Supplementary Material

C ₅ ²⁻				
	B3LYP		MP2	
	ν		ν	<u> </u>
$v_1(a_g)$	1552	0.0	1489.2	0.0
$v_2(a_g)$	682	0.0	713	0.0
$v_{3}(b_{3g})$	645	0.0	673	0.0
$v_4(a_u)$	172	0.0	182	0.0
$v_5(b_{1u})$	1590	7.8	1571	6.2
$v_6(b_{1u})$	563	137.3	739	119.3
ν ₇ (b _{2u})	807	147.0	871	151.4
$v_8(b_{2u})$	363	1.5	356	0.6
ν ₉ (b _{3u})	535	79.2	543	67.1

Table 1-S. Frequencies, v and IR intensities, I, in cm^{-1} and km/mol, respectively.

Table 2-S. HOMO, LUMO, hardness, η , chemical potential, μ , and electrophilicity, ω , in atomic units. These values are from the B3LYP calculations.

	HOMO	LUMO	η	μ	ω
C ₅ ²⁻	0.15718	0.26461	0.10743	0.210895	0.207003
C ₅ Li ⁻	-0.0223	0.05931	0.08161	0.018505	0.002098
C ₅ Na ⁻	-0.01237	0.04646	0.05883	0.017045	0.002469
C₅K ⁻	-0.00371	0.03964	0.04335	0.017965	0.003723
C_5Li_2	-0.20542	-0.04059	0.16483	-0.12301	0.045896
C_5Na_2	-0.17288	-0.03984	0.13304	-0.10636	0.042515
C ₅ K ₂	-0.14947	-0.03029	0.11918	-0.08988	0.033892

Table 3-S. Frequencies.	v and IR intensities.	I. in cm ⁻¹	and km/mol.	respectively.
ruble 5 5. riequeneres,	, v and memoriolog,	i, iii eiii	und king mor,	respectively.

C₅Li⁻				C ₅ Li ₂				
	B3LYP		MP2		B3LYP		MP2	
	ν	I	ν		ν		ν	I
$v_1(a_1)$	1590	4.6	1534	0.5 v ₁ (a _g)	1626	0.0	1572	0
$v_2(a_1)$	874	132.9	932	118.8 v ₂ (a _g)	736	0.0	762	0
v ₃ (a ₁)	719	0.2	751	2.1 v ₃ (a _g)	480	0.0	489	0
ν ₄ (a ₁)	554	65.9	569	87.5 v ₄ (b _{2g})	286	0.0	267	0
$v_{5}(a_{1})$	402	4.9	401	8.0 v ₅ (b _{3g})	678	0.0	699	0
$v_6(a_2)$	220	0.0	231	0.0 v ₆ (b _{3g})	477	0.0	499	0
$v_7(b_1)$	507	46.6	520	43.2 v ₇ (a _u)	286	0.0	285	0
$v_8(b_1)$	224	22.6	215	26.2 v ₈ (b _{1u})	928	108.0	982	0
ν ₉ (b ₂)	1611	14.9	1596	13.3 v ₉ (b _{1u})	569	261.4	579	266.2
$v_{10}(b_2)$	682	16.7	818.8	30.4 v ₁₀ (b _{1u})	415	45.7	409	50.5
$v_{11}(b_2)$	635	5.1	675	2.0 v ₁₁ (b _{2u})	1641	10.4	1626.6	9.2
$v_{12}(b_2)$	527	55.0	556	44.7 v ₁₂ (b _{2u})	729	37.3	879.2	36.7
				v ₁₃ (b _{2u})	406	99.9	425.2	98.2
				$v_{14}(b_{3u})$	479	44.9	493	42.2
				$v_{15}(b_{3u})$	174	114.0	167.2	119.7

Table 4-S. Frequencies, v and IR intensities, I, in cm⁻¹ and km/mol, respectively.(Only with B3LYP)

	C₅Na	(C₅K ⁻		C_5Na_2		C ₅ K ₂	
	ν		ν	I	ν		ν	
$v_1(a_1)$	1576	241.8	1569	479.8 v ₁ (a _g)	1619	0	1616	0
$v_2(a_1)$	851	239.7	836	339.2 v ₂ (a _g)	717	0	701	0
v ₃ (a ₁)	686	22.7	684	9.6 v ₃ (a _g)	250	0	179	0
v ₄ (a ₁)	417	1.4	398	3 v ₄ (b _{2g})	225	0	175	0
ν₅(a₁)	295	5.2	230	2.8 v ₅ (b _{3g})	690	0	663	0
$v_6(a_2)$	191	0	181	0 v ₆ (b _{3g})	310	0	278	0
v ₇ (b ₁)	519	44.8	518	37.5 v ₇ (a _u)	248	0	227	0
$v_8(b_1)$	159	4.8	122	3.6 v ₈ (b _{1u})	882	181.2	873	140
$v_9(b_2)$	1619	11.3	1614	13.4 v ₉ (b _{1u})	459	34.1	432	28
$v_{10}(b_2)$	695	55.8	702	29.3 v ₁₀ (b _{1u})	311	81.4	250	104
v ₁₁ (b ₂)	598	8.9	571	19.5 v ₁₁ (b _{2u})	1646	10.7	1637	13.6
$v_{12}(b_2)$	527	55	293	15.8 v ₁₂ (b _{2u})	687	67.8	669	46.4
				v ₁₃ (b _{2u})	208	56.3	160	57.5
				$v_{14}(b_{3u})$	502	38.2	507	29.4
				$v_{15}(b_{3u})$	82	65.1	53.4	55.8

Table 5-S. Results	of the topological	l analysis of the	electronic der	nsity. p, L a	and ε are the	density,
laplacian $(-1/4\nabla^2 \rho)$:	and ellipticity at th	ne critical points,	respectively. A	All quantities	s are in atomic	c units.

	C ₁ -C ₂			C ₁ -C ₃		C ₂ -C ₃			C ₂ -M			
	ρ	L	ε	ρ	L	ε	ρ	L	ε	ρ	L	ε
C ₅ ²⁻	0.228	0.032	1.999				0.358	0.282	0.030			
C ₅ Li ⁻	0.231	0.034	1.886	0.226	0.017	3.456	0.359	0.285	0.036	0.040	-0.053	0.507
C₅Na⁻	0.237	0.038	1.367	0.226	0.017	5.120	0.361	0.288	0.032	0.028	-0.037	0.214
C₅K ⁻	0.235	0.046	1.491	0.223	-0.008	18.307	0.361	0.290	0.034	0.028	-0.026	0.145
C_5Li_2	0.232	0.028	2.531				0.357	0.279	0.039	0.034	-0.045	0.583
C_5Na_2	0.232	0.032	2.222				0.358	0.281	0.034	0.025	-0.033	0.241
C_5K_2	0.230	0.028	2.398				0.360	0.288	0.034	0.025	-0.032	0.141

Table 6-S. Population of the basins of the ELF(r).

Svstem	Basin. Population
CH ₄	V(C-H), 1.40; V(C), 1.05
CAl ₄ ²⁻	V(C-AI), 1.75; V(AI), 2.49
C ₅ ²⁻	V(C ₁ -C ₂), 1.48; V(C ₂ -C ₃), 2.61; V(C), 2.63
C₅Li⁻	V(C ₁ -C ₂), 1.43; V(C ₁ -C ₃), 1.49; V(C ₂ -C ₃), 2.60; V(C ₂), 2.67; V(C ₃), 2.56
C₅Na⁻	V(C ₁ -C ₂), 1.42; V(C ₁ -C ₃), 1.55; V(C ₂ -C ₃), 2.60; V(C ₂), 2.64; V(C ₃), 2.57
C₅K⁻	V(C ₁ -C ₂), 1.42; V(C ₁ -C ₃), 1.54; V(C ₂ -C ₃), 2.59; V(C ₂), 2.63; V(C ₃), 2.55
C ₅ Li ₂	V(C ₁ -C ₂), 1.48; V(C ₂ -C ₃), 2.61; V(C ₂), 2.62
C_5Na_2	V(C ₁ -C ₂), 1.48; V(C ₂ -C ₃), 2.62; V(C ₂), 2.60
C_5K_2	V(C ₁ -C ₂), 1.48; V(C ₂ -C ₃), 2.60; V(C ₂), 2.60
C₅Na₂ C₅K₂	V(C ₁ -C ₂), 1.48; V(C ₂ -C ₃), 2.62; V(C ₂), 2.60 V(C ₁ -C ₂), 1.48; V(C ₂ -C ₃), 2.60; V(C ₂), 2.60

Figure 1-S. Stationary points on B3LYP potential energy surface of planar $C_5^{2^2}$. NIMAG is the number of imaginary frequencies and the energy difference, ΔE , is with respect to the planar structure 1 and it includes the zero point energy correction. The local minima were further optimized with MP2 and the corresponding bond lengths are in parenthesis.

Figure 2-S. Stationary points on B3LYP potential energy surface of planar C₅Li and C₅Li₂. NIMAG is the number of imaginary frequencies and the energy difference, ΔE , is with respect to the planar structure 2 and 3, respectively, and it includes the zero point energy correction. The local minima were further optimized with MP2 and the corresponding bond lengths are in parenthesis.

Symmetry	DFT
4 b _{1u}	-0.20542
4 b _{2u}	-0.26425
1 b _{1g}	-0.26635
6 a _g	-0.28810
3 b _{2u}	-0.36695
2 b _{3g}	-0.37092
1 b _{3u}	-0.39300

Figure 3-S. Seven highest occupied molecular orbitals of C₅Li₂ obtained with B3LYP/6-311++G(2df) level of theory. $|\phi| = 0.05$ a.u.