.8, 55.0, 62.7, 67.9, 71.9, 72.5, 72.7, $74.0,76.6,86.8,113.3,113.5,113.6,126.8,127.4,127.7,128.6,129.1,129.5,129.6$, 130.1, 130.3, 130.4, 142.8, 143.8, 158.9, 159.0, 167.2.

Ester from 15d:IR (neat) 2924, 1706, 1613, 1513, $1249 \mathrm{~cm}^{-1}$; 1H NMR $\delta 0.88$ (t, $J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.44(\mathrm{~m}, 20 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.17(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{dd}, J=5.0$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.75-3.80(\mathrm{~m}, 9 \mathrm{H}), 4.04(\mathrm{dd}, J=3.2,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.28-4.45 (m, 5H), 4.62 (d, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.54(\mathrm{~m}, 1 \mathrm{H}), ~ 6.69-6.96(\mathrm{~m}, 9 \mathrm{H})$, 7.16-7.35 (m, 13H), 7.43-7.50 (m, 6H), 7.43-7.50 (m, 6H); ${ }^{13} \mathrm{C}$ NMR δ 12.4, 14.1, 22.7, 28.5, 28.7, 29.3, 29.4, 29.5, 29.6, 31.9, 55.2, 63.1, 67.7, 71.6, 72.5, 72.6, 73.6, 76.1, 77.9, 86.6, 113.4, 113.6, 113.7, 126.9, 127.5, 127.7, 128.8, 129.3, 129.4, 129.7, $130.2,130.4,130.5,143.0,144.0,158.9,159.1,167.5$.

Alcohol 16a: To a solution of the ester ($1.85 \mathrm{~g}, 1.9 \mathrm{mmol}$) derived from 15a in diethyl ether (26 ml) was added 98% formic acid $(13 \mathrm{ml})$ at room temperature. After stirring for 12 h at the same temperature, the solution was neutralized with an aqueous sodium hydrogen carbonate solution. After the phases were separated, the aqueous layer was extracted with ethyl acetate. The combined organic extracts were washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient elution, hexane/ethyl acetate $=9 / 1$ to $2 / 1$) to give 16a $(971 \mathrm{mg}, 69 \%)$ as a colorless oil. IR (neat) $3445,2923,1713,1613,1513,1248 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.20-1.47(\mathrm{~m}, 20 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 2.05$ (brs, 1H), 2.13-2.23 (m, 2H), 3.55-3.66 (m, 1H), 3.65-3.76 (m, 4H), $3.78(\mathrm{~m}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.91-3.94(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~d}, ~ J$ $=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.63(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.49(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.87(\mathrm{~m}, 7 \mathrm{H}), 7.17-7.25(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 12.5,14.1,22.6,28.6,28.7,29.3,29.4,29.5,29.6,31.9,51.2,61.1,68.0$, $71.5,72.4,72.6,73.6,78.1,78.2,113.6,113.8,127.3,129.2,129.5,129.7,129.9$, 130.2, 143.4, 159.1, 159.3, 167.3.

Alcohol 16b: $[\alpha]^{23}{ }_{\mathrm{D}}-3.8$ (c 2.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) 3444, 2925, 1705, 1613, 1514, $1248 \mathrm{~cm}^{-1}$; 1H NMR $\delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.48(\mathrm{~m}, 20 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.96$ (dd, $J=7.5,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.23(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.74-3.82(\mathrm{~m}, 10 \mathrm{H})$, 3.85 (dd, $J=3.5,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=4.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.27(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.87(\mathrm{~m}$, 7H), 7.17-7.24 (m, 6H); ${ }^{13} \mathrm{C}$ NMR δ 12.4, 14.1, 22.6, 28.6, 28.8, 29.3, 29.4, 29.5, $29.6,31.9,55.2,61.9,67.9,72.7,72.8,72.9,73.8,78.2,78.8,113.7,113.8,127.4$, 129.2, 129.6, 129.8, 30.1, 130.2, 143.5, 159.2, 159.3, 167.4; Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{64} \mathrm{O}_{9}$: C, 72.16; H, 8.61. Found: C, 71.92; H, 8.68.

Alcohol 16c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.86(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.41(\mathrm{~m}, 20 \mathrm{H}), 1.81(\mathrm{~d}, J=0.9$ $\mathrm{Hz}, 3 \mathrm{H}), 2.02(\mathrm{brs}, 1 \mathrm{H}), 2.10-2.17(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.79(\mathrm{~m}, 13 \mathrm{H})$, $3.89(\mathrm{~m}, 1 \mathrm{H}), 4.37$ (d, $J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 5.33(\mathrm{~m}$, $1 \mathrm{H}), ~ 6.76-6.89(\mathrm{~m}, 7 \mathrm{H}), 7.16-7.28(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 12.4,14.1,22.7,28.5,28.8$, 29.3, 29.5, 29.6, 31.9, 55.2, 61.7, 67.8, 71.9, 72.3, 72.7, 73.9, 78.3, 113.7, 113.8, $113.9,127.3,128.6,129.3,129.6,129.7,130.1,130.2,143.6,159.2,159.3,167.4$.

Alcohol 16d: IR (neat) 3342, 2925, 1710, 1614, 1514, $1248 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.46(\mathrm{~m}, 20 \mathrm{H}), 1.82(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.04($ brs, 1 H$), 2.10-2.20$ $(\mathrm{m}, 2 \mathrm{H}), 3.50-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.84(\mathrm{~m}, 12 \mathrm{H}), 3.94(\mathrm{dd}, J=3.6$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.37-5.44(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.89(\mathrm{~m}, 7 \mathrm{H}), 7.17-7.27(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 12.4, 14.1, 22.7, 28.5, 28.8, 29.3, 29.4, 29.5, 29.6, 31.9, 55.2, 60.6, 67.8, 71.6, 71.7, 72.8, 74.2, 76.3, 78.2, 113.7, 113.8, 127.4, 129.5, 129.7, 129.9, 130.3, 143.4, 159.2, 159.3, 167.5.

Methyl Ester 17a: To a mixture of 16a ($150 \mathrm{mg}, 0.2 \mathrm{mmol}$), N -methyl molphorine N oxide ($35 \mathrm{mg}, 0.3 \mathrm{mmol}$) and molecular sieves 4A (140 mg) in dichloromethane (2 $\mathrm{ml})$ was added tetra-n-propylammonium perruthenate $(7.0 \mathrm{mg}, 0.02 \mathrm{mmol})$ at the same temperature. After stirring for 1 h at room temperature, the reaction mixture was filtered through Celite, and then the filtrate was washed with aqueous sodium sulfite, water, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was filtered through a small column of silica gel (hexane/ethyl acetate $=4 / 1$) to give the aldehyde as a colorless oil, which was used without further purification.

To a solution of the aldehyde in tert-butyl alcohol (2.7 ml) were added 2-methyl-2butene (1.7 ml) and a mixture of sodium chlorite (350 mg) and sodium dihydrogenphospate dihydrate (350 mg) in water (2.7 ml). After stirring for 6 h at room temperature, the reaction mixture was diluted with water and ethyl acetate. After the phases were separated, the aqueous layer was extracted with ethyl acetate. The combined organic extracts were washed with water, an aqueous citric acid solution and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was filtered through a small column of silica gel (chloroform/methanol $=20 / 1$) to give the carboxylic acid, which was used without further purification.

To a solution of the carboxylic acid in 1:1 THF/methanol (1 ml) was added (trimethylsilyl)diazomethane (0.2 ml of a 2 M solution in hexane, 0.4 mmol) at room temperature. After stirring for 5 min at the same temperature, the mixture was diluted with water and ethyl acetate. After the phases were separated, the aqueous layer was extracted with ethyl acetate. The combined organic extracts were washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced
pressure. The residue was purified by preparative thin layer chromatography on silica gel (hexane/ethyl acetate $=2 / 1$) to give $17 \mathrm{a}(54 \mathrm{mg}, 35 \%$ for three steps) as a colorless oil. 1H NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.47$ (m, 20H), 1.79 (d, $J=0.4$ $\mathrm{Hz}, 3 \mathrm{H})$, 2.11-2.19 (m, 2H), 3.65-3.70 (m, 4H), 3.75-3.80 (m, 10H), 4.06-4.18 (m, $2 \mathrm{H}), 4.33(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.43(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.86(\mathrm{~m}, 4 \mathrm{H}), 7.10-$ 7.26 (m, 6H); ${ }^{13} \mathrm{C}$ NMR δ 12.4, 14.1, 22.7, 28.6, 28.7, 29.3, 29.5, 29.6, 31.9, 51.8, 55.2, 67.9, 71.4, 72.1, 72.6, 73.2, 77.7, 78.4, 113.56, 113.7, 127.4, 129.1, 129.7, $129.9,130.3,143.2,159.1,159.2,159.3,160.9,170.9$.

Methyl Ester 17b: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.18-1.48(\mathrm{~m}, 20 \mathrm{H}), 1.75(\mathrm{~s}$, $3 \mathrm{H}), 2.10-2.19(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.88(\mathrm{~m}, 11 \mathrm{H}), 4.08(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.24-4.55 (m, 6H), $4.68(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.20(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.75(\mathrm{~m}, 1 \mathrm{H})$, 6.75-6.89 (m, 6H), $7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.24(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 12.3$, 14.0, 22.6, 28.5, 28.7, 29.3, 29.4, 29.5, 29.6, 31.8, 51.8, 55.0, 55.1, 67.5, 72.0, 72.6, $72.7,73.8,77.1,77.6,113.5,113.6,127.2,128.8,129.2,129.8,129.9,130.1,130.2$, 143.3, 159.1, 159.2, 159.3, 166.8, 171.3.

Methyl Ester 17c: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88$ (t, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 1.21-1.41 (m, 20H), 1.80 (s, 3H), 2.11-2.18 (m, 2H), 3.59-3.62 (m, 5H), 3.75-3.77 (m, 9H), 4.07-4.12 (m, 1H), 4.07-4.70 (m, 6H), 5.30-5.35 (m, 1H), 6.79-6.85 (m, 7H), 7.12-7.21 (m, 2H); 13C NMR $\delta 12.2,14.0,22.5,28.4,28.6,29.2,29.3,29.4,29.5,31.7,51.7,55.0,67.7,72.3$, 72.4, 72.5.73.7, 77.6, 113.4, 113.5, 114.1, 127.2, 128.7, 129.1, 128.5, 129.9, 130.0, 130.1, 143.1, 159.0, 159.3, 167.1, 170.7.

Methyl Ester 17d: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88$ (t, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.17-1.47$ (m, 20H), 1.79 (s , $3 H), 2.09-2.18(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.71(\mathrm{~m}, 5 \mathrm{H}), 3.74-3.81(\mathrm{~m}, 9 \mathrm{H}), 4.04-4.15(\mathrm{~m}, 2 \mathrm{H})$, 4.26-4.60 (m, 6H), 5.37-5.44 (m, 1H), 6.73-6.87 (m, 7H), 7.10-7.26 (m, 6H); 13C

NMR $\delta 12.4,14.1,22.6,28.5,28.7,29.3,29.4,29.5,29.6,31.8,51.8,55.1,67.5$, 721.6, 72.2, 72.6, 73.7, 77.3, 77.9, 113.5, 113.6, 127.2, 129.2, 129.4, 129.9, 130.0, 143.2, 159.1, 159.3, 167.3, 171.3.

Triol 2a: To a solution of $\mathbf{1 7 a}(39.2 \mathrm{mg}, 0.051 \mathrm{mmol})$ in dichloromethane (2 ml) was added boron tribromide (0.25 ml of a 1 M solution in dichloromethane, 0.25 mmol) at $-78^{\circ} \mathrm{C}$. After stirring for 10 min at $-78^{\circ} \mathrm{C}$, the reaction was quenched with methanol and an aqueous sodium hydrogen carbonate solution. After the phases were separated, the aqueous layer was extracted with dichloromethane. The combined organic extracts were washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography on silica gel (chloroform/methanol $=10 / 1$) to give $\mathbf{2 a}(12.3 \mathrm{mg}$, $57 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.50(\mathrm{~m}$, $20 \mathrm{H}), 1.82$ (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.20(\mathrm{dd}, J=7.1,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{dd}, J$ $=4.6,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=3.2,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=3.7,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{ddd}, J=3.2,4.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{brd}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 12.5,14.4,23.7,29.7,30.5,30.6,30.7,30.8,33.1,52.4$, 61.6, 72.4, 73.8, 74.9, 128.8, 144.2, 168.8, 174.0.

Triol 2b: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.50(\mathrm{~m}, 20 \mathrm{H}), 1.83(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.21(\mathrm{dd}, J=7.2,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{dd}, J=3.9,12.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91$ (dd, $J=2.8,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95(\mathrm{ddd}, J=2.8,3.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $12.5,14.4,23.7,29.6,29.7,30.5,30.6,30.7,30.8,33.1,52.6,61.4,72.2,74.9,128.7$, 144.5, 168.8, 175.0.

Triol 2c: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.50(\mathrm{~m}, 20 \mathrm{H}), 1.85(\mathrm{~d}, J$
$=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.18-2.23(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{dd}, J=4.9,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (dd, $J=3.7,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=2.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.06(\mathrm{ddd}, J=3.7,4.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 12.5$, $14.4,23.7,29.7,30.5,30.6,30.7,30.8,33.1,52.6,61.6,72.2,72.8,76.8,128.8,144.3$, 169.5, 174.5 .

Triol 2d: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.50(\mathrm{~m}, 20 \mathrm{H}), 1.84(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.18-2.25(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.747(\mathrm{dd}, J=5.8,17.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.748(\mathrm{dd}, J=5.8,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=3.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17(\mathrm{~d}, J=3.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{brd}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 12.6,14.4,23.7,29.6,29.7,30.47,30.53,30.6,30.70,30.74,30.8,33.1,52.4,61.4$, $72.2,72.8,74.9,128.6,144.6,169.3,174.8$.

Stereoselective Synthesis of 7b

Ester 19: To a solution of (carbethoxymethylidene)triphenylphosphrane ($30.7 \mathrm{~g}, 88$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ was added a solution of $5(8.7 \mathrm{~g}, 44 \mathrm{mmol})$ in dichloromethane $(50 \mathrm{ml})$ at room temperature. After the solution was stirred for 12 h at room temperature, a solution was diluted with hexane. After the reaction mixture was filtered through Celite, the filtrate was evaporated. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=20 / 1)$ to give $\mathbf{1 9}(10.7 \mathrm{~g}$, $91 \%, E / Z=>95 / 5$) as a colourless oil. IR (neat) $2924,1721 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.41(\mathrm{~m}, 21 \mathrm{H}), 2.24-2.33(\mathrm{~m}, 1 \mathrm{H}), 4.19$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13 \mathrm{C}} \mathrm{NMR} \delta$ $14.1,14.3,19.4,22.7,27.2,29.3,29.5,29.6,29.7,31.9,36.0,36.5,60.1,119.5,154.8$, 167.0; MS (EI+) m/z 268; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2}$: C, 76.06; H, 12.02. Found: C,

Alcohol 20: To a solution of $\mathbf{1 9}(8.6 \mathrm{~g}, 32 \mathrm{mmol})$ in dichloromethane (50 ml) was added diisobutylaluminum hydride (96 ml of a 1.0 M solution in hexane, 96 mmol) at $-78^{\circ} \mathrm{C}$. After stirring for 30 min at the same temperature, the reaction was quenched with methanol. After an aqueous Rochelle Salt solution and diethyl ether were added, the mixture was warmed to room temperature and stirred vigorously until the resulting white slurry was completely dissolved. After the phases were separated, the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with water and brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=8 / 1$) to give $\mathbf{2 0}(6.9 \mathrm{~g}, 96 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR δ $0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.50(\mathrm{~m}, 18 \mathrm{H}), 1.80(\mathrm{brs}, 1 \mathrm{H})$, 2.02-2.15 (m, 1H), $4.09(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.56-5.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.1$, 20.3, 22.7, 27.3, 29.3, 29.6, 29.7, 29.8, 31.9, 36.3, 36.8, 63.8, 127.0, 139.3; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}: \mathrm{C}, 79.58 ; \mathrm{H}, 13.36$. Found: C, 79.28; H, 13.22.

Diol 7b: To a solution of tetraisopropyl orthotitanate ($16.3 \mathrm{~g}, 57.6 \mathrm{mmol}$) in dichloromethane (40 ml) was added a solution of D-tartaric acid diethyl ester $(11.9 \mathrm{~g}$, $57.6 \mathrm{mmol})$ in dichloromethane (18 ml) at $-23^{\circ} \mathrm{C}$. After the mixture was stirred for 30 min at the same temperature, a solution of $20(6.5 \mathrm{~g}, 28.8 \mathrm{mmol})$ in dichloromethane (25 ml) was added followed by tert-butylhydroperoxide $(37.4 \mathrm{ml}$ of a 2.0 M solution in dichloromethane, 74.9 mmol). After stirring for 3 h at $-23^{\circ} \mathrm{C}$, the reaction was quenched with 10% aqueous tartaric acid. After the phases were separated, the aqueous layer was extracted with dichloromethane. The combined
organic extracts were washed with water and brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was roughly purified by column chromatography on silica gel (hexane/ethyl acetate $=9 / 1$) to give $21(7.1 \mathrm{~g})$, which was used without further purification. IR (neat) $3428,2924,1210 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.43(\mathrm{~m}, 18 \mathrm{H}), 1.75$ (brs, 1H), $1.91-1.95(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=2.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=2.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-$ $3.66(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.95(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 14.1,17.2,22.7,27.2,29.3,29.6,29.8$, 31.9, 33.6, 39.5, 58.4, 60.2, 61.8; HRMS (EI+) calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{2} 242.2246$ (M+) found 242.2238 .

To a suspension of copper (I) iodide ($65.8 \mathrm{~g}, 345.6 \mathrm{mmol}$) in diethyl ether (40 ml) was added methyl lithium (505.3 ml of a 1.1 M solution of diethyl ether, 576 mmol) at -23 ${ }^{\circ} \mathrm{C}$. After the mixture was stirred for 30 min at the same temperature, the solution of resulting $21(7.1 \mathrm{~g})$ in diethyl ether (40 ml) was added to the mixture. After stirring for 12 h at $0{ }^{\circ} \mathrm{C}$, the reaction was quenched with saturated aqueous ammonium chloride. After the mixture was filtered through Celite, the phases were separated and the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with water and brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=4 / 1)$ to give $\mathbf{7 b}(6.7 \mathrm{~g}, 26 \mathrm{mmol})$ as a colorless oil. IR (neat) 3340, $2922 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86-0.92(\mathrm{~m}, 6 \mathrm{H}), 1.24-1.32$ $(\mathrm{m}, 18 \mathrm{H}), 1.60-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.91(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{dd}, J=2.7$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=7.7,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=7.7,10.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 12.3, 13.5, 14.1, 22.6, 27.4, 29.3, 29.6, 29.9, 31.9, 34.0, 35.1, 37.3, 68.7, 80.2; HRMS (EI+) calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{2} 258.2559(\mathrm{M}+$) found 258.2575 .

Synthesis of 18a-d

Ester 22ab: Synthesis of 22ab that has the stereochemisty of natural khaferfungin was performed according to the following scheme (Scheme S-3). All the physical data for intermediates 7b-22ab shown in Scheme S-3 were reported previously in the experimental section.

Scheme S-3. Synthesis of 22ab

Reangents and conditions: (a) $\mathrm{PMPCH}(\mathrm{OMe})_{2}$, cat. $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 95%; (b) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 96 \%$; (c) $\mathrm{COCl}_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; then $\mathrm{Et}_{3} \mathrm{~N}$, rt, 92%; (d) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Et}$, THF, reflux, $90 \%, E / Z=$ $>95 / 5$; (e) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 98 \%$; (f) 0.1 equiv of TPAP, NMO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 88%; (g) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Et}$, THF, reflux, 87\%; (h) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, 97%; (i) 0.1 equiv of TPAP, NMO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 93 \%$; (j) 3, $\quad \mathrm{Sn}(\mathrm{OTf})_{2} \quad, \quad \mathrm{Bu}_{2} \mathrm{Sn}(\mathrm{OAc})_{2}$, (S)-1-methy-2-[(N-1-naphthylamino)-methyl]pyrrolidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ ${ }^{\circ} \mathrm{C}, 90 \%$, $>98 \% \mathrm{ds}$; (k) TESOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 84%; (l) DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}, 96 \%$; (m) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Et}$, THF, reflux, $92 \%, E / Z=>95 / 5$.

Ester 22cd (opposite stereochemistry at the C4 and 5 positions of 22ab; Ester 22cd was prepared via the asymmetric aldol reaction of $\mathbf{1 0 b}$ with $\mathbf{3}$ using (R)-1-methyl-2-$[(N)$-1-naphtylamino)methy $]$ pyrrolidine). $[\alpha]^{23}{ }_{\mathrm{D}}-5.3\left(\mathrm{c} 1.9, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.59$ $(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.86-0.93(\mathrm{~m}, 6 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.40(\mathrm{~m}, 22 \mathrm{H}), 1.65(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~d}, J$ $=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.82(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.60-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{dd}, J=4.8,5.7 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.77-3.82(\mathrm{~m}, 4 \mathrm{H}), 4.02-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\operatorname{brd}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(b r s, 1 \mathrm{H}), 6.56(b r d, J=10.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.81-6.86 (m, 2H) 7.18-7.21 (m, 2H); 13C NMR $\delta 4.9,6.9,12.4,13.5,14.1,14.2$, 14.6, 15.7, 17.1, 18.3, 22.7, 27.5, 29.4, 29.6, 29.7, 30.0, 31.9, 34.3, 35.9, 38.1, 55.2, 60.3, 74.2, 82.2, 87.1, 113.5, 126.3, 128.9, 130.8, 131.2, 131.7, 133.4, 135.4, 144.8, 158.8, 168.2

Alcohol 15e: Synthesis of 15e that has the stereochemistry of natural khafrefungin was performed according to Scheme S-4. Diol 28 was prepared from D-arabinose according to the similar procedures to those shown in Scheme 2. To a solution of diol $(\mathbf{2 8}, 4.8 \mathrm{~g}, 9.4 \mathrm{mmol})$ in dichloromethane $(30 \mathrm{ml})$ was added a solution of triethylamine ($2.4 \mathrm{~g}, 23.4 \mathrm{mmol}$) in dichloromethane $(5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After stirring for 5 min at the same temperature, a solution of tert-butyldimethylsilyl chloride $(1.7 \mathrm{~g}$, 11.2 mmol) was added to the mixture at the same temperature. After stirring for 20 h at room temperature, the reaction was quenched with aqueous sodium hydrogen carbonate solution. After the phases were separated, the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with water and brine, dried over sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=6 / 1$) to give 15e (5.46 g, 93\%) as a colourless oil. $[\alpha]^{23}{ }_{\mathrm{D}}+5.9$ (c 3.4, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) 3463, 2929, 1613, 1513, $1249 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta-0.04$ (s, 3H), 0.00 (s, 3H), 0.86 (s, 9H), 2.91 (d, $J=4.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=5.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=3.4,9.8 \mathrm{~Hz} 1 \mathrm{H}), 3.61$ (dd, $J=2.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.81(\mathrm{~m}, 12 \mathrm{H}), 3.88-3.96(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.23(\mathrm{~m}$, 4H); ${ }^{13} \mathrm{C}$ NMR $\delta-5.5,-5.4,18.2,25.9,55.19,55.21,55.22,62.5,70.3,71.0,72.98$, 72.9, 73.2, 77.1, 79.0, 113.6, 113.69, 113.73, 29.4, 129.82, 129.83, 130.2, 130.4, 130.5, 159.19, 159.20, 159.24; FABMS $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 649; Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{Si}$:

C, 67.06; H, 8.04. Found: C, 66.76; H, 7.87.

Scheme S-4. Synthesis of 15e

Reagents and conditions: (a) allyl alcohol, cat. $\mathrm{H}_{2} \mathrm{SO}_{4}$, DMF, $90^{\circ} \mathrm{C}$; (b) $\mathrm{PMBCl}, \mathrm{BuN}_{4} \mathrm{Br}, 50 \%$ aq. $\mathrm{KOH} / \mathrm{THF}(1 / 1), 90^{\circ} \mathrm{C}$, 36% for 2 steps; (c) DIBAL, 0.01 equiv. of $\mathrm{NiCl}_{2}(\mathrm{dppp}), \mathrm{Et}_{2} \mathrm{O}$, rt, 95%; (d) $\mathrm{LiAlH}_{4}, \mathrm{THF}, \mathrm{rt}, 85 \%$ for 2 steps; (e) $\mathrm{TBSCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 93 \%$.

Ent-15e was also prepared from L-arabinose
Alcohol from 22ab: To a solution of ester 22ab ($1.85 \mathrm{~g}, 2.59 \mathrm{mmol}$) in dichloromethane (10 ml) was added diisobutylaluminum hydride $(7.8 \mathrm{ml}$ of a 1.0 M solution in hexane, 7.8 mmol) at $-78^{\circ} \mathrm{C}$. After stirring for 30 min at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched with methanol. After an aqueous Rochelle Salt solution and diethyl ether were added, the mixture was warmed to room temperature and stirred
vigorously until the resulting white slurry was completely dissolved. After the phases were separated, the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with water and brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=12 / 1$) to give the alcohol ($1.67 \mathrm{mg}, 96 \%$) as a colourless oil. IR (neat) $3428,2925,1247 \mathrm{~cm}^{-1}$; 1 H NMR $\delta 0.59$ (q, $J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.88-1.01(\mathrm{~m}, 18 \mathrm{H}), 1.20-1.42(\mathrm{~m}, 22 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}$, $3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.75(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.70 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 ($\mathrm{s}, 3 \mathrm{H}$), 3.86 (brs, 2H), 4.46 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.9,6.9,13.2,13.7$, $14.1,14.9,16.9,17.2,18.5,22.7,27.3,29.4,29.7,30.0,31.9,34.1,35.7,36.2,37.2$, 55.2, 69.0, 74.4, 83.2, 87.4, 113.6, 129.1, 129.5, 130.5, 131.3, 131.6, 133.0, 133.6, 136.4, 158.9; HRMS (EI+) calcd for $\mathrm{C}_{42} \mathrm{H}_{74} \mathrm{O}_{4} \mathrm{Si} 670.5356$ (M+) found 670.5300 .

Alcohol from 22cd: $[\alpha]_{\mathrm{D}}{ }^{26}-2.0$ (c 0.1, EtOH); IR (neat) 3340, $2922 \mathrm{~cm}^{-1}$; 1 H NMR δ 0.58 (q, $J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.86-0.99(\mathrm{~m}, 18 \mathrm{H}), 1.12-1.41(\mathrm{~m}, 22 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.65$ (s, 3H), 1.67 (s, 3H), 2.51-2.59 (m, 1H), 2.68-2.75 (m, 1H), $3.06(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.69 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.50(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.70(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.9,6.9$, $13.4,13.8,14.1,14.8,17.1,18.5,22.7,27.4,29.4,29.66,29.69,30.0,31.9,34.2,35.7$, 36.2, 37.2, 55.2, 69.1, 74.3, 83.2, 87.3, 113.6, 129.0, 129.7, 130.4, 131.4, 131.7, 133.0, 133.6, 136.4, 158.9; Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{74} \mathrm{O}_{4} \mathrm{Si}$: C, 75.17 ; H, 11.11. Found: C, 74.95; H, 11.25.

Enal 23ab: To a mixture of the alcohol ($502 \mathrm{mg}, 0.75 \mathrm{mmol}$), N-methyl molphorine N-oxide (130 mg, 1.13 mmol), and molecular sieves 4A (540 mg) in dichloromethane $(5 \mathrm{ml})$ were added tetrapropylammonium perruthenate $(26 \mathrm{mg}, 0.075 \mathrm{mmol})$ at room temperature. After stirring for 1 h at the same temperature, the reaction mixture was filtered through Celite, and then the filtrate was washed with aqueous sodium sulfite, water, and brine. The organic layer was dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate $=15 / 1$) to give 23ab (454 mg , 90%) as a colourless oil: ${ }^{1} \mathrm{H}$ NMR $\delta 0.59(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.86-0.99(\mathrm{~m}, 18 \mathrm{H})$, $1.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.19-1.42(\mathrm{~m}, 19 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$, 2.69-2.76 (m, 1H), 2.83-2.91 (m, 1H), $3.06(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=9.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(J=$ 8.3 Hz, 2H), $9.33(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.9,6.9,9.2,13.3,14.1,14.6,15.9,17.0,18.3$, $22.7,27.4,29.4,29.65,29.68,30.0,31.9,34.2,35.9,36.0,38.6,55.2,74.2,82.1,87.1$, $113.5,128.9,131.1,131.3,131.7,134.1,135.2,137.9,157.2,158.9,195.4$.

Enal 23cd (opposite stereochemistry at the C4 and 5 positions of 23ab): ${ }^{1} \mathrm{H}$ NMR δ $0.59(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=$ 6.8 Hz, 9H), $0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.50(\mathrm{~m}, 19 \mathrm{H})$, $1.65(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.93(\mathrm{~m}, 1 \mathrm{H}), 3.06$ $(\mathrm{dd}, J=5.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}) ; 13 \mathrm{C}$ NMR δ $4.8,6.8,9.2,13.4,14.1,14.6,15.8,17.1,18.3,22.7,27.4,29.3,29.6,29.7,29.9,31.9$,
$34.2,35.8,36.0,38.5,55.2,74.2,82.1,87.1,113.5,128.8,130.9,131.1,131.6,133.8$, 135.2, 137.9, 157.1, 158.8, 195.3.

Carboxylic acid 24ab: To a solution of 23ab ($454 \mathrm{mg}, 0.68 \mathrm{mmol}$) in tert-butyl alcohol (14 ml) were added 2-methyl-2-butene (8.5 ml) and a mixture of sodium chlorite (1.36 mg) and sodium dihydrogenphospate dihydrate (1.36 mg) in water (11 ml). After stirring for 20 h at room temperature, the reaction mixture was diluted with water and ethyl acetate. After the phases were separated, the aqueous layer was extracted with ethyl acetate. The combined organic extracts were washed with water, an aqueous citric acid solution, and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient elution, chloroform to chloroform $/ \mathrm{MeOH}=$ 40/1) to give 24ab ($386 \mathrm{mg}, 83 \%$) as a colourless oil: $[\alpha]^{23}{ }_{\text {D }}-6.2$ (c 0.14 , EtOH); IR (neat) 2926, 2813, 1687, $1247 \mathrm{~cm}^{-1}$; 1 H NMR $\delta 0.59(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.87-0.98$ (m, 18H), 1.04 (d, J = 6.6 Hz, 3H), 1.24-1.42 (m, 19H), 1.65 (s, 3H), 1.68 (s, 3H), $1.82(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.64-2.78(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}$, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{dq}, J=1.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22(J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 4.8,6.8,9.2,12.0,13.4,14.1,14.5,15.8$, 17.0, 18.2, 22.7, 27.4, 29.3, 29.6, 29.7, 30.0, 31.9, 34.3, 35.8, 35.9, 38.6, 55.2, 74.2, 82.0, 87.0, 113.5, 125.6, 128.9, 131.0, 131.2, 131.8, 133.6, 135.3, 147.4, 158.8, 172.9; FABMS ($\left.\mathrm{M}^{+}-\mathrm{H}\right) 684$; Anal. Calcd for $\mathrm{C}_{42} \mathrm{H}_{72} \mathrm{O}_{5} \mathrm{Si}$: C, 73.63 ; H, 10.59. Found: C,
73.38; H, 10.63.

Carboxylic acid 24cd (opposite stereochemistry at the C4 and 5 positions of 24ab): ${ }^{1} \mathrm{H}$ NMR $\delta 0.58(\mathrm{q}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.87-0.98(\mathrm{~m}, 18 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.18-1.52(\mathrm{~m}, 19 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.65-2.76(\mathrm{~m}$, $2 \mathrm{H}), 3.06(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=10.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 4.8,6.8$, 9.2, 12.0, 13.4, 14.0, 14.6, 15.7, 17.1, 18.2, 22.6, 27.4, 29.3, 29.6, 30.0, 31.9, 34.3, $35.8,35.8,35.9,38.5,55.1,74.1,82.1,87.0,113.5,125.7,128.9,130.9,131.1,131.7$, 133.5, 135.3, 147.4, 158.8, 173.3.

Diol 26a: To a mixture of 24 ($304 \mathrm{mg}, 0.44 \mathrm{mmol}$), N, N-dimethylaminopyridine (163 $\mathrm{mg}, 1.32 \mathrm{mmol}$), and dimethylaminopyridine hydrochloride ($140 \mathrm{mg}, 0.88 \mathrm{mmol}$) in dichloromethane (8 ml) was added a solution of dicyclohexyl carbodiimide (183 mg , 0.88 mmol) in dichloromethane (1 ml) followed by a solution of $\mathbf{1 5 e}(417 \mathrm{mg}, 0.67$ $\mathrm{mmol})$. The solution was heated at reflux for 12 h . After cooling to room temperature, the solvent was evaporated and the residue was dissolved in ethyl acetate. The solution was washed with a 1 M aqueous HCl solution, water, and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was filtered through a small column of silica gel (hexane/ethyl acetate $=6 / 1$) to give 25a as a colourless oil. IR (neat) 2925, 1715, $1248 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta-0.01$ (s, $3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}), 0.56(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.87-0.94(\mathrm{~m}, 27 \mathrm{H}), 1.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.25-1.4(\mathrm{~m}, 19 \mathrm{H}), 1.63-1.67(\mathrm{~m}, 6 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.76(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{t}, J$
$=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.89(\mathrm{~m}, 19 \mathrm{H}), 4.32-4.54(\mathrm{~m}, 8 \mathrm{H}), 5.26-5.29(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{~s}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.84(\mathrm{~m}, 8 \mathrm{H}), 7.14-7.23(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $5.4,4.8,6.9,12.6,13.8,14.1,14.6,15.8,17.0,18.1,18.2,22.6,25.9,27.4,29.3,29.6$, $30.0,31.9,34.3,35.9,38.4,55.1,63.0,72.6,73.2,73.4,74.1,81.8,87.0,113.5,113.6$, 126.6, 128.8, 129.0, 129.7, 130.4, 130.6, 130.7, 131.0, 131.5, 131.7, 133.9, 135.2, 145.4, 159.0, 159.1, 167.3; FABMS $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$ 1316; Anal. Calcd for $\mathrm{C}_{77} \mathrm{H}_{120} \mathrm{O}_{12} \mathrm{Si}_{2}:$ C, 71.47; H, 9.35. Found: C, 71.23; H, 9.41.

To a solution of $\mathbf{2 5 a}$ in THF (28 ml) was added a 1 M aqueous HCl solution (8 ml) at room temperature. After stirring for 12 h at the same temperature, the reaction was quenched with an aqueous sodium hydrogen carbonate solution, and the aqueous layer was extracted with ethyl acetate. The extract was washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (gradient elution, hexane/ethyl acetate $=4 / 1$ to $1 / 1$) to give 26a ($336 \mathrm{mg}, 71 \%$ for 2 steps) as a colorless oil: IR (neat) 3428, 2925, 1707, $1612 \mathrm{~cm}^{-1}$; 1H NMR $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.97$ (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.41(\mathrm{~m}, 19 \mathrm{H}), 1.69(\mathrm{~s}$, $3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.90$ (brs, 1H), 2.10 (brs, 1H), 2.72-2.75 (m, 2H), 3.05 $(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.90(\mathrm{~m}, 19 \mathrm{H}), 4.38-4.60(\mathrm{~m}, 8 \mathrm{H}), 5.23-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.33$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.85(\mathrm{~m}, 8 \mathrm{H}), 7.17-$ 7.25 (m, 8H); 13C NMR $\delta 12.5,14.1,14.8,14.9,17.1,18.4,22.6,27.3,29.3,29.6$, $29.7,30.0,31.9,34.2,35.7,36.2,37.1,55.2,61.9,67.9,72.7,73.2,73.9,74.1,78.4$, 79.1, 80.7, 87.3, 113.6, 113.7, 113.8, 129.0, 129.2, 129.7, 130.1, 130.2, 130.3, 131.2, 131.4, 131.6, 134.4, 134.7, 145.4, 158.9, 159.2, 159.3, 167.3; FABMS ($\left.\mathrm{M}^{+}+\mathrm{Na}\right)$ 1088.

Diol 26b: 1H NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.60(\mathrm{~m}, 19 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H})$, $1.85(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{brs}, 1 \mathrm{H}), 2.10(\mathrm{brs}, 1 \mathrm{H}), 2.64-2.79(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{t}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.93(\mathrm{~m}, 19 \mathrm{H}), 4.35-4.63(\mathrm{~m}, 8 \mathrm{H}), 5.21-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{dq}, \mathrm{J}=1.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.87(\mathrm{~m}, 8 \mathrm{H}), 7.16-$ $7.24(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 12.5,14.0,14.2,14.7,14.9,17.0,18.3,2.6,27.2,29.3$, $29.6,29.9,31.8,34.2,35.7,36.1,37.2,55.1,61.8,67.9,72.7,73.0,73.9,74.3,78.4$, $79.0,80.5,87.2,113.5,113.7,126.7,128.9,129.2,130.1,130.2,130.3,131.0,131.3$, $131.6,134.0,145.3,158.8,159.1,159.2,159.3,167.2$.

Diol 26c: $[\alpha]^{24}{ }_{\mathrm{D}}-17.4\left(\mathrm{c} 2.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.60(\mathrm{~m}, 19 \mathrm{H})$, $1.66(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{brs}, 1 \mathrm{H}), 2.15(\mathrm{brs}, 1 \mathrm{H})$, $2.62-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{dd}, J=5.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51-3.93(\mathrm{~m}, 19 \mathrm{H}), 4.34-4.63(\mathrm{~m}$, $8 \mathrm{H}), 5.18-5.33(\mathrm{~m}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{dq}, J=0.7,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.87(\mathrm{~m}$, 8H), 7.13-7.26 (m, 8H); 13C NMR $\delta 12.5,13.9,14.0,14.6,15.0,17.2,18.4,22.6$, $27.2,29.2,29.5,29.6,29.9,31.8,34.2,35.8,36.0,37.1,55.1,61.8,67.8,72.7,72.9$, $73.8,74.3,78.3,78.9,80.6,87.1,113.5,113.7,126.6,129.0,129.1,129.5,129.7$, $130.0,130.1,130.2,130.9,131.5,133.6,135.0,145.2,158.8,159.1,159.2,167.2$.

Diol 26d: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=$ 6.7 Hz, 3H), $1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.17-1.60(\mathrm{~m}, 19 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$, $1.85(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{brs}, 1 \mathrm{H}), 2.20(\mathrm{brs}, 1 \mathrm{H}), 2.62-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{dd}, J$ $=5.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.90(\mathrm{~m}, 19 \mathrm{H}), 4.31-4.62(\mathrm{~m}, 8 \mathrm{H}), 5.20-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~s}$, $1 \mathrm{H}), 6.70(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.86(\mathrm{~m}, 8 \mathrm{H}), 7.15-7.25(\mathrm{~m}, 8 \mathrm{H}) ; 13 \mathrm{C}$ NMR δ $12.5,13.9,14.0,14.7,15.0,17.2,18.4,22.6,27.2,29.3,29.6,29.9,31.8,34.2,35.8$, $36.1,37.0,55.1,61.8,67.8,72.7,73.1,73.9,74.3,78.4,79.0,80.6,87.1,113.5,113.7$,
126.6, 129.0, 129.2, 129.5, 129.7, 130.1, 130.2, 130.9, 131.5, 133.7, 134.9, 145.3, 158.8, 159.1, 159.2, 167.2.

Carboxylic Acid 27a: To a mixture of Dess-Martin Periodinane ($573 \mathrm{mg}, 1.35 \mathrm{mmol}$) and pyridine ($129 \mathrm{mg}, 1.63 \mathrm{mmol}$) in dichloromethane (2 ml) was added a solution of 26a ($347 \mathrm{mg}, 0.32 \mathrm{mmol}$) in dichloromethane (6 ml) at room temperature. After stirring for 2 h at the same temperature, the reaction mixture was diluted with an aqueous sodium hydrogen carbonate solution and ethyl acetate. After the phases were separated, the aqueous layer was extracted with ethyl acetate. The combined organic extracts were washed with a 1 M aqueous sodium thiosulfate solution, water, and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was filtered through a small column of silica gel (hexane/ethyl acetate $=$ 5/1) to give the corresponding aldehyde as a colorless oil, which was used without further purification.

To a solution of the resulting aldehyde in tert-butyl alcohol (5 ml) were added 2-methyl-2-butene (3 ml) and a mixture of sodium chlorite (640 mg) and sodium dihydrogenphospate dihydrate (640 mg) in water $(5 \mathrm{ml})$. After stirring for 20 h at room temperature, the reaction mixture was diluted with water and ethyl acetate. After the phases were separated, the aqueous layer was extracted with ethyl acetate. The combined organic extracts were washed with water, an aqueous citric acid solution and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography on silica gel (chloroform/methanol = 10/1) to give $\mathbf{2 7 a}(265 \mathrm{mg}, 77 \%$ for 2 steps) as a colorless oil. IR (neat) 2926, 1713, 1667, $1613 \mathrm{~cm}^{-1} ; 1 \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.64(\mathrm{~m}, 22 \mathrm{H}), 1.84(\mathrm{~s}$,
$3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.78-2.86(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.77$ $(\mathrm{m}, 14 \mathrm{H}), 4.09-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.60(\mathrm{~m}, 10 \mathrm{H}), 5.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J$ $=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.93(\mathrm{~m}, 9 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 12.7,13.3,14.0,14.9,17.1,16.6,18.2,18.6,22.6,27.2,29.2,29.3,29.6$, $29.9,31.8,34.0,36.2,36.4,39.9,55.1,55.2,67.5,72.2,73.0,74.3,74.6,77.5,87.1$, 113.5, 113.6, 113.7, 113.8, 113.9, 127.5, 128.7, 129.0, 129.2, 129.9, 130.0, 131.1, 131.4, 133.2, 141.2, 142.7, 144.0, 159.0, 159.1, 159.2, 159.5, 166.3, 172.7, 203.6; FABMS $\left(\mathrm{M}^{+}+\mathrm{Na}\right) 1100$.

Carboxylic Acid 27b: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.68(\mathrm{~m}, 22 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H})$, $2.70-2.83(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.78(\mathrm{~m}, 14 \mathrm{H}), 4.02-4.06($ brs, 1 H$)$, 4.15-4.53 (m, 10H), 5.05-5.23 (m, 1H), $5.75(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.88(\mathrm{~m}, 9 \mathrm{H})$, $6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.25(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 12.8,13.4,14.1,14.9,16.7$, 18.2, 22.6, 27.2, 29.3, 29.6, 29.9, 31.3, 34.0, 36.2, 36.4, 40.0, 55.1, 55.2, 67.5, 72.1, 72.7, 73.1, 74.4, 74.6, 77.7, 87.1, 113.6, 113.7, 113.9, 127.4, 128.4, 129.0, 129.3, $129.5,130.0,130.1,130.2,131.2,131.3,133.6,140.7,142.9,143.7,159.3,159.5$, 166.6, 202.5.

Carboxylic Acid 27c: $[\alpha]^{22}{ }_{\mathrm{D}}-33.8$ (c 2.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\delta 0.88$ (t, $J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.68(\mathrm{~m}, 22 \mathrm{H}), 1.84-1.88$ $(\mathrm{m}, 6 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.85(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=5.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.80(\mathrm{~m}$, $14 \mathrm{H}), 4.02-4.08(\mathrm{brs}, 1 \mathrm{H}), 4.14-4.58(\mathrm{~m}, 10 \mathrm{H}), 5.09-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=9.7 \mathrm{~Hz}$, $1 \mathrm{H})$, 6.73-6.89 (m, 9H), $6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.25(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $12.7,13.3,14.0,14.9,16.6,18.1,18.2,22.6,27.2,29.3,26.6,29.9,31.8,34.0,36.1$, $36.4,40.0,55.1,55.2,67.5,72.1,72.7,73.1,74.4,74.5,77.7,87.1,113.6,113.7$,
113.8, 127.4, 128.4, 129.0, 129.2, 129.5, 130.0, 130.1, 131.6, 133.4, 141.4, 142.9, 143.9, 159.1, 159.3, 159.5, 166.6, 202.4.

Carboxylic Acid 27d: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, 1.04 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.67$ (m, 22H), 1.83 ($\mathrm{s}, 3 \mathrm{H}$), 1.88 ($\mathrm{s}, 3 \mathrm{H}), 1.95$ (s, 3H), $2.75-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.80(\mathrm{~m}, 14 \mathrm{H}), 4.07(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.17-4.60(\mathrm{~m}, 10 \mathrm{H}), 5.12-5.19(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.93(\mathrm{~m}$, 9H), 7.02 (s, 1H), 7.08-7.25 (m, 8H); 13C NMR δ 12.7, 13.3, 14.1, 15.0, 16.5, 18.2, 18.6, 22.6, 27.2, 29.3, 29.6, 29.9, 31.9, 36.1, 36.4, 39.9, 55.2, 67.6, 72.2, 72.8, 73.1, 74.4, 74.6, 78.9, 87.2, 113.6, 113.7, 113.9, 127.6, 128.7, 129.1, 129.3, 129.7, 129.9, $130.0,131.1,131.7,133.0,141.9,142.8,144.7,159.0,159.2,159.3,159.5,166.3$, 172.3, 203.8.

Tetraol 18a (khafrefungin): To a solution of 27 ($47.5 \mathrm{mg}, 0.044 \mathrm{mmol}$) in dichloromethane $(4 \mathrm{ml})$ was added boron trichloride $(0.22 \mathrm{ml}$ of a 1.0 M solution in heptane, 0.22 mmol) at $-78^{\circ} \mathrm{C}$. After stirring for 10 min at the same temperature, the reaction was quenched with an aqueous sodium hydrogen carbonate solution. After an aqueous citric acid solution and ethyl acetate were added, the mixture was warmed to room temperature and stirred for 30 min . After the phases were separated, the aqueous layer was extracted with ethyl acetate. The combined organic extracts were washed with water and brine, dried over sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by preparative thin layer chromatography on silica gel (chloroform/methanol/water $=2.5 / 1 / 0.1$) to give 18a ($14.9 \mathrm{mg}, 57 \%$) as a colorless oil. For analytical use, further purification was performed using RP-HPLC on Inertsil C8-3 $10 \times 250 \mathrm{~mm}$ (GL science), eluted with a mobile phase of acetonitrile $/ 0.1 \%$ aq. $\mathrm{H}_{3} \mathrm{PO}_{4}=4 / 1$ at a flow rate of $4.0 \mathrm{ml} / \mathrm{min}$. The
retention time for $\mathbf{1 8 a}$ is $14.2 \mathrm{~min}:[\alpha]^{23}{ }_{\mathrm{D}}-27(\mathrm{c} 0.095, \mathrm{MeOH})$. The concentration for the measurement of the optical rotations of 18a-d was determined using the extinction coefficient at 286 nm (14300) which was recorded by Merck. The optical rotation of 18a based on concentration determined by weight was also measured. $[\alpha]^{28}{ }_{D}-16.6$ (c 0.17, MeOH). IR (neat) 3428, 2924, 1712, 1661, 1614, 1453, $1246 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR δ $0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.44(\mathrm{~m}, 18 \mathrm{H}), 1.49-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.95$ (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.71-2.77(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=4.2,12.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=2.5,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=1.7$, $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dq}, J=6.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{ddd}, J=2.5,4.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ $(\mathrm{d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{brd}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}) ; 13 \mathrm{C}$ NMR $\delta 13.0,13.8$, $14.5,14.7,16.9,18.0,18.2,23.7,28.1,30.5,30.7,30.85,30.89,31.0,33.1,34.7,37.3$, $37.5,41.3,61.5,71.2,71.8,75.4,79.8,129.4,133.0,134.8,141.4,143.8,145.8$, 168.8, 176.2, 204.8; FABMS ($\left.\mathrm{M}^{+}-\mathrm{H}\right) 595$.

The authors are grateful to Dr. Guy Harris (Merck) for sending his purification method of khafrefungin.

Tetraol 18b: ${ }^{1} \mathrm{H}$ NMR $\delta 0.88$ (t, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.91$ (d, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.01$ (d, J $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.57(\mathrm{~m}, 19 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.79(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=$ $3.9,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=1.7,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{brs}, 1 \mathrm{H}), 4.24(\mathrm{brs}, 1 \mathrm{H}), 4.32-$ $4.40(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.97(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.11 (s, 1H); 13C NMR $\delta 13.0,13.7,14.4,14.7,16.8,18.0,18.2,23.7,28.0,30.5$, $30.7,30.8,30.9,33.1,34.6,37.3,37.5,41.3,61.5,71.3,75.2,79.8,129.4,133.1$, 134.7, 141.5, 143.7, 145.9, 168.5, 176.2, 205.0.

Tetraol 18c: 1H NMR $\delta 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.40(\mathrm{~m}, 18 \mathrm{H}), 1.49-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~s}$, $3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.62-2.81(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{dd}, J=4.3,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=2.7,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=1.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dq}, J=6.8,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (ddd, $J=$ 2.7, 4.3, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 13.0,13.7,14.4,14.7,16.8,18.0,18.2,23.7,28.0,30.4,30.67,30.72$, $30.8,30.9,33.1,34.6,37.3,37.4,41.3,61.5,71.3,71.8,75.4,79.8,129.3,133.1$, 134.7, 141.6, 143.7, 146.0, 168.4, 176.2, 205.0.

Tetraol 18d: ${ }^{1} \mathrm{H}$ NMR $\delta 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.42(\mathrm{~m}, 18 \mathrm{H}), 1.48-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.90$ $(\mathrm{s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.69-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82$ (dd, $J=4.3,12.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (dd, $J=2.5,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{brs}, 1 \mathrm{H})$, $4.24(\mathrm{brd}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dq}, J=6.8,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{ddd}, J=2.5,4.3,8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $12.9,13.7,14.4,14.7,16.8,17.99,18.03,23.7,28.0,30.4,30.67,30.72,30.8,30.9$, 33.0, 34.7, 37.3, 37.4, 41.3, 61.5, 71.3, 71.8, 75.4, 79.8, 129.3, 133.1, 134.7, 141.6, 143.7, 145.9, 168.4, 176.3, 205.0.

