(Supporting Information)

Synthesis of DEDEE via the Palladium Catalyzed Reaction of Conjugated Diynes. A New Building Block for Molecular Scaffolding

Drexel H. Camacho, Shinichi Saito, Yoshinori Yamamoto*

Department of Chemistry, Graduate School of Science

Tohoku University, Sendai 980-8578, Japan

General: Spectroscopic measurements were carried out with the following instruments: JEOL LA-300 (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR), and SHIMADZU FTIR-8200 (FT-IR).

Materials: The acetic acid, diynes $\mathbf{8 a}$ and $\mathbf{8 b}$ were commercially available from Kanto, Aldrich, and Farchan and were used without further purification. The diynes $\mathbf{8 c}-\mathbf{8 d}$ were prepared according to published procedure. ${ }^{[S 1]}$
[S1] Alami, M.; Ferri, F. , Tetrahedron Lett. 1996, 37, 2763.

General procedure for the dimerization of diyne 8 to give 9. To an argon flushed mixture of dry THF and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.025 \mathrm{mmol}, 28.9 \mathrm{mg})$, was added the diynes $\mathbf{8}(0.5 \mathrm{mmol})$ and acetic acid $(1.5$ eq) in a Wheaton microreactor and the mixture was stirred at $40^{\circ} \mathrm{C}$ for $3-4$ days. The reaction is not sensitive to air and opening the reaction vessel to allow air actually increases the reaction rate. The start of the reaction is indicated by a darkening of the reaction mixture from a previously clear yellow solution. After the completion of the reaction, which was monitored by GC, the mixture was then filtered through a short silica column using ethyl acetate as eluent. Separation by silica column chromatography (hexane as an eluent), and further purification by gpc, afforded the dimerized product 9 .

(E)-7,8-Di-pent-1-enyl-tetradec-7-ene-5,9-diyne (9a):

Yellowish oil. Rf: 0.25 (Hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.73(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~m}$, $2 \mathrm{H}), 2.47(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.14(\mathrm{q}, \mathrm{J}=7.1,6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.62-1.41(\mathrm{~m}, 12 \mathrm{H}), 0.92(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 135.7,129.1,125.4,101.6,76.7,35.0,30.9,22.4,22.0,19.5,13.8,13.6 \mathrm{ppm} ; \mathrm{IR}$ $\left(\mathrm{CCl}_{4}\right)$ 3028, 2958, 2931, 2871, $2223(\mathrm{C} \equiv \mathrm{C}), 1718$ (w), 1685 (w), 1635, 1596, 1465, 1492, 1379, 1326, 1299, 1251, 1128, 1105, 1080, 1055, $964,900 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{36}: 324.2817$, found: 324.2853.

(E)-4,5-Divinyl-oct-4-ene-2,6-diyne (9b):

Yellowish oil. Rf: 0.33 (Hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.06(\mathrm{dd}, \mathrm{J}=10.1,16.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.77(\mathrm{dd}, \mathrm{J}=1.8,16.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{dd}, \mathrm{J}=1.8,10.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ $\mathrm{MHz}) 135.1,127.9,118.8,98.2,74.7,4.7 \mathrm{ppm}$; $\mathrm{IR}\left(\mathrm{CCl}_{4}\right) 3090$, 2980, 2916, 2848, $2233(\mathrm{C} \equiv \mathrm{C}), 1843$, 1647, 1438, 1409, 1400, 1372, 1301, 1259, 1157, 1076, $989,918 \mathrm{~cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{12}$: 156.0939, found: 156.0953.
(E)-4,5-Bis-(2-cyclopentyl-vinyl)-1,8-dicyclopentanyl-oct-4-ene-2,6-diyne (9c):

Yellowish oil. Rf: 0.33 (Hexane); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.74$ (d, J=15.2 Hz, 2H), 6.20 (m, $2 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.13(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 8 \mathrm{H}), 1.70-1.52(\mathrm{~m}, 16 \mathrm{H})$, 1.40-1.28 (m, 8H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 140.3,127.3,125.5,101.1,76.9,43.7,39.2,33.3$, 32.0, 25.7, 25.4, $25.2 \mathrm{ppm} ; \mathrm{IR}\left(\mathrm{CCl}_{4}\right) 3010$, 2950, 2868, 2219 ($\mathrm{C} \equiv \mathrm{C}$), 1726 (w), 1685, 1629, 1450, 1425, 1357, 1326, 1311, 1166, 1105, 1066, 1022, $964 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{44}: 428.3443$, found: 428.3423 .
(E)-6,7-Bis-(3,3-dimethyl-but-1-ynyl-dodeca-4,6,8-triene (9d):

Yellowish solid. Rf: 0.48 (Hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.70(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{~m}$, $2 H), 2.14(\mathrm{q}, \mathrm{J}=6.8,6.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 135.4,128.9,125.1,109.8,75.2,34.9,31.9,28.5,22.2,13.8 \mathrm{ppm} ; \mathrm{IR}\left(\mathrm{CCl}_{4}\right) 3005$, 2966, 2931, 2871, 2216 (C \equiv C), 1774 (w), 1712 (w), 1693, 1596, 1456, 1361, 1344, 1288, 1251, 1203, 1128, 1083, 1055, 991, $964 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{24} \mathrm{H}_{36}$ (\%): calcd: C 88.81, H 11.19; found: C 88.59 , H 11.09; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{36}: 324.2817$, found: 324.2834 .

(E)-4,5-Bis-(3,3-dimethyl-but-1-ynyl)-1,8-diphenyl-oct-2,4,6-triene (9e):

Colorless crystal $\left(\mathrm{CHCl}_{3} /\right.$ hexane/ether). Rf: 0.22 (Hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.29(\mathrm{~m}$, $4 \mathrm{H}), 7.22(\mathrm{~m}, 6 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.23(\mathrm{~s}, 18 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 139.9,133.9,130.2,128.8,128.4,126.1,125.5,110.1,74.8,39.0,31.0,28.4$ ppm; IR (KBr) 3082, 3060, 3030, 3003, 2970, 2929, 2885, 2866, 2821, 2204 (C \equiv C), 1633 (w) 1607, 1492, 1452, 1419, 1359, 1338, 1321, 1286, 1251, 1203, 1072, 1028, 970, $920 \mathrm{~cm}^{-1}$; Anal calcd for $\mathrm{C}_{32} \mathrm{H}_{36}$ (\%): calcd: C 91.37, H 8.63; found: C 91.11, H 8.59; HHRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{36}$: 420.2817, found: 420.2849 .

(E) 6,7-Bis-trimethyl silanylethynyl-dodeca-4,6,8,triene (9f):

Yellowish oil. Rf: 0.55 (Hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.45(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{~m}$, $2 H), 1.93(\mathrm{q}, \mathrm{J}=7.2,6.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.25(\mathrm{~m}, 4 \mathrm{H}), 0.69(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H}), 0.0(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) 137.1,128.2,126.2,100.8,77.2,35.0,22.2,13.8,0.0 \mathrm{ppm}$; IR $\left(\mathrm{CCl}_{4}\right) 3030,2960,2931$, 2873, 2150 (C \equiv C), 1892, 1637, 1458, 1407, 1379, 1338, 1249, 1018, $964 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{Si}_{2}: 356.2356$, found: 356.2367 .

(E)-3,4-Bis-trimethylsilanylethynyl-1,6-dicyclopentanyl-hexa-2,4,6-triene (9g):

Yellowish oil. Rf: 0.5 (Hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.68(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.24$ (m, $2 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.53(\mathrm{~m}, 8 \mathrm{H}), 1.37(\mathrm{~m}, 4 \mathrm{H}), 0.23(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) 141.6,126.4,126.3,106.9,100.9,43.7,33.1,25.1,0.03 \mathrm{ppm}$; $\mathrm{IR}\left(\mathrm{CCl}_{4}\right) 3030,2956,2869$, 2148 (C $\equiv \mathrm{C}), 1631,1450,1407,1355,1334,1309,1249,1215,1164,1101,1022,983,964 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{Si}_{2}$: 408.2669, found: 408.2648 .

(E)-5-(3,3-Dimethyl-but-1-ynyl)-4-vinyl-deca-4,6-dien-2-yne (9h):

One mmol each for $\mathbf{8 b}$ and $\mathbf{8 d}$ were mixed according to the general procedure. Separation via preparative gpc was carried out to give 16% of $\mathbf{9 b}, 16 \%$ of $\mathbf{9 d}$ and 33% of $\mathbf{9 h}$. Yellowish oil. Rf: 0.46 (Hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.02(\mathrm{~m}, \mathrm{~J}=17.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dt}, \mathrm{J}=1.5,15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.28(\mathrm{~m}, \mathrm{~J}=15.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dd}, \mathrm{J}=1.8,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, \mathrm{J}=1.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (q, J=7.3, $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~m}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) 137.1,135.3,128.8,127.7,125.2,117.4,110.5,97.3,75.0,74.8,34.9,31.0$, 28.4, 22.5, 13.8, 4.8 ppm ; IR (neat) 3090, 3030, 2966, 2929, 2871, 2223 (C $\equiv \mathrm{C}$), 1720, 1678, 1625, $1600,1560,1456,1370,1361,1338,1301,1276,1203,1055,1028,985,966,910 \mathrm{~cm}^{-1} ;$ HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{24}: 240.1878$, found: 240.1891 .

The stereochemistry of $\mathbf{9 h}$ was determined by NOE experiment as shown in Figure S1.

Figure S1: NOE Correlations of $\mathbf{9 h}$.

ORTEP Drawing of $\mathbf{9 e}$ (Top view)

(Side view)

