Supporting Information

Asymmetric Organocatalysis of $4+3$
 Cycloaddition Reactions

Michael Harmata,* Sunil K. Ghosh, Xuechuan Hong, Sumrit Wacharasindhu, and Patrick Kirchhoefer

Department of Chemistry
University of Missouri-Columbia
Columbia, Missouri 65211

General Information:

All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware. Dichloromethane was freshly distilled from CaH_{2}. Furans were distilled immediately prior to use. Trifluoroacetic acid (TFA), chloroform, n-butylamine, and ($2 S$, 5S)-2-(1', 1'-Dimethylethyl)-3-methyl-5-phenylmethyl-4-imidazolidinone (4) were purchased from Aldrich and used without further purification. Chromatographic separations were carried out using Silicycle ultra pure silica gel (230-400 mesh). Thin layer chromatography was performed on EM Reagent 0.25 nm silica gel $60-\mathrm{F}$ plates. Visualization of the developed chromatogram was performed by UV light and vanillin stain solution followed by heating.

Melting points were measured with a Fisher-Johns melting point apparatus. Infrared spectra were recorded on a Perkin Elmer 1600 series FT-IR spectrometer. Optical rotations were measured on a Jasco DIP-370 digital polarimeter. ${ }^{1}$ H NMR were recorded on a Bruker ARX-250 (250 MHz), DRX-300 (300 MHz), DRX-500 (500 MHz) spectrometer and are reported in $\mathrm{ppm}(\delta)$ from tetramethylsilane (TMS: $\delta 0.0 \mathrm{ppm}$). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{ddd}=$ doublet of doublet of doublet), coupling constants (Hz), and integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ARX-250 (62.5 MHz), DRX-300 (75 MHz), and DRX-500 (125 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: \delta 77.0 \mathrm{ppm}\right)$. Analytical high performance liquid chromatography (HPLC) was performed on a Varian Pro Star model 500 using Chiralpak AD or Chiralcel OD-H column. Silyl enol ethers ${ }^{1}$ and dialkyl furans ${ }^{2}$ were prepared according to published methods.

General Experimental Procedure:

To a solution of (2S, 5S)-2-(1', 1'-Dimethylethyl)-3-methyl-5-phenylmethyl-4imidazolidinone (4) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was charged with the appropriate acid and then placed in a bath of desired temperature. The solution was stirred for 10 min before the addition of silyl enol ether $(\mathbf{1}, \mathbf{5 - 7})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After stirring for an additional 10 min, the furan (12-15) (2-5 equiv) was added to it. The resulting solution was stirred at
constant temperature as mentioned in the table. The reaction mixture was then quenched with cold water and extracted with diethyl ether. The separated organic layer was dried over MgSO_{4} and concentrated. The residue was purified by flash chromatography to afford the $4+3$ cycloadducts. For the measurement of enantiomeric excess, the product was treated with 2-3 equiv of n-butylamine in CHCl_{3} to give the corresponding pyrrole derivative.

Compound 8 (Table 1): To a solution of $4(24.6 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added TFA $(7.7 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$. This solution was then cooled to $0^{\circ} \mathrm{C}$ and stirred for 10 min before the addition of $\mathbf{1}(85 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After stirring for an additional 10 min , furan ($363 \mu \mathrm{~L}, 5 \mathrm{mmol}$) was added. The resulting solution was stirred at this temperature for 96 h . The reaction mixture was quenched with cold water, extracted with ether (3 X 5 mL), dried over MgSO_{4}, and concentrated. The residue was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexanes) to afford 8 (endo) in 8% yield as a colorless oil. IR (neat) $2973,1725,1708,1335 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $9.82(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=1.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{dd}, J=1.7,6.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.06 (ddd, $J=1.3,2.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=1.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{ddd}, J=4.8,6.0$, $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=1.3,7.5,18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=5.1,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36$ (dd, $J=1.2,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{ddd}, J=0.8,6.0,18.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 205.1,199.2,135.3,131.2,80.2,78.1,51.4,45.6,39.4$.

Compound 9 (Table 1): To a solution of $\mathbf{8}(8 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ was added n-butylamine ($15 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$) and stirred for 6 h at room temperature. The solvent was removed and purified by a short silica gel column chromatography (10 \% EtOAc/hexanes) to afford 9 ($6 \mathrm{mg}, 63 \%$) as a colorless oil. Enantiomeric excess was determined by HPLC using a Chiralcel OD-H column [hexanes/isopropanol 99:1; flow rate $0.7 \mathrm{ml} / \mathrm{min} ; \mathrm{t}_{\mathrm{r}}=33.87 \mathrm{~min}$ and $\left.42.70 \mathrm{~min} ; 50 \% \mathrm{ee}\right] ;[\alpha]^{25}{ }_{\mathrm{D}} 16.0\left(\mathrm{c} 0.30, \mathrm{CHCl}_{3}\right)$; IR (neat) 2954, 2931, $1480 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.58$ (dd, $J=1.6,5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.41(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=1.8,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.36(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=1.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (dd, $J=6.1,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.24(\mathrm{~m}, 2 \mathrm{H})$,
$0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.9,125.1,122.0,120.1$, 117.3, 102.5, 77.3, 77.0, 45.9, 33.1, 26.1, 19.9, 13.6.

Compound 16: (Table 2, entry 1): To a solution of 4 ($24.6 \mathrm{mg}, 0.10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$ was added TFA $(7.7 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$. This solution was then cooled to $-78{ }^{\circ} \mathrm{C}$ and stirred for 10 min before the addition of $1(85 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After stirring for an additional $10 \mathrm{~min}, \mathbf{1 2}(265 \mu \mathrm{~L}, 2.5 \mathrm{mmol})$ was added. The resulting solution was stirred for 96 h . The reaction mixture was quenched by cold water, extracted by ether (3 X 5 mL), dried over MgSO_{4}, and concentrated. The residue was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to afford 16 (endo) in 64% yield as a colorless oil; IR (neat) 2980, 1722, $1707 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.83(\mathrm{t}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=$ $4.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.73 (ddd, $J=1.8,8.6,17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=4.4,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.3,199.8,138.0,134.3,86.6,84.3,55.7,50.7,39.4,23.2,21.8$. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$: C, 68.02; H, 7.27. Found: C, 68.03; H, 6.98 .

Pyrrole derivative of compound 16: To a solution of $16(10 \mathrm{mg}, 0.05 \mathrm{mmol})$ in CHCl_{3} $(2 \mathrm{~mL})$ was added n -butylamine ($11 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$) and stirred for 6 h at room temperature. The solvent was removed and purified by a short silica gel column chromatography ($8 \% \mathrm{EtOAc} /$ hexanes) to afford the product ($8 \mathrm{mg}, 67 \%$) as a colorless oil. Enantiomeric excess was determined by HPLC using a Chiralpak AD column [hexanes/isopropanol 98:2; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; \mathrm{t}_{\mathrm{r}}=10.24 \mathrm{~min}$ and $11.86 \mathrm{~min} ; 89 \%$ ee]; $[\alpha]^{25}{ }_{\mathrm{D}} 49.1$ (c 0.66, CHCl_{3}); IR (neat) 2962, 1480, $1442 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.40(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.58(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.77(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.5,129.1,124.2,123.8,117.1,101.4$, 83.7, 83.2, 46.1, 33.0, 32.8, 24.8, 20.0 19.9, 13.6.

Compound 17 (Table 2, entry 6): To a solution of 4 ($24.6 \mathrm{mg}, 0.10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 mL) was added TFA ($7.7 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$). This solution was then cooled to $-60{ }^{\circ} \mathrm{C}$, stirred for 10 min , followed by the addition of $\mathbf{1}(85 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After stirring for an additional $10 \mathrm{~min}, 13(310 \mathrm{mg}, 2.5 \mathrm{mmol})$ was added. The resulting
solution was stirred at this temperature for 22 h . The reaction mixture was quenched by cold water, extracted by ether (3 X 5 mL), dried over MgSO_{4}, and concentrated. The residue was purified by flash chromatography ($15 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to afford $\mathbf{1 7}$ (endo) in 55% yield as a colorless oil; IR (neat) $2970,1711,1708 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta 9.82-9.80(\mathrm{~m}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}$, $J=4.2,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=2.0,8.8,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ $(\mathrm{d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=0.5,4.1,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.68(\mathrm{~m}, 4 \mathrm{H}), 0.96(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$), $0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.9,199.9$, 136.9, 133.6, 89.3, 87.3, 54.8, 49.5, 39.1, 29.2, 27.0, 8.0, 7.7. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 70.24; H, 8.16. Found: C, 69.90; H, 7.95.

Pyrrole derivative of compound 17: To a solution of 17 (Table 3, entry 3) ($30 \mathrm{mg}, 0.14$ $\mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ was added butylamine ($11 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$) and stirred for 6 h at room temperature. The solvent was removed and the residue purified by a short silica gel column chromatography ($8 \% \mathrm{EtOAc} /$ hexanes) to afford the product ($25 \mathrm{mg}, 71 \%$) as a colorless oil. Enantiomeric excess was determined by HPLC using a Chiralpak AD column [hexanes/isopropanol 98:2; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; \mathrm{t}_{\mathrm{r}}=9.04 \mathrm{~min}$ and 11.85 min ; 81.3% ee $] ;[\alpha]^{25}{ }_{\mathrm{D}} 35.8$ (c 1.48, CHCl_{3}). IR (neat) $2960,1482,1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.41(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.61(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}$, $J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.37-$ $1.26(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.01(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.5,127.5,124.7,123.5,117.0,101.4,86.8,86.3,46.0,33.0,31.5,30.9,26.0,19.9$, 13.6, 8.2, 8.1.

Compound 18 (Table 2, entry 9): To a solution of $4\left(22.1 \mathrm{mg}, 0.09 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 $\mathrm{mL})$ was added TFA ($7.0 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$). This solution was then cooled to $-78^{\circ} \mathrm{C}$ and stirred for 10 min before the addition of $5(96 \mathrm{mg}, 0.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After stirring for an additional $10 \mathrm{~min}, 14(342 \mathrm{mg}, 2.25 \mathrm{mmol})$ was added. The resulting solution was stirred at this temperature for 95 h . The reaction mixture was quenched with cold water, extracted with ether (3 X 5 mL), dried over MgSO_{4}, and concentrated. The residue was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to afford 18 (endo) in 74% yield as a colorless oil. IR (neat) 2962, 2864, 2733, $1719 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.82-9.80(\mathrm{~m}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.17 (dd, $J=4.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=2.5,10.0,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.37(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=4.1,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.61-$ $1.41(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.03-0.88,(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $206.8,199.9,136.9,133.6,88.9,86.9,55.1,49.8,39.1,38.6,36.5,17.1,16.9,14.3,14.2$;

HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$273.14611, found 273.14780.
Pyrrole derivative of compound 18: To a solution of $18(30 \mathrm{mg}, 0.119 \mathrm{mmol})$ in CHCl_{3} (6 mL) was added n-butylamine ($23 \mu \mathrm{~L}, 0.239 \mathrm{mmol}$) and stirred for 10 h at room temperature. The solvent was removed and purified by a short silica gel column chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to afford the product as a colorless oil (34 mg , 99\%). Enantiomeric excess was determined by HPLC using a Chiralcel AD column [hexane/isopropanol 98:2; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; \mathrm{t}_{\mathrm{r}}=9.60$ and $11.18 \mathrm{~min} ; 85 \% \mathrm{ee}$; IR: 2990, 2962, 1486, 1466, $1271 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.41(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.23(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~d}, J=15.7), 2.07-1.28(\mathrm{~m}, 12 \mathrm{H}), 1.07-$ $0.90(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.6,127.5,124.5,123.7,117.0,101.3$, 86.3, 85.9, 46.0, 40.6, 35.5, 33.0, 31.8, 19.9, 17.3, 14.6, 13.6.

Compound 19 (Table 2, entry 11): To a solution 4 ($24.6 \mathrm{mg}, 0.10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1 $\mathrm{mL})$ was added TFA ($7.7 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$). This solution was cooled to $-35^{\circ} \mathrm{C}$ and stirred for 10 min before the addition of $\mathbf{1}(85 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After stirring for an additional $10 \mathrm{~min}, 15(270 \mathrm{mg}, 1 \mathrm{mmol})$ was added. The resulting solution was stirred at this temperature for 12 h . The reaction mixture was quenched with cold water, extracted with ether (3 X 5 mL), dried over MgSO_{4}, and concentrated. The residue was purified by flash chromatography (15% EtOAc/hexanes) to afford 19 as endo:exo isomers (3.7:1) in 56% yield as a white crystalline solid. Endo isomer: $\mathrm{R}_{\mathrm{f}}=0.43(25 \%$ EtOAc/hexanes); mp 222-224 ${ }^{\circ} \mathrm{C}$; IR (film) 2835, 1719, $1709 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.18(\mathrm{~m}, 13 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=2.2,9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=9.9,17.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.37 (dd, $J=2.2,17.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.6,198.9,146.7$, $141.3,139.9,137.2,129.1,128.9,128.5,128.3,128.0,127.9,125.8,122.8,121.7,88.6$, 85.9, 52.5, 50.7, 40.0; Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 81.50; H 5.47. Found: C, 81.71; H,
5.51; Exo isomer: $\mathrm{R}_{\mathrm{f}}=0.21$ (25% EtOAc/hexanes); mp 172-173 ${ }^{\circ} \mathrm{C}$; IR (film) 2835, $1719,1709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.57(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.18(\mathrm{~m}$, $14 \mathrm{H}), 3.70(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ $(\mathrm{d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.8$, $198.8,145.0,143.6,140.2,138.6,129.0,128.8,128.6,128.5,128.2,125.9,125.0,121.3$, 121.2, 87.3, 85.8, 53.8, 49.2, 42.5. Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 81.50; H 5.47. Found: C, 81.56; H, 5.68.

Pyrrole derivative of compound 19: To a solution of $19(30 \mathrm{mg}, 0.02 \mathrm{mmol})$ in CHCl_{3} $(2 \mathrm{~mL})$ was added n-butylamine ($10 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) and stirred for 6 h at room temperature. The solvent was removed and purified by a short silica gel column chromatography ($8 \% \mathrm{EtOAc} /$ hexanes) to afford the product as a colorless solid (25 mg , 76\%). Endo: Enantiomeric excess was determined by HPLC using a Chiralcel OD-H column [hexanes/isopropanol 98:2; flow rate $1 \mathrm{ml} / \mathrm{min} ; \mathrm{t}_{\mathrm{r}}=8.25 \mathrm{~min}$ and $12.42 \mathrm{~min} ; 12$ \% ee]; Exo: Enantiomeric excess was determined by HPLC using a Chiralcel OD-H column [hexanes/isopropanol 98:2; flow rate $1 \mathrm{ml} / \mathrm{min} ; \mathrm{t}_{\mathrm{r}}=9.46 \mathrm{~min}$ and $13.70 \mathrm{~min} ; 68$ \% ee]; IR (film) 2953, 2925, $1486 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00-7.95(\mathrm{~m}$, $2 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.11-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.45(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.08(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.5 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 150.8,144.9,143.3,139.0,128.2,128.0,127.5,127.1,126.1,125.4$, $124.0,123.1,121.5,118.8,118.5,103.0,86.4,84.6,46.1,33.7,33.0,19.9,13.6$.

Compound 21 (Eqn. 2): To a solution of $4(24.6 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added TFA ($7.7 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$). This solution was cooled to $-30^{\circ} \mathrm{C}$ and stirred for 10 min before the addition of $\mathbf{2 0}(92 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After stirring for an additional $10 \mathrm{~min}, 12(265 \mu \mathrm{~L}, 2.5 \mathrm{mmol})$ was added. The resulting solution was stirred at this temperature for 96 h . The reaction mixture was quenched with cold water, extracted with ether (3 X 5 mL), dried over MgSO_{4}, and concentrated. The residue was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to afford 21 (endo) (67 mg , 64%) as a colorless oil; IR(neat) 2974, 2921, 1723, $1705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 9.84(\mathrm{dd}, J=1.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.23(\mathrm{dd}, J=4.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=1.9,9.1,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{q}, J=7.0$
$\mathrm{Hz}, 1 \mathrm{H}), 2.21$ (ddd, $J=0.8,4.1,16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 207.7,200.0,136.7,135.6,87.8,86.7,55.8$, 54.6, 39.7, 21.9, 21.8, 10.1; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$231.0992, found 231.0992.

Pyrrole derivative of compound 21: To a solution of $21(21 \mathrm{mg}, 0.1 \mathrm{mmol})$ in CHCl_{3} (3 mL) was added n-butylamine ($14.6 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$) and refluxed for 24 hrs . The solvent was removed and the residue purified by a short silica gel column chromatography (8% EtOAc/hexanes) to afford the product ($9 \mathrm{mg}, 37 \%$) as a colorless oil. Enantiomeric excess was determined by HPLC using a Chiralpak AD column [hexanes/isopropanol 98:2; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; \mathrm{t}_{\mathrm{r}}=9.96 \mathrm{~min}$ and $10.59 \mathrm{~min} ; 9 \%$ ee]; $[\alpha]^{25}{ }_{\mathrm{D}} 8.0(\mathrm{c} 0.85$, CHCl_{3}); IR(neat) 2966, 2929, 2868, 1589, $1454 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 6.38-6.29 (m, 2H), 5.95 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.69(\mathrm{~m}, 2 \mathrm{H})$, $2.97(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.25(\mathrm{~m}, 2 \mathrm{H})$, $1.16(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.7$, $129.5,128.7,124.1,117.7,101.4,87.1,83.4,47.1,38.8,33.1,22.6,20.2,20.1,13.7,13.1$.

Compound 22 (Eqn. 2): To a solution of $4(24.6 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added TFA ($7.7 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$). This solution was cooled to $-30^{\circ} \mathrm{C}$ and stirred for 10 min before the addition of $\mathbf{2 0}(92 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After stirring for an additional 10 min , furan ($181 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$) was added. The resulting solution was stirred at this temperature for 96 h . The reaction mixture was quenched with cold water, extracted with ether (3 X 5 mL), dried over MgSO_{4}, and concentrated. The residue was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to afford 22 (endo) (63 mg , 64%) as a colorless oil. IR (neat) 2970, 1728, $1703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $9.84(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=1.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=1.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=$ $1.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=1.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=$ $7.9,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=5.71,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.9,199.5,134.2,132.8,82.7,81.2,50.6,50.4,39.5,10.0$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$203.0679, found 203.0680.
Pyrrole derivative of compound 22: To a solution of $22(28 \mathrm{mg}, 0.15 \mathrm{mmol})$ in CHCl_{3} (3 mL) was added n-butylamine ($56 \mu \mathrm{~L}, 0.77 \mathrm{mmol}$) and refluxed for 24 hrs . The solvent was removed and purified by a short silica gel column chromatography (8 \%

EtOAc/hexanes) to afford the product as a colorless oil (14 mg, 43\%). Enantiomeric excess was determined by HPLC using a Chiralpak AD column [hexanes/isopropanol 98:2; flow rate $0.5 \mathrm{ml} / \mathrm{min} ; \mathrm{t}_{\mathrm{r}}=17.73 \mathrm{~min}$ and $24.33 \mathrm{~min} ; 7 \%$ ee]; IR (neat) 2970, 2917, $1589,1470 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.72(\mathrm{dd}, J=1.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=1.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=1.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.0,125.3,120.3$, 117.9, 112.7, 102.6, 82.0, 79.0, 47.2, 33.1, 32.6, 20.1, 13.7, 13.2.

Relative Stereochemistry of 21:

endo 24

exo 24

21

The determination of the relative stereochemistry of 21 was made by NOESY experiments. ${ }^{3}$ From these experiments, we observed the following cross peaks: $\mathrm{CH}_{2}-10$ and $\mathrm{H}-6$ (intense), $\mathrm{CH}_{3}-9$ and $\mathrm{H}-7$ (intense). We can therefore assign to 21, the structure shown. Further support for this stereochemical assignment comes from a comparison of the chemical shifts of H-2, H-8, H-9 in 21 with the endo and exo isomers of 24 (Table 1). ${ }^{4}$ Further support was from a comparison of ${ }^{13} \mathrm{C}$ chemical shift of C-4, C-8 and C-9 in 21 with the endo and exo isomers of $\mathbf{2 4}$ (Table 2). ${ }^{4}$

Table 1. ${ }^{1} \mathrm{H}$ Chemical shifts, $\delta(\mathrm{ppm})$, in CDCl_{3} of 21 and diastereoisomeric pairs of $\mathbf{2 4}$

Compound	H-2	H-4	H-6	H-7	H-8	H-9
endo 24	2.57	2.77	6.25	6.12	1.51	0.96
exo 24	2.26	2.26	6.19	6.04	1.39	1.26
$\mathbf{2 1}$	2.61	3.23	6.04	5.95	1.51	1.0

Table 2. ${ }^{13} \mathrm{C}$ Chemical shifts, $\delta(\mathrm{ppm})$, in CDCl_{3} of 21 and diastereoisomeric pairs of $\mathbf{2 4}$

Compound	C-2	C-4	C-6	C-7	C-8	C-9
endo 24	49.27	55.36	136.31	132.89	21.33	9.75
exo 24	48.78	53.35	137.75	133.29	19.68	14.54
21	54.58	55.8	136.68	135.59	21.9	10.1

[1] Ohno, M.; Mori, K.; Hattori, T.; Eguchi, S. J. Org. Chem., 1990, 55, 6086.
[2] McKeown, N. B.; Chambrier, I.; Cook, M. J. J. Chem. Soc., Perkin Trans. 1 1990, 1169.
[3] Montana, A. M.; Grima G. M.; Garcia, F. Magn. Reson. Chem. 1999, 37, 507-511.
[4] Montana, A. M.; Ribes S.; Grima G. M.; Garcia, F. Magn. Reson. Chem. 1998, 36, 174-180.

wว／2H	69976．8L「	WJZH
wJ／wdd	ع $2969{ }^{\circ}$	WJWdd
	89 Ege－	2
wdd	Gb8 0	\＃ट」
	ge gece	$1 \pm$
wdd	080 ！	dı」
	$00 \cdot \square$	12
	$00^{\circ} 02$	$\times 3$
	s．aazəweued	70id Ul｜ 0
	OE．	3 d
	0	89
	0¢ 0	97
	0	955
	W ${ }^{\text {a }}$	MGM
2 HWN	lo000e 「「008	15
	89LटE	15
	ұәшe．Jed	55ajoud

 $\begin{array}{lr}\text { NAME } & \mathrm{sg}-4-120 \\ \text { EXPNN } & 1 \\ \text { PROCNO } & 1\end{array}$

suazawejed ezeo zuajung

$\begin{array}{lr}l & \text { ONJOHd } \\ 2 & \text { ONdX } \\ \text { uennf- } & \exists W \forall N\end{array}$
Current Data Parameters

	ZH L60Gb ${ }^{\text {cos }}$	WJZH
	dd OSIBg＇0	WJWdd
	zH 09 602－	己」
	dd 8 Q日 ${ }^{\circ} 0$	dट」
	z H 2v＇6692	よ
	dd $26 L^{\circ} 0$ ¢	df
	แว 0G＇ट！	13
	Wว 00＇02	XJ
suazawesed fota tun al		
	OG＇${ }^{\text {b }}$	Jd
	0	89
	ZH OC＇0	87
	0	gSS
	W \ddagger	MOM
ZHW	HW GG000EL－OGE	dS
	จ®E9「	IS
SJaqameved 6uṭsajoud－		
	HL	Sกヨาวกn
ZHW	HW LEESTE！0G己	LO． 5
	On 02	Id
	S 00000000 －	Lo
	＞ $0 \cdot 00 \mathrm{E}$	31
	S ロら゙LEし	30
	－000＇96	MO
	0982	9 H
	6LLLSb「 E	OV
	2H 9bebci 0	S340İ
	ZH EEE 80こ¢	HMS
	己	SO
	91	SN
	£โวОง	INJ＾70S
	89くटを	a1
	$0 \mathrm{E}_{6} \mathrm{z}$	$904 d 7 \mathrm{nd}$
	HL dNO WШ G	OHध0ㅂd
	Ogexue	WกHISNI
	ट2 $\mathrm{Sl}^{\text {d }}$	аш！ 1
	E0902002	－aze0

[^0]| шЈ／zH | H $00260 \cdot \mathrm{v}$ ¢ | WJZH |
| :---: | :---: | :---: |
| แכ／wdd | d 60Lll＇s¢ | WOWdd |
| | H 86 ＇ट2ट9－ | 2d |
| | dd bab $\mathrm{br}^{\text {－}}$ | d2」 |
| | 2H 98 85pEE | 「」 |
| | Id g90＇992 | dra |
| | 20＇日 | 10 |
| | 0000 | $\times 3$ |
| sjazawejed fotd tul 0 ¢ | | |
| | 00＇1 | Jd |
| | 0 | 99 |
| | H 00 ＇ | 87 |
| | 0 | ESS |
| | W F | MIM |
| 2HW | W E己6LLGL G25 | ± 5 |
| | 89L2E | IS |
| suajawesed 6uts ssajoud－¢． | | |
| 2 HW | W S0002er：00s | 20.5 |
| | p $00 \cdot 12$ | टז7 |
| | 000 | 270 |
| jasn | O $00 \cdot 101$ | 20dJd |
| | H | 己วกn |
| | 9iz7tem | 298d0d3 |
| | | |
| | W 80LELくL SCL | 10．${ }^{\text {S }}$ |
| | 00＇$¢$ | เาd |
| गasn | － D －8 | Id |
| | | |
| | | |
| วэs | 000000eo 0 | inp |
| כas | 00000000＇I | 10 |
| | ＋ 0.862 | 91 |
| วasn | 00＇9 | 30 |
| วasn | ¢ 009 | Mо |
| | DEE95 | 9 |
| כas | ¢8recze 0 | 0 |
| | ${ }^{\text {H 96pG09 }} 0$ | Sヨ\＃OI． |
| | | |
| | \square | So |
| Osp SN | | |
| ¢ IJJJgecg | | ingatos |
| | | 01 |
| oعวp6z
 ［ כnuṭinn ww 9 | | 903d7nd |
| | | OHPOUd |
| 009xda | | WาUISNI |
| | | วшฺ1 |
| | | －27e0 |
| suəzaweлed votztitntor－ट̇ | | |
| \downarrow | | ONOOHd |
| ¢ | | ONdX ${ }^{\text {a }}$ |
| | $\varepsilon \nabla-\nabla-6 s$ suaұәше. | ${ }^{\text {JWY }}$ |

[^1]

$\begin{array}{lr}\text { 10 NMR plot parameters } \\ \text { CX } & 20.00 \mathrm{~cm} \\ \text { CY } & 10.00 \mathrm{~cm} \\ \text { F1P } & 150.212 \mathrm{ppm} \\ \text { F1 } & 9447.60 \mathrm{~Hz} \\ \text { F2P } & 8.366 \mathrm{ppm} \\ \text { F2 } & 526.19 \mathrm{~Hz} \\ \text { PPMCM } & 7.09228 \mathrm{ppm} \\ \text { HZCM } & 446.07059 \mathrm{~Hz} /\end{array}$

[^2]9.8170 9.8137 9.8095
\qquad 7.2695

$\begin{array}{lc}\text { F2－Processing parameters } \\ \text { SI } & 16384 \\ \text { SF } & 250.1300049 \mathrm{MHz} \\ \text { WDW } & \text { EM } \\ \text { SSB } & 0 \\ \text { LB } & 0.20 \mathrm{~Hz} \\ \text { GB } & 0 \\ \text { PC } & 1.50\end{array}$
$\begin{array}{lc}\text { F2－Processing parameters } \\ \text { SI } & 16384 \\ \text { SF } & 250.1300049 \mathrm{MHz} \\ \text { WDW } & \text { EM } \\ \text { SSB } & 0 \\ \text { LB } & 0.20 \mathrm{~Hz} \\ \text { GB } & 0 \\ \text { PC } & 1.50\end{array}$
$\begin{array}{lc}\text { SFO1 } & 250.1315321 \mathrm{MHz} \\ \text { NUCLEUS } & 1 \mathrm{H}\end{array}$

品吴品

号岑
GTL
Jas $6 L \angle L S V l \cdot \varepsilon$ ZH 9768GI． 0 ZH عとદ 80こら几官 asn $\square \amalg \angle E I$
asn 000.96
GLL

n

$$
\begin{array}{lr}
\text { 1D NMR plot parameters } \\
\text { CX } & 20.00 \mathrm{~cm} \\
\text { CY } & 6.00 \mathrm{~cm} \\
\text { F1P } & 10.775 \mathrm{ppm} \\
\text { F1 } & 2695.05 \mathrm{~Hz} \\
\text { F2P } & -0.829 \mathrm{ppm} \\
\text { F2 } & -207.30 \mathrm{~Hz} \\
\text { PPMCM } & 0.58017 \mathrm{ppm} \\
\text { HZCM } & 145.11768 \mathrm{Hz/}
\end{array}
$$

PROBHD $\quad 5 \mathrm{~mm}$ QNP 1 H

3.2102

3． 1933
3． 1750
3． 1580
2． 6620
2.6542
2.5887
2.5275
2.4048
2.3436
2.2466
2.2448
2.2301
1.811
1.7998
-1.7852
－ 1.7680
-1.7561
$\leftarrow \begin{aligned} & 1.7526 \\ & -1.7371\end{aligned}$

（ | -1.7526 | |
| :---: | :---: |
| - | 1.7371 |

-1.7275
0.9912
0.9798
0.961
0.950
0.9314
0.9314
0.9209
-0.0103

	16890＇298	WJZH
		WJWdd
		2f
wod	SLL＇Eट－	dこ」
	G0＇9b／G1	［」
wdd	จSE．0ge	dIJ
	00 01	13
แว	$00 \cdot 02$	x 3
	suafawejed	701d UWN OL
	$00^{\circ} 1$	Jd
	0	99
2 H	00．	87
	0	日SS
	W F	MOM
2HW	6レD2558＇29	\pm ¢
	B9L2E	IS
	7әweued 6uțs	ssajoud－
วəร	000000EO 0	IId
	Јモ	Sกวาวกn
zHW	จ69¢206 29	20－S
asn	¢ $\mathrm{E}^{\text {＇}}$	Id
วas	00000000 โ	10
asn	00＇EOL	เعd
	9bz7Iem	9udado
g	00 ＇と	970
כas	00020000＇0	210
	0 O0E	$\exists 1$
asn	¢ \square° 枵	30
asn	$000 \cdot 62$	MO
	$008 己 己$	9 y
כวs	0901690 ${ }^{\text { }}$	O
zH	20LL90 0	S3y
zH		HMS
	\checkmark	So
	8عट！	SN
	とโวOJ	ING＾ 70 S
	ャ9898	01
	0عวј6z	904d7nd
	HI dNO Wu g	OH8OHd
	ogexje	WMUISNI
	E0＇81	วш！ 1
	とこ902002	－aze0

[^3]

	6己TVE801	WכZH
	ロIEEロ＇0	WJWdd
2H	I9＊$\angle 5$－	2」
udd	0E9 0－	d2」
	こ己 6002	「」
wdd	EE0 8	d「」
	00＇9	15
แว	00．02	XJ
sJazowesed fotd UWN Ob		
	OG＇${ }^{\text {I }}$	Jd
	0	99
zH	O2＇0	87
	0	gSS
	Wヨ	MOM
ZHW	6ヤO00Et 0G己	\pm J
	b8EG	IS
sjaqamejed burssajoud－टد		
	HI	Sกヨาวกn
ZHW	L 己EGIET OG己	10－3
asn	0L＇θ	Id
jas	00000000 ${ }^{\text {b }}$	10
λ	0．00E	31
asn	ロV＇LE	$\exists 0$
asn	000＇96	MO
	0とЬ「	9 H
Jas	6LLLSO1＇E	OV
	9ヶ68Gt 0	S3 $301 \pm$
	EEE B0こG	HMS
	己	S0
	91	SN
	と100J	1Nヨ＾70S
	89L己E	01
	0¢6z	90ydind
	HV dNO UW G	OH9OUd
	ogexue	WחUISNI
	$9 \nabla^{\circ} 91$	aw！ 1
	－2902002	－ 2780
	โ	ONJOUd
	\checkmark	ONdXI
	SOL－b－6s	JWVN
sjafoweued eqea quajung		

\qquad

- 13.637

 π
\vdots suazaueded buissayoud - CJ

0.00000000 sec
J2S 00000000.
כəs $00000000^{\prime} T$
y 0.00ε
jasn 00.9

7.27529
7.12718

.18712
-3.17144
-3.15754
-2.58890
-2.53791
[2. 40055
$\left[\begin{array}{l}2.34958 \\ \Gamma 1.74115\end{array}\right.$
1.72606
.72054
.70451
.70461
.69705
1.68739
1.66988
-0.9858
0.97600
-0.96887
0.96887
-0.96148
$-\begin{aligned} & -0.9515 \\ & -0.94\end{aligned}$
-0.94452
-0.93727
L-0.92033

T
$\stackrel{\rightharpoonup}{3}$

 WJWdd

- 55.179
- 49.895
39.191
-

38.588
36.509
17.199

[^4]

$\frac{\pi}{2}$
몸⿹ㅓㅁ
另宫 은 믕

而
90
90
90
${ }^{9}$ 63४0I．罣品元 そ炭 PULPROG PROBHD咅 F2－Acq
Date＿－
Time

F2－Acquisition Parameters

-2.6853

2.4184
-2.4098

\qquad

โ-LL-ヵ-6s
suafoueved eqea quajunj

	¢	이 : wom 灵
	苓	
	$\bigcirc \quad \bigcirc \quad 8 \stackrel{\sim}{\circ} \mathrm{O}$	
	ㅍ ㄴ 조N	

$002, \ldots, \ldots$

$\begin{array}{lr}\text { 1D NMR plot parameters } \\ \text { CX } & 20.00 \mathrm{~cm} \\ \text { CY } & 6.00 \mathrm{~cm} \\ \text { F1P } & 9.229 \mathrm{ppm} \\ \text { F1 } & 2308.42 \mathrm{~Hz} \\ \text { F2P } & -0.718 \mathrm{ppm} \\ \text { F2 } & -179.67 \mathrm{~Hz} \\ \text { PPMCM } & 0.49736 \mathrm{ppm} \\ \text { HZCM } & 124.40448 \mathrm{~Hz} /\end{array}$

EXPNO
PROCNO
EXPNO
Current Data Parameters
NAME $\begin{aligned} & \text { sg-4-78 }\end{aligned}$

$\begin{array}{lr}\text { 1D NMR plot parameters } \\ \text { CX } & 20.00 \mathrm{~cm} \\ \text { CY } & 6.00 \mathrm{~cm} \\ \text { F1P } & 9.229 \mathrm{ppm} \\ \text { F1 } & 2308.42 \mathrm{~Hz} \\ \text { F2P } & -0.718 \mathrm{ppm} \\ \text { F2 } & -179.67 \mathrm{~Hz} \\ \text { PPMCM } & 0.49736 \mathrm{ppm} \\ \text { HZCM } & 124.40448 \mathrm{~Hz} /\end{array}$

ONJOHd
ONdXG
EXPNO

Wコ/ZH LLVLG' $\angle B Z \quad$ WJZH

 $\begin{array}{cc}\text { Jas } 00000000 \text {. } & \text { IL } \\ \gamma \angle 962 & \exists 1 \\ \text { วasn } 00.9 & \exists 0\end{array}$ jasn 000 80 MO $\begin{array}{cr}\text { AQ } & 2.1807604 \mathrm{sec} \\ \text { AG } & 64\end{array}$

 NS 16

 INSTRUM DRX500

 $\begin{array}{lr}\text { EXPNO } & 1 \\ \text { PROCNO } & 1\end{array}$

$\begin{array}{lr}\text { 10 NMR Dlot parameters } \\ \text { CX } & 20.00 \mathrm{~cm} \\ \text { CY } & 8.00 \mathrm{~cm} \\ \text { F1P } & 220.000 \mathrm{ppm} \\ \text { F1 } & 27666.71 \mathrm{~Hz} \\ \text { F2P } & -10.000 \mathrm{ppm} \\ \text { F2 } & -1257.58 \mathrm{~Hz} \\ \text { PPMCM } & 11.50000 \mathrm{ppm} / \mathrm{cm} \\ \text { HZCM } & 1446.21472 \mathrm{~Hz} / \mathrm{cm}\end{array}$

D1 $\quad 1.00000000 \mathrm{sec}$

Integral

$\begin{array}{r}3.7912 \\ \hdashline 3.7266\end{array}$

$3 d$ 日

$\begin{array}{lr}\text { 1D NMR plot parameters } \\ \text { CX } & 20.00 \mathrm{~cm} \\ \text { CY } & 8.00 \mathrm{~cm} \\ \text { F1P } & 9.000 \mathrm{ppm} \\ \text { F1 } & 2251.17 \mathrm{~Hz} \\ \text { F2P } & -0.500 \mathrm{ppm} \\ \text { F2 } & -125.07 \mathrm{~Hz} \\ \text { PPMCM } & 0.47500 \mathrm{ppm} \\ \text { HZCM } & 118.81175 \mathrm{~Hz} /\end{array}$
$\begin{array}{lr}0 & \text { 日SS } \\ \text { Wヨ } & \text { MOM } \\ \text { ZHW 日LOOOEL 0Gट } & \text { JS } \\ \text { ロ8EGI } & \text { IS }\end{array}$ suazaweved 6u！̣ssajoJd－ट」

\qquad

 NUCLEUS
G

 US
HI
HW
LEEG ZHW L己EGLE OGZ
asn OL＇8
00000
008
0.00ε
$\angle \varepsilon!$
96.00

ZH 9b685io

[^5]

Identification code	SG-77-1
Empirical formula	$\mathrm{C} 25 \mathrm{H} 2 \mathrm{O} \quad \mathrm{O}$
Formula weight	368.41
Temperature	173 (2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2~1~/C
Unit cell dimensions	$\begin{aligned} \mathrm{a}=12.0876(11) \mathrm{A} \quad \text { alpha } & =90 \mathrm{deg} . \\ \mathrm{b}=10.3640(10) \mathrm{A} & \text { beta } \end{aligned}=92.407(2) \mathrm{deg} .$
Volume	1867.3(3) $\mathrm{A}^{\wedge} 3$
Z, Calculated density	4, $1.310 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.085 \mathrm{~mm}^{\wedge}-1$
F(000)	776
Crystal size	$0.45 \times 0.45 \times 0.20 \mathrm{~mm}$
Theta range for data collection	1.69 to 27.11 deg .
Limiting indices	$-15<=h<=14,-12<=k<=13,-17<=1<=19$
Reflections collected / unique	$11122 / 4105[\mathrm{R}($ int $)=0.0274]$
Completeness to theta $=27.11$	99.3 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9832 and 0.9627
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	$4105 / 0 / 253$
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.024
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0375, \mathrm{wR} 2=0.0843$
R indices (all data)	$\mathrm{R} 1=0.0636, \mathrm{wR} 2=0.0943$
Largest diff. peak and hole	0.215 and $-0.160 \mathrm{e} . \mathrm{A}^{\wedge}-3$

$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U (eq)
O(1)	6391 (1)	6338 (1)	1174 (1)	24(1)
O(2)	7439 (1)	2820 (1)	1872 (1)	48 (1)
O(3)	9842(1)	3415 (1)	995 (1)	57 (1)
C(1)	7394(1)	6280 (1)	1747(1)	24 (1)
C(2)	6931 (1)	6239 (1)	2681(1)	24 (1)
C (3)	5842(1)	5812(1)	2591 (1)	25 (1)
C(4)	5588 (1)	5530 (1)	1599 (1)	25 (1)
C(5)	5911 (1)	4126 (1)	1386 (1)	$31(1)$
C (6)	7120 (1)	3877 (1)	1623 (1)	32 (1)
C (7)	7954 (1)	4977 (1)	1537 (1)	27 (1)
C (8)	7405 (1)	6540 (1)	3520 (1)	28 (1)
C(9)	6748 (1)	6448 (1)	4259 (1)	34 (1)
C (10)	5650(1)	6058 (1)	4163 (1)	35 (1)
C (11)	5184 (1)	5722 (1)	3326 (1)	30 (1)
C (12)	8049 (1)	7486 (1)	1540 (1)	24 (1)
C (13)	7681 (1)	8654 (1)	1876(1)	31 (1)
C (14)	8189 (1)	9810(1)	1673 (1)	37 (1)
C (15)	9084 (1)	9805 (2)	1125 (1)	39 (1)
C (16)	9458 (1)	8657 (2)	781 (1)	40 (1)
C (17)	8942 (1)	7497 (1)	984 (1)	32 (1)
C (18)	4433 (1)	5916(1)	1273 (1)	27 (1)
C(19)	4180 (1)	7220 (1)	1157 (1)	34 (1)
C (20)	3118 (1)	7600 (2)	895 (1)	44 (1)
C (21)	2290 (1)	6690 (2)	761 (1)	45 (1)
C (22)	2528 (1)	5398(2)	885 (1)	42 (1)
C (23)	3598 (1)	5010 (2)	1129 (1)	34 (1)
C (24)	8992 (1)	4682 (1)	2120(1)	35 (1)
C (25)	9661(1)	3596(2)	1766 (1)	46 (1)

Table 3. Bond lengths $\lfloor\mathrm{A}\rfloor$ and angles ldeg」 for sg771.

O(1)-C(4)	1.4485 (15)
O(1)-C(1)	1.4554 (15)
$\mathrm{O}(2)-\mathrm{C}(6)$	1.2141 (17)
O(3)-C(25)	1.194(2)
$\mathrm{C}(1)-\mathrm{C}(12)$	1.5179(18)
$C(1)-C(2)$	1.5251(18)
$\mathrm{C}(1)-\mathrm{C}(7)$	1.5479 (17)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.3891 (18)
$\mathrm{C}(2)-\mathrm{C}(8)$	1.3902 (18)
$\mathrm{C}(3)-\mathrm{C}(11)$	1.3844 (19)
C (3) - C (4)	1.5264 (18)
C (4)-C(18)	1.5130 (18)
$C(4)-C(5)$	1.5432 (18)
C (5) - C (6)	1.511 (2)
C (6)-C(7)	1.530 (2)
C (7)-C(24)	1.5274 (18)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.388 (2)
C (9)-C(10)	1.390 (2)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.392 (2)
C(12)-C(17)	1.3885 (19)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.3913 (19)
C(13)-C(14)	1.386 (2)
C(14)-C(15)	1.383 (2)
C(15)-C(16)	1.380 (2)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.394 (2)
C (18) - C (23)	1.3894 (19)
C (18) - C (19)	1.395 (2)
C (19)-C (20)	1.383 (2)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.383 (2)
C (21)-C (22)	1.380 (2)
$\mathrm{C}(22)-\mathrm{C}(23)$	1.388 (2)
C (24)-C (25)	1.496 (2)
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)$	105.99(9)
O(1)-C(1)-C(12)	105.99(10)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	102.06 (9)
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(2)$	115.06 (10)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)$	106.14(10)
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(7)$	116.18(10)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	109.91(10)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(8)$	120.80(12)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	107.63(11)
$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(1)$	131.57(12)
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(2)$	121.17(12)
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(4)$	130.98(12)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.84(11)
O(1)-C (4)-C(18)	109.40(10)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	101.69(10)
$\mathrm{C}(18)-\mathrm{C}(4)-\mathrm{C}(3)$	113.96 (11)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	105.97(10)
$\mathrm{C}(18)-\mathrm{C}(4)-\mathrm{C}(5)$	114.90 (11)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	109.79(11)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	111.29(11)
O(2)-C(6)-C(5)	121.13(13)
$0(2)-C(6)-C(7)$	119.74(13)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.14(11)
$\mathrm{C}(24)-\mathrm{C}(7)-\mathrm{C}(6)$	109.35(11)
$\mathrm{C}(24)-\mathrm{C}(7)-\mathrm{C}(1)$	114.54(11)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)$	109.77(11)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(2)$	118.14(13)
C (8)-C(9)-C(10)	120.89(13)
C (9)-C(10)-C(11)	120.93(13)
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	118.01(13)
C(17)-C(12)-C(13)	118.46(13)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(1)$	123.61(12)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(1)$	117.77(11)
C (14)-C (13)-C(12)	121.47(13)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	119.40(14)

```
C(16)-C(1b)-C(14)
120.04(13)
C(15)-C(16)-C(17)
120.37(14)
C(12)-C(17)-C(16)
120.26(14)
C(23)-C(18)-C(19)
118.79(13)
C(23)-C(18)-C(4)
121.74(12)
C(19)-C(18)-C(4)
    119.39(12)
C(20)-C(19)-C(18)
120.44(14)
C(21)-C(20)-C(19)
120.29(15)
C(22)-C(21)-C(20)
119.72(15)
C(21)-C(22)-C(23)
120.24(14)
C(21)-C(22)-C(23)
120.49(14)
C(25)-C(24)-C(7)
113.13(12)
O(3)-C(25)-C(24)
125.61(15)
```

Symmetry transformations used to generate equivalent atoms:

Table 4. Anısotropıc aisplacement parameters ($A^{\prime} 2 \times 10 \% 3$) tor sg771. The anisotropic displacement factor exponent takes the form:
$-2 \mathrm{pi}^{\wedge} 2\left[\mathrm{~h}^{\wedge} 2 \mathrm{a}^{\star \wedge} 2 \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U} 12\right.$]

	U11	U22	U33	U23	U13	U12
O(1)	26 (1)	22 (1)	23 (1)	1 (1)	-2 (1)	O(1)
O(2)	56 (1)	23 (1)	64 (1)	6 (1)	-1 (1)	9 (1)
O(3)	53 (1)	66 (1)	54 (1)	-16(1)	7 (1).	15 (1)
C(1)	25 (1)	22 (1)	24 (1)	-1 (1)	-3(1)	3 (1)
C (2)	30 (1)	15 (1)	25 (1)	1 (1)	0 (1)	1 (1)
C (3)	33 (1)	17 (1)	26 (1)	1 (1)	-1(1)	O(1)
C (4)	29 (1)	22 (1)	25 (1)	0 (1)	0 (1)	-2 (1)
C(5)	40 (1)	21 (1)	$31(1)$	-3(1)	-2 (1)	-3(1)
C (6)	44 (1)	23 (1)	27 (1)	-4 (1)	0 (1)	4 (1)
C(7)	32 (1)	24 (1)	26 (1)	-2 (1)	-1 (1)	6 (1)
C(8)	35 (1)	22 (1)	27 (1)	0 (1)	-4 (1)	-1 (1)
C(9)	48 (1)	29 (1)	23 (1)	0 (1)	-3(1)	-1 (1)
C (10)	49 (1)	29 (1)	28 (1)	3 (1)	9 (1)	-2 (1)
C(11)	35 (1)	24 (1)	$32(1)$	3 (1)	4 (1)	-4(1)
C(12)	25 (1)	24 (1)	22 (1)	2 (1)	-2 (1)	2 (1)
C (13)	33 (1)	25 (1)	33 (1)	1 (1)	4 (1)	0 (1)
C (14)	47 (1)	24 (1)	41 (1)	2 (1)	1 (1)	-1 (1)
C (15)	44 (1)	34 (1)	$38(1)$	11 (1)	-3(1)	-13 (1)
C (16)	36 (1)	48 (1)	35 (1)	7 (1)	6 (1)	-6 (1)
C (17)	32 (1)	34 (1)	31 (1)	-1(1)	3 (1)	2 (1)
C (18)	28 (1)	30 (1)	23 (1)	-2 (1)	0 (1)	-2(1)
C (19)	$32(1)$	31 (1)	39 (1)	-4 (1)	-3(1)	1 (1)
C(20)	37 (1)	43 (1)	52 (1)	-4 (1)	-5 (1)	$9(1)$
C(21)	28 (1)	66 (1)	42 (1)	-4 (1)	-3 (1)	5 (1)
C(22)	$33(1)$	57 (1)	35 (1)	-1(1)	-1(1)	-14 (1)
C(23)	35 (1)	37 (1)	31 (1)	3 (1)	-2 (1)	-7(1)
C (24)	$38(1)$	30 (1)	35 (1)	-4 (1)	-7(1)	9 (1)
C (25)	42(1)	45 (1)	49 (1)	-7(1)	-11(1)	18 (1)

Table 5. Hydrogen coordinates (x $10 \% 4$) and isotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for sg771.

	x	Y	z	U (eq)
H (5A)	5450	3527	1728	37
H (5B)	5763	3956	739	37
H (7)	8174	5005	899	33
H (8)	8157	6802	3586	34
H(9)	7054	6654	4838	40
H(10)	5210	6021	4675	42
H(11)	4438	5438	3261	36
H(13)	7067	8660	2254	37
H(14)	7925	10599	1908	45
H(15)	9441	10592	986	47
H (16)	10072	8657	403	47
H (17)	9202	6712	741	38
H (19)	4741	7852	1259	40
H (20)	2957	8489	806	53
H(21)	1560	6953	584	54
H (22)	1958	4773	802	50
H (23)	3759	4117	1198	41
H (24A)	9459	5466	2163	41
H (24B)	8771	4463	2733	41
H (25)	9968	2998	2190	55

'rable 6. 'Iorsion angles ldeg」 tor sg771.

$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(12)$	-157.54(10)
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	-36.76(11)
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)$	78.36 (11)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	21.06 (12)
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	135.32 (11)
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-91.27(12)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(8)$	-158.92(13)
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(8)$	-44.66(18)
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(8)$	88.76 (16)
$C(8)-C(2)-C(3)-C(11)$	2.49 (19)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	-177.49(12)
$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-178.36(11)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	1.66 (13)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(18)$	158.44(10)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	37.61 (11)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	-77.15(11)
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	155.19(13)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	-23.85(12)
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(18)$	37.59 (19)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(18)$	-141.44(11)
C (11)-C(3)-C(4)-C(5)	-92.91(16)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	88.05 (12)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	51.50 (14)
C (18) - C (4)-C(5)-C(6)	172.42(11)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-57.58(14)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(2)$	148.45(14)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-32.16(17)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(24)$	-21.61(18)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(24)$	159.00(12)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)$	-148.04 (13)
$C(5)-C(6)-C(7)-C(1)$	32.56 (16)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(24)$	-176.01(11)
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(24)$	66.49 (15)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(24)$	-66.36(14)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	-52.57(13)
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	-170.07(11)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	57.08 (13)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	-2.28(19)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	177.69(13)
$\mathrm{C}(2)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	0.3 (2)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	1.5 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	-0.66(19)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	-179.59(13)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(3)$	-1.3(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{C}(17)$	-100.48(14)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{C}(17)$	147.56(12)
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{C}(17)$	17.11(18)
$\bigcirc(1)-C(1)-C(12)-C(13)$	74.71(14)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	-37.25(16)
$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	-167.70(12)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-0.5(2)
$\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-175.92(13)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-0.1(2)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	0.5 (2)
C(14)-C(15)-C(16)-C (17)	-0.3(2)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	0.7 (2)
$\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	175.90(12)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	-0.4 (2)
O(1)-C(4)-C(18) - C (23)	143.46 (12)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(18)-\mathrm{C}(23)$	-103.48(15)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(18)-\mathrm{C}(23)$	24.45 (18)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(18)-\mathrm{C}(19)$	-39.92(16)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(18)-\mathrm{C}(19)$	73.14 (16)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(18)-\mathrm{C}(19)$	-158.94(13)
C (23)-C(18)-C (19)-C (20)	-0.7(2)
$\mathrm{C}(4)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	-177.38(13)
C(18)-C(19)-C(20)-C(21)	1.2 (2)
C (19)-C (20)-C (21)-C (22)	-0.4(2)

```
C(20)-C(21)-C(22)-C(23)
C(21)-C(22)-C(23)-C(18)
C(19)-C(18)-C(23)-C(22)
C(4)-C(18)-C(23)-C(22)
C(6)-C(7)-C(24)-C(25)
C(1)-C(7)-C(24)-C(25)
C(7)-C(24)-C(25)-O(3)
\(C(7)-C(24)-C(25)-O(3)\)
```

Symmetry transformations used to generate equivalent atoms:

Table l. Crystal data and structure retinement for sg77.

Identification code	SG-77-2
Empirical formula	C 25 H 2 O O3
Formula weight	368.41
Temperature	173 (2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2~1~/C
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=13.772(2) \mathrm{A} & \text { alpha }=90 \text { deg. } \\ \mathrm{b}=16.105(3) \mathrm{A} & \text { beta }=95.199(4) \mathrm{deg} . \\ \mathrm{c}=8.5772(14) \mathrm{A} & \text { gamma }=90 \mathrm{deg} . \end{array}$
Volume	1894.6(5) $\mathrm{A}^{\wedge} 3$
Z, Calculated density	4, 1.292 Mg/m^3
Absorption coefficient	$0.084 \mathrm{~mm}^{\wedge}-1$
F(000)	776
Crystal size	$0.50 \times 0.15 \times 0.05 \mathrm{~mm}$
Theta range for data collection	1.48 to 27.19 deg .
Limiting indices	$-17<=\mathrm{h}<=15,-20<=\mathrm{k}<=20,-10<=1<=10$
Reflections collected / unique	$11734 / 4162[\mathrm{R}($ int $)=0.1185]$
Completeness to theta $=27.19$	99.2%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9958 and 0.9592
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	4162 / 0 / 254
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	0.921
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0546, \mathrm{wR} 2=0.0966$
R indices (all data)	$\mathrm{R} 1=0.1973, \mathrm{wR} 2=0.1377$
Extinction coefficient	0.0084 (11)
Largest diff. peak and hole	0.249 and -0.227 e. $\mathrm{A}^{\wedge}-3$

Table 2. Atomıc coordinates ($\mathrm{x} 10 \times 4$) and equivalent isotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for sg77.
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U (eq)
O(1)	7909 (1)	9688 (1)	3119 (2)	24 (1)
0 (2)	5088(1)	9138 (1)	3510 (2)	38 (1)
O(3)	5999 (2)	7953 (1)	6515 (3)	58 (1)
C(1)	7353 (2)	10273 (2)	3981 (3)	24 (1)
C(2)	6863 (2)	10812 (2)	2674 (3)	23 (1)
C(3)	6833 (2)	10357 (2)	1282 (4)	22 (1)
C(4)	7296 (2)	9512 (2)	1661 (3)	24 (1)
C(5)	6490 (2)	8918(2)	2114 (3)	27 (1)
C (6)	5950 (2)	9275 (2)	3430 (3)	26 (1)
C(7)	6545 (2)	9764 (2)	4716 (3)	25 (1)
C (8)	6432 (2)	11587 (2)	2721(4)	28 (1)
C (9)	5983 (2)	11915 (2)	1337 (4)	30 (1)
C (10)	5955 (2)	11463 (2)	-51(4)	27 (1)
C(11)	6374 (2)	10682 (2)	-87(4)	27 (1)
C(12)	8033 (2)	10744 (2)	5166 (3)	24 (1)
C(13)	9036 (2)	10754 (2)	5035 (4)	33 (1)
C(14)	9655 (2)	11190 (2)	6126 (4)	41 (1)
C(15)	9291(2)	11621 (2)	7340 (4)	42 (1)
C (16)	8292 (2)	11624 (2)	7456 (4)	37 (1)
C(17)	7672 (2)	11184 (2)	6388(4)	31 (1)
C(18)	7933 (2)	9159 (2)	470 (3)	24 (1)
C(19)	8589 (2)	9686(2)	-196(4)	30 (1)
C (20)	9202 (2)	9386(2)	-1274 (4)	34 (1)
C (21)	9166 (2)	8559 (2)	-1697 (4)	37 (1)
C (22)	8517(2)	8030 (2)	-1059 (4)	37 (1)
C (23)	7898 (2)	8332 (2)	21 (4)	32 (1)
C (24)	6962 (2)	9142 (2)	5977 (3)	28 (1)
C(25)	6154 (2)	8680 (2)	6673 (4)	34 (1)

Table 3. Bond lengths [A] and angles [deg] for sg77.

$O(1)-C(1)$	1.458 (3)
O(1)-C(4)	1.472 (3)
O(2)-C(6)	1.215 (3)
O(3)-C(25)	1.197 (3)
$\mathrm{C}(1)-\mathrm{C}(12)$	1.521 (4)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.526 (4)
$\mathrm{C}(1)-\mathrm{C}(7)$	1.559 (4)
$\mathrm{C}(2)-\mathrm{C}(8)$	1.385 (4)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.398 (4)
C(3)-C(11)	1.385 (4)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.525 (4)
$\mathrm{C}(4)-\mathrm{C}(18)$	1.517 (4)
C (4)-C(5)	1.541 (4)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.520 (4)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.531 (4)
$\mathrm{C}(7)-\mathrm{C}(24)$	1.546 (4)
C (8) - C (9)	1.392 (4)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.392 (4)
C(10)-C(11)	1.387 (4)
C(12)-C(17)	1.394 (4)
C(12)-C(13)	1.396 (4)
C(13)-C(14)	1.397 (4)
C (14)-C(15)	1.382 (4)
C(15)-C(16)	1.388 (4)
C(16)-C(17)	1.389 (4)
C(18)-C(23)	1.386 (4)
C(18)-C(19)	1.399 (4)
C(19)-C (20)	1.394 (4)
C(20)-C(21)	1.380 (4)
C (21)-C(22)	1.384 (4)
C (22)-C (23)	1.401 (4)
C (24)-C (25)	1.506 (4)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(4)$	105.53(19)
O(1)-C(1)-C(12)	109.9(2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	102.2 (2)
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(2)$	114.3 (2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(7)$	107.0(2)
$\mathrm{C}(12)-\mathrm{C}(1)-\mathrm{C}(7)$	114.3 (2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	108.2(2)
$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(3)$	121.2 (3)
$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(1)$	130.8 (3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	107.9(2)
$C(11)-C(3)-C(2)$	120.1(3)
$\mathrm{C}(11)-\mathrm{C}(3)-\mathrm{C}(4)$	131.9(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.8 (3)
O(1)-C(4)-C(18)	108.8(2)
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(3)$	101.9(2)
$\mathrm{C}(18)-\mathrm{C}(4)-\mathrm{C}(3)$	116.5 (2)
O(1)-C(4)-C(5)	106.0 (2)
$\mathrm{C}(18)-\mathrm{C}(4)-\mathrm{C}(5)$	114.3 (2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	108.1(2)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	111.4 (2)
O(2)-C(6)-C(5)	121.3(3)
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	121.0(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	117.6 (3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(24)$	108.1(2)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)$	109.5(2)
$\mathrm{C}(24)-\mathrm{C}(7)-\mathrm{C}(1)$	113.0 (2)
$\mathrm{C}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	118.4(3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.4(3)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	120.9(3)
$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{C}(10)$	118.9(3)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)$	118.6(3)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(1)$	121.0(3)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(1)$	120.4 (3)
C(12)-C(13)-C(14)	120.0(3)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	121.1(3)

$C(14)-C(15)-C(16)$	$119.0(3)$
$C(15)-C(16)-C(17)$	$120.4(3)$
$C(16)-C(17)-C(12)$	$121.0(3)$
$C(23)-C(18)-C(19)$	$118.5(3)$
$C(23)-C(18)-C(4)$	$122.6(3)$
$C(19)-C(18)-C(4)$	$118.8(3)$
$C(20)-C(19)-C(18)$	$120.8(3)$
$C(21)-C(20)-C(19)$	$120.0(3)$
$C(20)-C(21)-C(22)$	$120.0(3)$
$C(21)-C(22)-C(23)$	$120.6(3)$
$C(18)-C(23)-C(22)$	$110.9(2)$
$C(25)-C(24)-C(7)$	$124.7(3)$

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($A^{\wedge} 2 \times 10^{\sim} 3$) for sg77. The anisotropic displacement factor exponent takes the form:
$-2 \mathrm{pi}^{\wedge} 2\left[\mathrm{~h}^{\wedge} 2 \mathrm{a}{ }^{\wedge} 2 \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a}\right.$ * b * U12]

	U11	U22	U33	U2 3	U13	U12
O(1)	21 (1)	29 (1)	23 (1)	-3(1)	2 (1)	1(1)
O(2)	21 (1)	50 (2)	43 (2)	-11(1)	6 (1)	-6(1)
O(3)	52 (2)	29 (2)	96 (2)	6 (1)	22 (2)	-3(1)
C(1)	20(2)	26(2)	26 (2)	-5 (2)	5 (1)	3 (1)
C(2)	20 (2)	24(2)	24 (2)	2 (2)	2 (1)	-2 (1)
C(3)	16(2)	25 (2)	25 (2)	$1(2)$	$2(1)$	-2 (1)
C(4)	24(2)	28 (2)	20 (2)	-4 (1)	$0(1)$	-2 (1)
C(5)	26 (2)	27(2)	28 (2)	-2 (2)	3 (2)	0 (1)
C(6)	24 (2)	25 (2)	28 (2)	-1 (2)	2 (2)	0 (1)
C (7)	24 (2)	24(2)	27 (2)	-4 (1)	6 (2)	3 (1)
C (8)	27 (2)	28 (2)	30 (2)	0 (2)	4 (2)	-1(2)
C (9)	31 (2)	25 (2)	36 (2)	2 (2)	4(2)	1 (1)
C(10)	25 (2)	30 (2)	26 (2)	5 (2)	-1 (2)	0 (1)
C (11)	27 (2)	28 (2)	26 (2)	0 (2)	4 (2)	-4(1)
C (12)	25 (2)	23 (2)	25 (2)	-1 (2)	3 (2)	0 (1)
C (13)	29 (2)	34 (2)	36 (2)	-5 (2)	6 (2)	-4 (2)
C (14)	31 (2)	40(2)	53 (2)	-6(2)	3 (2)	-9(2)
C(15)	41 (2)	38 (2)	46 (2)	-7(2)	-8(2)	-14 (2)
C(16)	47(2)	35 (2)	$29(2)$	-10(2)	2 (2)	-5 (2)
C (17)	29 (2)	35 (2)	31 (2)	-3(2)	4 (2)	-3(2)
C(18)	22 (2)	28 (2)	22 (2)	-2 (2)	2 (1)	7 (1)
C(19)	26 (2)	33 (2)	30 (2)	-4 (2)	3 (2)	2 (2)
C(20)	26 (2)	43 (2)	34 (2)	-1(2)	8 (2)	-1(2)
C(21)	34 (2)	46 (2)	$32(2)$	-4 (2)	11 (2)	8 (2)
C(22)	40 (2)	33 (2)	37 (2)	-7(2)	7 (2)	6 (2)
C(23)	35 (2)	29(2)	34 (2)	-2 (2)	10 (2)	4 (2)
C(24)	29 (2)	33 (2)	22 (2)	3 (2)	3 (2)	-2 (2)
C(25)	36 (2)	33 (2)	36 (2)	4(2)	10 (2)	1 (2)

Table 5. Hydrogen coordinates $\left(x 10^{\wedge} 4\right)$ and isotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for sg77.

	x	Y	z	U (eq)
H(5A)	6022	8817	1188	32
H (5B)	6784	8379	2450	32
H (7)	6102	10159	5205	30
H (8)	6442	11888	3675	34
H(9)	5693	12450	1339	36
H(10)	5645	11694	-986	33
H(11)	6346	10374	-1035	32
H (13)	9298	10465	4203	39
H (14)	10337	11191	6034	49
H (15)	9717	11911	8083	51
H (16)	8031	11928	8270	44
H (17)	6991	11182	6492	38
H (19)	8616	10256	89	36
H (20)	9645	9750	-1716	40
H (21)	9587	8354	-2426	44
H (22)	8491	7461	-1353	44
H (23)	7451	7966	450	39
H (24A)	7393	8740	5501	33
H (24B)	7358	9445	6814	33
H (25)	5738	8989	7282	41

Table 6. Torsion angles ldegl for sg77.


```
C(20)-C(21)-C(22)-C(23)
C(19)-C(18)-C(23)-C(22)
C(4)-C(18)-C(23)-C(22)
C(21)-C(22)-C(23)-C(18)
C(6)-C(7)-C(24)-C(25)
C(1)-C(7) -C (24)-C(25)
C(7)-C(24)-C(25)-O(3)
```

Symmetry transformations used to generate equivalent atoms:

[^0]:
 V－Eャ－ฉ－6s
 suafaweved eqea quajunj

[^1]:

[^2]: NOOHd
 ONdX

 \rightarrow ~ N

[^3]:
 NAME
 Current Data Parameters

[^4]: EXPNO
 PROCNO
 TV-9II-AI-Ms $\quad \exists W \forall N$
 sJafawejed eqeo quaJung

[^5]:
 le-bट-ヘI-HX
 suafowejed eqeg quajunj

