J. Am. Chem. Soc., 1996, 118(23), 5482-5483, DOI:10.1021/ja9604020

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Absolute Energies of Interconverting Contact and Solvent-Separated Radical-Ion Pairs

Bradley R. Arnold, Samir Farid, Joshua L. Goodman, and Ian R. Gould

Supplementary Material.

Determination of the free energies of formation of contact radical-ion pairs

 from analyses of charge-transfer absorption and emission spectra. The absorption and emission spectra exhibit an approximate mirror image relationship. The spectra were obtained in their "reduced" forms, 1,2 and tangents taken at the half height values at the low energy side of the absorption band, and at the high energy side of the emission band. The free energy of formation of the CRIP was taken as the average value of the energies at which these tangents intercept the energy axis. For CT spectra, the spectroscopic energies obtained in this way correspond to free energies, rather than enthalpies. ${ }^{1}$ Experiments were performed at $22^{\circ} \mathrm{C}$. The systems studied, the appropriate electrochemical redox data and the CRIP free energy data are summarized in Table S1. The electgrochemical data were obtained as described in ref 3.
References for supplementary material

(1) Marcus, R. A. J. Phys. Chem. 1989, 93, 3078.
(2) Gould, I. R.; Noukakis, D.; Gomez-Jahn, L.; Young, R. H.; Goodman, J. L.; Fard, S. Chem. Phys. 1993, 176, 439.
(3) Gould, I. R., Ege, D., Moser, J. E., Farid, S. J. Am. Chem. Soc. 1990, 112, 4290.

Table S1. Free Energles of Formation of Contact Radical-ion Pairs, $\Delta G_{C R I P}$, in Different Solvents, and Electrochemical Redox Potentials of the Acceptors and Donors.

Solvent ${ }^{a}$ (ε)	Acceptor ${ }^{\text {b }}$	Donor ${ }^{\text {c }}$	$\begin{gathered} \text { Eredox } d^{(e V)} \end{gathered}$	$\begin{gathered} \Delta \mathrm{G}_{\mathrm{CRIP}}{ }^{e} \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} \Delta_{\mathrm{CRIP}} f \\ (\mathrm{eV}) \end{gathered}$
CHX (2.024)	TCB	$p-\mathrm{Xy}$	2.73	3.045	0.315
CHX (2.024)	TCB	HMB	2.26	2.591	0.331
CTC (2.238)	TCB	$p-\mathrm{Xy}$	2.73	2.959	0.229
CTC (2.238)	TCB	TMB	2.59	2.843	0.253
CTC (2.238)	TCB	Dur	2.45	2.689	0.239
CTC (2.238)	TCB	PMB	2.38	2.629	0.249
CTC (2.238)	TCB	HMB	2.26	2.517	0.257
CTC (2.238)	PMDA	$p-\mathrm{Xy}$	2.61	2.878	0.268
CTC (2.238)	PMDA	HMB	2.14	2.397	0.257
CTC (2.238)	DCB	HMB	3.21	3.445	0.235
CTC (2.238)	TCA	HMB	2.03	2.266	0.236
TCE (3.42)	TCA	HMB	2.03	2.201	0.171
TCE (3.42)	TCB	HMB	2.26	2.429	0.169
CHL (4.806)	TCA	HMB	2.03	2.162	0.132
CHL (4.806)	TCB	PMB	2.38	2.449	0.069
CHL (4.806)	TCB	HMB	2.26	2.341	0.081
CHL (4.806)	DCB	HMB	3.21	3.300	0.09
DCM (8.93)	DCB	HMB	3.21	3.276	0.066
DCE (10.37)	TCB	TMB	2.59	2.641	0.051
DCE (10.37)	TCB	HMB	2.26	2.339	0.079
PN (28.8)	DCB	HMB	3.21	3.271	0.061
AN (35.9)	DCB	HMB	3.21	3.248	0.038
AN (35.9)	TCB	$p-\mathrm{Xy}$	2.73	2.746	0.016

${ }^{a}$ The solvents are cyclohexane (CHX), carbon tetrachloride (CTC), trichloroethylene, (TCE), chloroform (CHL), dichloromethane (DCM), 1,2-dichloroethane (DCE), propionitrile (PN), and acetonitrile (AN). ${ }^{b}$ The acceptors are 1,2,4,5-tetracyanobenzene (TCB), pyromellitic dianhydride (PMDA), 1,4-dicyanobenzene (DCB), and 2,6,9,10-
tetracyanoanthracene (TCA). ${ }^{c}$ The donors are p-xylene (p-XX), 1,2,4-trimethylbenzene (TMB), durene (Dur), pentamethylbenzene (PMB), and hexamethylbenzene (HMB). d Eredox is the difference between the oxidation potential of the donor, $\mathrm{E}^{\circ \mathrm{x}_{\mathrm{D}}}$, and the reduction potential of the acceptor, $\mathrm{Ere}_{\mathrm{A}}$. The reduction potentials, V vs SCE, are: TCB (-0.67), PMDA (-0.55), DCB (-1.62), TCA (-0.44). The oxidation potentials, V vs SCE, are: p-Ky (2.06), TMB (1.92), Dur (1.78), PMB (1.71), HMB (1.59). e $\Delta \mathrm{G}_{\mathrm{CRIP}}$ is determined from absorption and emission spectra as described above. $f \Delta_{\text {GRIP }}$ is the difference ($\Delta \mathrm{G}_{\text {GRIP }}$ - Eredox).

