Novel histidine-heme covalent linkage in a hemoglobin Supporting Information

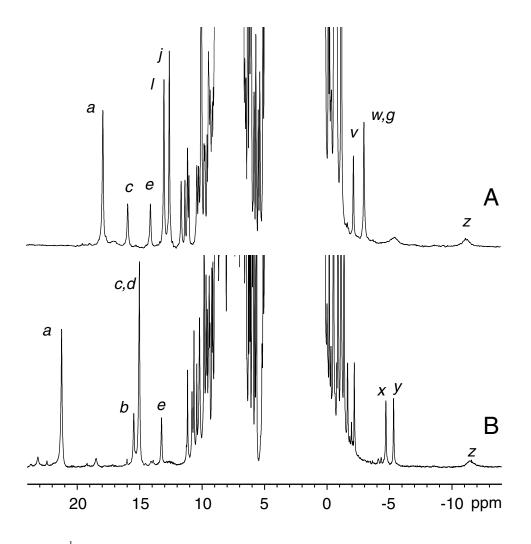
B. Christie Vu, A. Daniel Jones, and Juliette T. J. Lecomte*

Materials: All chemicals were purchased from Sigma Chemical Company, St. Louis, MO and endoproteinases from Promega Corporation, Madison, WI. Fe(III)-2,4 dimethyl-deuteroporphyrin IX was purchased from Porphyrin Products (Logan, UT) and Zn(II)-protoporphyrin IX was purchased from Mid-Century Chemicals (Posen, IL).

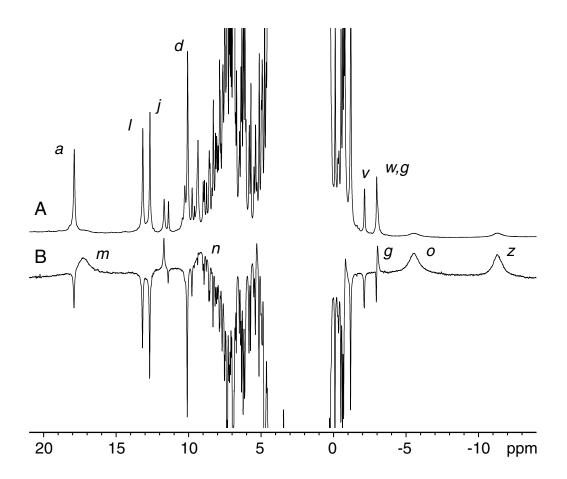
Protein expression and purification: Synechocystis sp. PCC 6803 rHb was prepared from inclusion bodies as reported previously.¹ The holoprotein (rHb-R) was formed by addition of hemin chloride in NaOH (10 mg per 200 μ L), followed by chromatography using DEAE Sephacel anion exchange media to remove excess hemin. The protein was eluted using 0.2 M NaCl in 50 mM Tris, 1 mM EDTA buffer, pH 8, dialyzed versus ddH₂O, and lyophilized. The nature of the resulting material was ascertained by NMR spectroscopy prior to any reaction.

Fe(III) 2,4-dimethyldeuteroporphyrin S6803 rHb was prepared by the same procedure as described for the wild-type protein.¹ Zn-substituted S6803 rHb-R was prepared in the dark by adding 1.5 equivalents of Zn-PPIX (10 mg per 200 μ L NaOH) to an apoprotein solution in 20 mM phosphate buffer, pH 7.2. The excess porphyrin was removed by size exclusion chromatography on a 0.7 × 5 cm Sephadex G25 column.

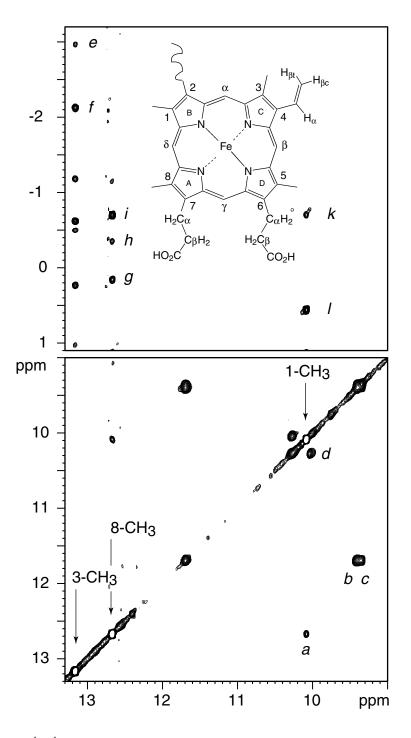
Controlled conversion to the alternate form (rHb-A) was achieved by addition of dithionite (Sigma, used without further purification) in 20 mM phosphate buffer, pH 7.2, in 1.5–fold excess to a phosphate (pH 7.2) buffered holoprotein solution. The reduced sample was run through a 0.7×5 cm Sephadex G25 desalting column immediately after reduction. The eluant was collected and subjected to mass spectrometry and NMR analysis.


Mass spectrometry: Digestion of rHb-A and rHb-R samples was carried out by adding 8 μ L porcine gastric pepsin in 1% formic acid (1 mg/mL) to 10 μ L of a 10 μ M protein sample followed by incubation at 37 °C for 24 hours. An additional 20 μ L of 0.15 % formic acid was added to each sample before analysis by mass spectrometry.

Protein samples were analyzed on a Perseptive Biosystems Mariner mass spectrometer (Framingham, MA), using electrospray ionization in positive ion mode, equipped with a Hewlett-Packard model 1100 HPLC (Palo Alto, CA). Prior to ionization, peptide fragments were separated by reversed phase chromatography with a BetaBasic C-4 column (1.0 mm I.D. x 50 mm length, 3 µm packing, Keystone Scientific, Bellefonte, PA) at 25 °C using a multi-step gradient over 45 minutes (solvent A, H₂O + 0.15% formic acid; solvent B, acetonitrile + 0.15% formic acid; solvent C, 2-propanol + 0.15% formic acid). The gradient was applied as follows: 0-30 minutes 95% A-5%B (0.5 mL/min), then changed to 5%A-95%B (0.5 mL/min) from 30-35 minutes and held from 35-40 minutes, then changed to 10%A-90%C (0.3 mL/min) from 40-45 minutes. HPLC-UV was achieved by coupling a Hewlett Packard 1100 series diode array detector to the HPLC instrument. Tandem mass spectrometry analyses were performed on a Quattro-II mass spectrometer (Micromass, Manchester, UK) interfaced to a LC-10ADvp HPLC (Shimadzu Instruments, Columbia, MD) using electrospray ionization, with collision induced dissociation effected using argon as collision gas (2 x 10-3 mbar) and 30 V offset of the collision cell.


Optical spectroscopy: Electronic absorption spectra were collected at 25 °C on an Aviv model 14 DS spectrophotometer.

NMR spectroscopy: All NMR spectra were collected at 600 MHz on a Bruker DRX spectrometer as described previously.¹⁻³ The ¹H-¹⁵N HMQC data⁴ were collected at 298K and 305K with the following parameters: ¹⁵N, 9505.5 Hz, 100*; ¹H, 7002.8 Hz, 4096*. The ¹⁵N carrier was at 210 ppm or 190 ppm. The HMQC delay was 22 ms to detect small ²J_{NH} and ³J_{NH} effects. A value of 15 ms was used in Figure 1


of the main text to emphasize possible coupling to the rapidly relaxing protons bound to the modified heme $2C\alpha$ and $2C\beta$. Data were processed with squared sine bell of 90° in both dimensions. The water line was used as a reference for the ¹H chemical shifts with correction for temperature and the ¹⁵N chemical shifts were referenced indirectly.⁵ NOESY and TOCSY mixing times were 100 ms and 45 ms, respectively.

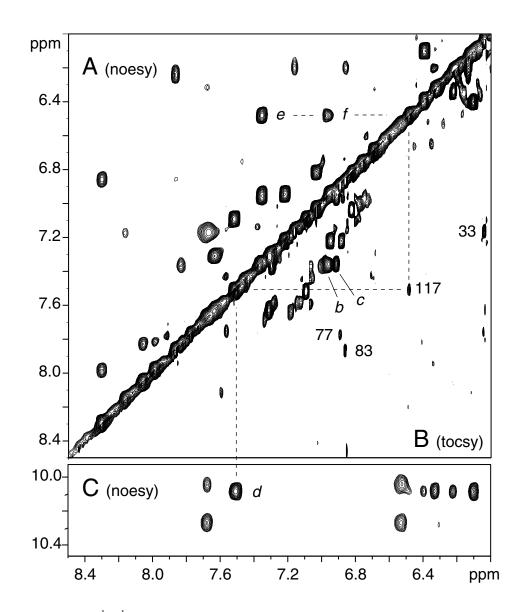

FIG. S1. 600 MHz ¹H NMR spectrum of S6803 hemoglobin in the ferric state at 25 °C. (A) rHb-A (~1 mM heme) in 95% H₂O / 5% ²H₂O, buffered at pH 7.3 with 20 mM phosphate; (B) rHb-R under comparable conditions. Both holoproteins exhibit narrow chemical shift dispersion and sharp lines typical of low-spin ferric heme proteins. In S6803 rHb-R (trace B), resolved methyl groups are labeled *a* (5-CH₃) and *d* (1-CH₃); the 2-vinyl signals appear in the –5 ppm region (*x* and *y*) and at 15.5 ppm (*b*). Small peaks arise from the minor heme isomer.¹ In rHb-A (trace A), the heme resonances have moved to new positions; resolved methyl groups are labeled *a* (5-CH₃), *l* (3-CH₃) and *j* (8-CH₃). The 4-β-vinyl resonances are labeled *v* and *w*. The spectra also contain the N\deltaH resonances of His70 (*c*) and His46 (*e*). These protons gave rise to cross peaks in ¹H-¹⁵N HSQC spectra and participated in a network of NOEs involving the CβHs, CαH and backbone NH of these histidines. Tables S1 and S2 list the chemical shifts.

FIG. S2. ¹H WEFT NMR spectrum of ferric S6803 rHb-A. Data were collected at 600 MHz at a protein concentration of ~ 1mM on a per-heme basis. The solvent was ${}^{2}\text{H}_{2}\text{O}$, buffered at pH* 7.5 with 20 mM phosphate; the probe temperature was 25 °C. (A) Reference spectrum; (B) WEFT data with recovery delay of 55 ms and a total recycling time of 230 ms. Four broad resonances are observed: *m* (17.2 ppm), *n* (9.1 ppm), *o* (-5.6 ppm), and *z* (-11.3 ppm); these signals are tentatively assigned to the C\deltaH and CeH of the two axial histidines as in rHb-R. The peak labeled *g* was identified as the γ meso proton through NOEs to the heme propionates.

FIG. S3. Portion of the ¹H-¹H NOESY data for S6803 rHb-A in the ferric state. Conditions were as for Fig. S2. Key connectivities were identified in these regions: 8-CH₃ to 1-CH₃ (cross peak *a*), 3-CH₃ to 4- β -vinyl (*e*, *f*), 8-CH₃ to 7- β , propionates (*g*, *h*) and Met66 CeH₃ to 8-CH₃ (*i*) and to 1-CH₃ (*k*). Peaks *b* and *c* arise from His46 C α H-C β H₂ and *d* arises from His70 C β H₂. Chemical shifts are listed in Tables S1 and S2. Peak *l* connects the 1-CH₃ to the modified 2-vinyl group. The NOEs observed between the 4-vinyl and the protein in rHb-R (e.g., to Val87 and Phe34) were also present in rHb-A. Numerous other NOEs between the protein and the heme group (not shown) matched those observed in rHb-R and were consistent with a conserved orientation of the porphyrin ring within its cavity.

FIG. S4. Portions of the ¹H-¹H NOESY and TOCSY data for S6803 rHb-A in the ferric state. Conditions were as in Fig. S1. The upper section (A) is from a NOESY data set the lower section (B) is from a TOCSY dataset. The bottom panel (C) is from the same NOESY as (A). Panel B (TOCSY) contains weak C δ H-C ϵ H connectivities for each of the non-axial histidines, marked by their residue number. Peaks *b* and *c* arise from the ring of Phe84, assigned by analogy to rHb-R³ and with NOEs to adjacent residues. Panel C (NOESY) shows that the C ϵ H of His117 is in dipolar contact with the heme 1-CH₃ (cross peak *d*); Panel A (NOESY) also shows that the C δ H of His117 (at 6.49 ppm) is in contact with the ring of Phe84 (cross peaks *e* and *f*). The His117/heme and His117/Phe84 interactions depicted here are not detected in rHb-R.

Assignment	Signal	δ (ppm)	δ (ppm)
		rHb-A	rHb-R
5-methyl	а	17.95	21.27
3-methyl	1	13.05	9.98
8-methyl	j	12.62	10.37
1-methyl	d	10.09	15.07
$6-\alpha$ '-propionate		7.74	
6-α-propionate		7.17	
4-α-vinyl		6.04	6.84
7-α-propionate		4.34	
7-α'-propionate		1.71	
6-β'-propionate		0.99	
6-β-propionate		0.31	
7-β-propionate		0.12	
7-β'-propionate		-0.37	
trans-4-β-vinyl		-2.12	-1.67
<i>cis</i> -4-β-vinyl		-2.96	-2.14
2-α-vinyl	b		15.54
trans-2-β-vinyl	Х		-4.54
<i>cis</i> -2-β-vinyl	у		-5.15
γ-meso		-2.99	

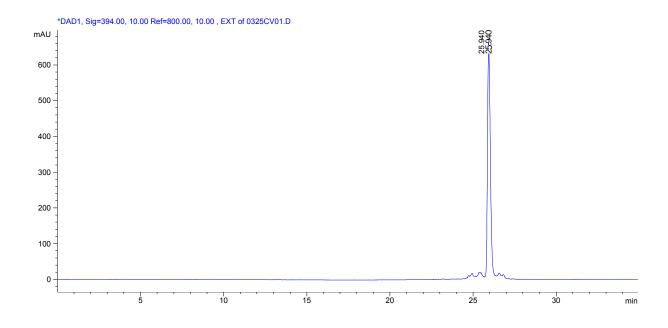
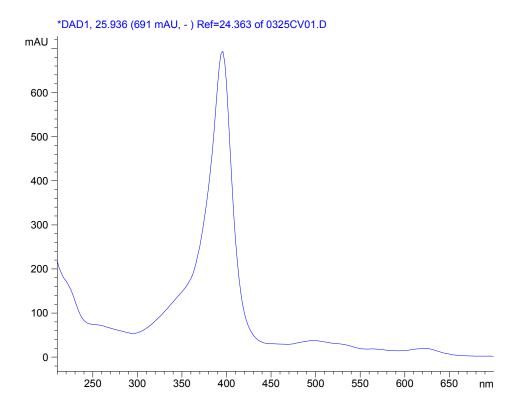
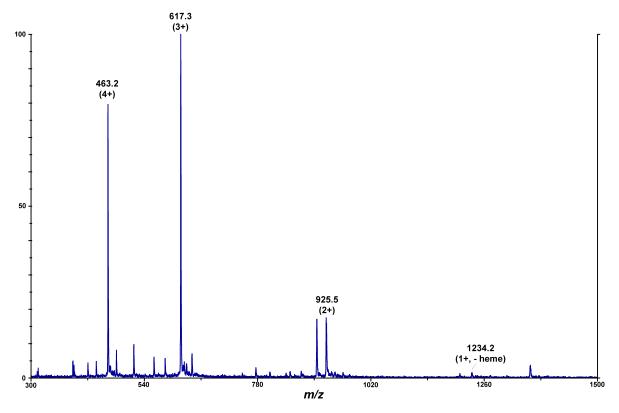
 Table S1.
 ¹H NMR chemical shifts for heme resonances in the spectrum of ferric S6803 rHb-A

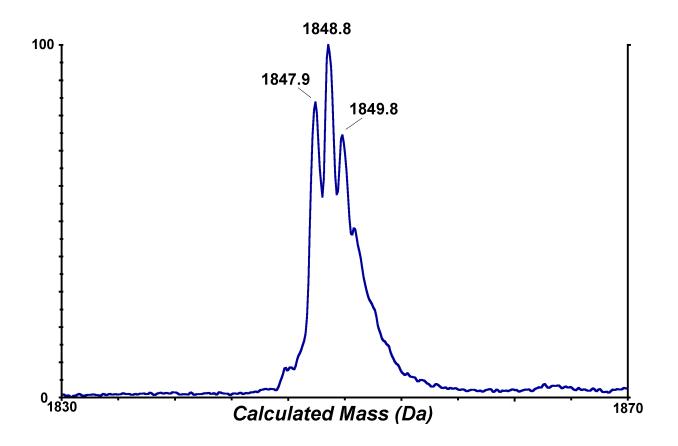
In 95% ${}^{1}\text{H}_{2}\text{O}/5\%$ ${}^{2}\text{H}_{2}\text{O}$, at 25 °C and pH 7.3, with water resonance set at 4.76 ppm with respect to DSS. Assignments for rHb-R are from Ref. 3.

Assignment	Signal	δ (ppm)	δ (ppm)
		rHb-A	rHb-R
His46 NH		11.15	10.71
His46 CaH		9.41	7.70
His46 CβH		11.65	10.82
His46 CβH		9.28	9.20
His46 NδH	e	14.13	13.2
His46 Ca		80.6	77.7
His46 N		123.3	123.0
His46 Nδ		142.2	135.6
His70 NH		9.75	9.90
His70 CaH		6.53	6.75
His70 CβH		10.26	9.62
His70 CβH		10.02	8.92
His70 NδH	с	15.9	15.0
His70 Ca		71.9	69.1
His70 N		113.3	113.0
His70 Nδ		138.4	133.8

 Table S2.
 ¹H NMR chemical shifts for axial histidine resonances in the spectrum of ferric S6803 rHb-A

In 95% ${}^{1}\text{H}_{2}\text{O}/5\%$ ${}^{2}\text{H}_{2}\text{O}$, at 25 °C and pH 7.3, with water resonance set at 4.76 ppm with respect to DSS. Assignments for rHb-R are from Ref. 3.


FIG. S5. HPLC-diode array chromatogram of products of pepsin digestion of rHb-A with detection at $\lambda = 394$ nm (bandwidth = 10 nm) showing a single heme-adducted peptide. No other chromatographic peaks with absorbance at $\lambda > 300$ nm were observed.

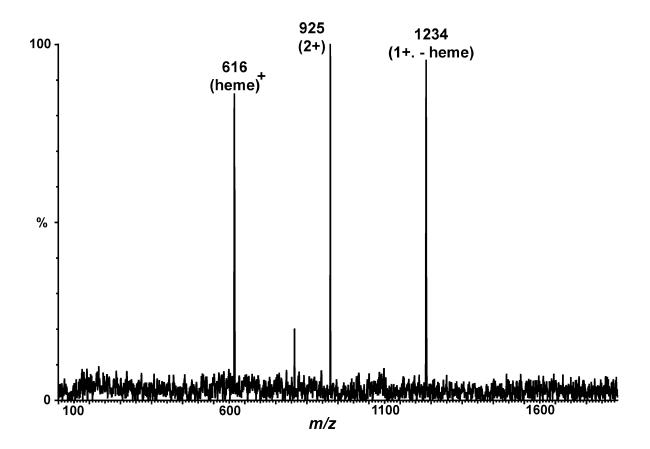

FIG. S6. UV-visible spectrum of peak with $_{R}^{t} = 25.94$ minutes from pepsin digestion of rHb-A.

FIG. S7. Positive mode electrospray ionization mass spectrum of the heme-adducted peptide generated by pepsin digestion of rHb-A. The peak at m/z 1234.2 corresponds to the singly protonated peptide minus heme, and is attributed to collision induced dissociation in the electrospray ion source.

FIG. S8. Transformed "zero-charge state" spectrum calculated from the electrospray ionization mass spectrum in Fig. S7. The transform algorithm assumes that each positive charge arises from proton attachment, but this leads to a calculated monoisotopic mass (1847.9 Da) that is 1 Da less than the true zero-charge state mass (1848.9 Da) based on the following reasoning. Electrospray ionization of heme coordinated to Fe(III) yields M^+ (m/z 616) rather than $[M+H]^+$ ions owing to the +3 charge state of iron. This behavior is also expected in the adducted peptide, which already has one positive charge from the Fe(III) heme. Therefore, the doubly charged peak at m/z 925.5 (Fig. S7) is $[M+H]^{2+}$ in contrast to non-adducted peptides which typically form $[M+2H]^{2+}$ ions. In similar fashion, the triply charged peak at m/z 617 above corresponds to $[M+2H]^{3+}$ and m/z 463 corresponds to $[M+3H]^{4+}$.

FIG. S9. Tandem mass spectrum of products derived from the doubly charged ion at m/z 925 generated from electrospray ionization of the heme-adducted pepsin digest product. Collision cell potential was 30 V and argon (2×10^{-3} mbar) was collision gas. This product ion spectrum shows formation of the singly protonated peptide (minus heme) at m/z 1234 and the singly charged heme at m/z 616. Conditions were not found that yielded heme-attached fragment ions that would indicate the position of attachment.

References

- (1) Lecomte, J. T. J.; Scott, N. L.; Vu, B. C.; Falzone, C. J. *Biochemistry* **2001**, *40*, 6541-6552.
- (2) (a) Scott, N. L.; Lecomte, J. T. J. *Prot. Sci.* **2000**, *9*, 587-597. (b) Scott, N. L.; Falzone, C. J.; Vuletich, D. A.; Zhao, J.; Bryant, D. A.; Lecomte, J. T. J. *Biochemistry* **2002**, *in press*.
- (3) Falzone, C. J.; Lecomte, J. T. J. J. Biomol. NMR 2002, in press. BMRB entry 5269.
- (4) Mueller, L. J. Am. Chem. Soc. **1979**, 101, 4481-4484.
- (5) Wishart, D. S.; Bigam, C. G.; Yao, J.; Abildgaard, F.; Dyson, H. J.; Oldfield, E.; Markley, J. L.; Sykes, B. D. *J Biomol NMR* **1995**, *6*, 135-140.