J. Am. Chem. Soc., 1997, 119(33), 7654-7664, DOI:10.1021/ja970698p

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Supporting Information

"Reactions of Ester Derivatives of Carcinogenic N-(4-Biphenylyl)hydroxylamine and the Corresponding Hydroxamic Acid with Purine Nucleosides", Sonya A. Kennedy, Michael Novak*, and Brent A. Kolb, Department of Chemistry, Miami University, Oxford, OH 45056

Synthesis and Product Isolation

8-Methylguanosine:

To a flask containing 0.4 g of $\mathrm{G}(1.4 \mathrm{mmol})$ and 80 ml of $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ was added 1.6 g of $\mathrm{FeSO}_{4}(5.7 \mathrm{mmol})$. This was stirred at room temperature while 0.49 mL of $\mathrm{t}-$ butylhydroperoxide $(4.9 \mathrm{mmol})$ in 20 mL of $\mathrm{H}_{2} \mathrm{O}$ was added in a dropwise fashion. The mixture was stirred for $1 / 2 \mathrm{~h}$ after the addition was complete. The reaction mixture was neutralized with aqueous KOH , and centrifuged. The precipate was washed twice with hot $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layers were combined and concentrated until a white precipitate appeared. After standing at 4° overnight, the mixture was filtered, and the filter cake was washed with cold $\mathrm{H}_{2} \mathrm{O}$ and dried under vacuum. The crude 8-MeG was recrystallized from aqueous NaCl to give 180 mg (43\%) of product. Cyclic voltametry experiments with 8-MeG were performed on a CH Instruments Model 750 Electrochemical Workstation. Conditions were: three electrode mode consisting of a $\mathrm{Ag} / \mathrm{AgCl}$ reference, a platinum counter electrode, and a 3 mm diameter glassy carbon electrode, cycled from 0 to 1.30 V , scan rate of $50 \mathrm{mV} / \mathrm{s}$.

Isolation of Adducts:

Unless otherwise indicated, all carcinogen-nucleoside adducts were generated in 5\% $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}, 20 \mathrm{mM} 9 / 1 \mathrm{Na}_{2} \mathrm{HPO}_{4} / \mathrm{NaH}_{2} \mathrm{PO}_{4}$, pH 7.5 and $20^{\circ} \mathrm{C}$.

N -(Guanosin-8-yl)-4-acetylaminobiphenyl(4a):
A 25 mL saturated solution of $\mathrm{G}(\mathrm{ca} .20 \mathrm{mM})$ in $5 \% \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}\left(\mu=0.5\left(\mathrm{NaClO}_{4}\right), 0.02\right.$

M $9 / 1 \mathrm{Na}_{2} \mathrm{HPO}_{4} / \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{pH} 7.5,20^{\circ} \mathrm{C}$) was stirred as 50 mg of $\mathbf{1 a}(0.145 \mathrm{mmol})$ in 1 mL of dry DMF was added in $200 \mu \mathrm{~L}$ portions at 10 min intervals. About 5 h after the last addition, the solution was cooled in an ice bath and filtered to recover the precipitated 4a. The solution was extracted with EtOAc to recover additional 4a. Crude $4 \mathbf{a}$ was dissolved in EtOAc. After concentrating, the solution was placed in a $-25^{\circ} \mathrm{C}$ freezer overnight, and the recrystallized material was collected (yield: $28 \mathrm{mg}, 39 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.90(1 \mathrm{H}$, bs), $7.71-7.64(4 \mathrm{H}, \mathrm{m}), 7.48-7.33(5 \mathrm{H}, \mathrm{m}), 6.50(2 \mathrm{H}, \mathrm{s}), 5.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}), 5.30(2 \mathrm{H}, \mathrm{bs}), 5.02(1 \mathrm{H}$, $\mathrm{m}), 4.10(1 \mathrm{H}, \mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{m}), 3.62(1 \mathrm{H}, \mathrm{m}), 3.49(2 \mathrm{H}, \mathrm{m}), 2.04(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz , DMSO- d_{6}) $\delta 170.7(\mathrm{C}), 156.3(\mathrm{C}), 153.7(\mathrm{C}), 150.4(\mathrm{C}), 139.2(\mathrm{C}), 138.6(\mathrm{C}), 138.6(\mathrm{C}), 138.6(\mathrm{C})$, $129.0(\mathrm{CH}), 127.6(\mathrm{CH}), 127.3(\mathrm{CH}), 126.7(\mathrm{CH}), 125.6(\mathrm{CH}), 115.2(\mathrm{C}), 87.9(\mathrm{CH}), 86.4(\mathrm{CH})$, $70.8(\mathrm{CH}), 70.6(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right) . \mathrm{MS}: \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Na}^{+}$requires $515.2 \mathrm{~m} / \mathrm{e}$; LD-TOF MS(α-cyano-4-hydroxycinnamic acid matrix) found $515.4 \mathrm{~m} / \mathrm{e} . \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~K}^{+}$requires 531.3 m / e; LD-TOF MS(α-cyano-4-hydroxycinnamic acid matrix) found $531.3 \mathrm{~m} / \mathrm{e}$. \mathbf{N}-(Xanthosin-8-yl)-4-acetylaminobiphenyl(5a):

A 250 mL 20 mM solution of X was incubated as 50 mg of $\mathbf{1 a}$ was added as described above. About 5 h after the addition the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The pH of the aqueous solution was adjusted to 3.5 and then extracted again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The acidic $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were evaporated to dryness to give crude product. Purification of $5 \mathbf{a}$ was accomplished using $\mathrm{C}-18$ reverse phase chromatography with $1 / 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ eluent (yield: 20 $\mathrm{mg}, 28 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.75(1 \mathrm{H}, \mathrm{bs}), 7.67(5 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz})$, $7.35(2 \mathrm{H}, \mathrm{m}), 5.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{m}), 4.03(1 \mathrm{H}, \mathrm{m}), 3.90-3.52(3 \mathrm{H}, \mathrm{m}), 2.08(3 \mathrm{H}$, s). ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{DMSO}_{-1}$) $\delta 170.9(\mathrm{C}), 159.1(\mathrm{C}), 156.1(\mathrm{C}), 150.1(\mathrm{C}), 139.3(\mathrm{C})$,
$139.1(\mathrm{C}), 138.4(\mathrm{C}), 138.1(\mathrm{C}), 129.0(\mathrm{CH}), 127.6(\mathrm{CH}), 127.2(\mathrm{CH}), 126.7(\mathrm{CH}), 125.3(\mathrm{CH})$, $113.0(\mathrm{C}), 88.1(\mathrm{CH}), 87.5(\mathrm{CH}), 71.6(\mathrm{CH}), 62.4(\mathrm{CH}), 59.3\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{3}\right) . \mathrm{MS}: \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{7}^{+}$ requires $494.2 \mathrm{~m} / \mathrm{e}$; $\mathrm{FAB}-\mathrm{MS}$, (m-NBA matrix) found $494.3 \mathrm{~m} / \mathrm{e} ; \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Na}^{+}$requires 516.2 m / e; FAB-MS, (m-NAB matrix) found $516.3 \mathrm{~m} / \mathrm{e}$. Table S .1 is a COSY correlation table for the ${ }^{1} \mathrm{H}$ resonances of $\mathbf{5 a}$.

N-(Xanthosin-8-yl)-4-aminobiphenyl(5b):

A 250 mL 20 mM solution of X was incubated as $70 \mathrm{mg}(0.26 \mathrm{mmol})$ of $\mathbf{1 b}$ was added as described above. About 1 h after the addition the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The pH of the aqueous solution was adjusted to 3.5 and filtered to give crude $\mathbf{5 b}$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to recover additional $\mathbf{5 b}$. Purification of $\mathbf{5 b}$ was accomplished as described above for $\mathbf{5 a}$ (yield: $36 \mathrm{mg}, 31 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.7(1 \mathrm{H}, \mathrm{bs}$), $8.75(1 \mathrm{H}, \mathrm{s}), 7.67(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.65-7.60(2 \mathrm{H}, \mathrm{m}), 7.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}), 7.29(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 5.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 5.45(1 \mathrm{H}, \mathrm{bs}), 5.35(1 \mathrm{H}, \mathrm{bs}), 4.28(1 \mathrm{H}, \mathrm{m})$, $4.07(2 \mathrm{H}, \mathrm{m}), 3.74(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 157.4(\mathrm{C}), 150.4(\mathrm{C}), 142.7(\mathrm{C})$, $140.6(\mathrm{C}), 139.9(\mathrm{C}), 138.2(\mathrm{C}), 132.4(\mathrm{C}), 128.8(\mathrm{CH}), 126.8(\mathrm{CH}), 126.6(\mathrm{CH}), 126.0(\mathrm{CH})$, $117.5(\mathrm{CH}), 111.5(\mathrm{C}), 87.6(\mathrm{CH}), 86.2(\mathrm{CH}), 72.5(\mathrm{CH}), 70.8(\mathrm{CH}), 61.2\left(\mathrm{CH}_{2}\right) . \quad$ MS: $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{6}{ }^{+}$ requires $452.2 \mathrm{~m} / \mathrm{e}$; FAB-MS, (m-NBA matrix) found $452.2 \mathrm{~m} / \mathrm{e} ; \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Na}^{+}$requires 474.2 m / e; $\mathrm{FAB}-\mathrm{MS}$, (m-NBA matrix) found $474.2 \mathrm{~m} / \mathrm{e} ; \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~K}^{+}$requires $490.3 \mathrm{~m} / \mathrm{e}$; $\mathrm{FAB}-\mathrm{MS}$, (m-NBA matrix) found $490.3 \mathrm{~m} / \mathrm{e}$. Table S .2 is a COSY correlation table for the ${ }^{1} \mathrm{H}$ resonances of $\mathbf{5 b}$.
\mathbf{N}-(Inosin-8-yl)-4-acetylaminobiphenyl(6a) and 3-(Inosin-O6-yl)-4-acetylaminobiphenyl(7a): A 250 mL 60 mM solution of I was incubated as 50 mg of 1 a was added as described
above. About 5 h after the addition, the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were combined and evaporated to dryness to give a mixture of $\mathbf{1 3}, \mathbf{1 4 a}$, and $\mathbf{6 a}$. Isolation and purification of $\mathbf{6 a}$ was performed by $\mathrm{C}-18$ reverse phase column chromatography with $1 / 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ eluent (yield: $3 \mathrm{mg}, 4 \%$). The aqueous portion contained I , salts, and $7 \mathbf{7}$. Isolation of 7 a was accomplished by $\mathrm{C}-18$ reverse phase chromatography using $1 / 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ eluent, and purified by semi-prep HPLC (yield: $19 \mathrm{mg}, 27 \%$). HPLC conditions were: C-8 Ultrasphere octyl semi-prep column, $1 / 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 3 \mathrm{ml} / \mathrm{min}, 250 \mathrm{~nm} .6 \mathrm{a}:{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 8.11(1 \mathrm{H}, \mathrm{s}), 7.68(5 \mathrm{H}, \mathrm{m}), 7.48-7.35(5 \mathrm{H}, \mathrm{m}), 5.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz})$, $5.55(1 \mathrm{H}, \mathrm{bs}), 5.34(2 \mathrm{H}, \mathrm{bs}), 5.02(1 \mathrm{H}, \mathrm{m}), 4.14(1 \mathrm{H}, \mathrm{m}), 3.93(1 \mathrm{H}, \mathrm{m}), 3.69-3.32(2 \mathrm{H}, \mathrm{m}), 2.07(3 \mathrm{H}$, s). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75.5 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 173.7(\mathrm{C}), 170.7(\mathrm{C}), 165.3(\mathrm{C}), 152.7(\mathrm{CH}), 148.0(\mathrm{C})$, $139.3(\mathrm{C}), 139.3(\mathrm{C}), 139.3(\mathrm{C}), 128.9(\mathrm{CH}), 127.5(\mathrm{CH}), 127.2(\mathrm{CH}), 126.6(\mathrm{CH}), 125.4(\mathrm{CH})$, $122.0(\mathrm{C}), 88.4(\mathrm{CH}), 87.7(\mathrm{CH}), 72.2(\mathrm{CH}), 71.5(\mathrm{CH}), 62.6\left(\mathrm{CH}_{2}\right), 22.8\left(\mathrm{CH}_{3}\right) . \mathrm{MS}: \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{6}{ }^{+}$ requires $478.2 \mathrm{~m} / \mathrm{e}$; FAB MS (m-NBA matrix) found 478.2. $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~K}^{+}$requires 516.3; FAB MS (m-NBA matrix) found $516.3 \mathrm{~m} / \mathrm{e}$. Table S .3 is a COSY correlation table for the ${ }^{1} \mathrm{H}$ resonances of 6a. 7a: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 10.4(1 \mathrm{H}, \mathrm{s}), 8.37(1 \mathrm{H}, \mathrm{s}), 8.22(1 \mathrm{H}, \mathrm{s})$, $7.73(2 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.27-7.14(5 \mathrm{H}, \mathrm{m}), 5.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.5,1.8 \mathrm{~Hz}), 5.50(1 \mathrm{H}$, bs), $4.95(2 \mathrm{H}, \mathrm{bs}), 4.37(1 \mathrm{H}, \mathrm{m}), 4.09(1 \mathrm{H}, \mathrm{m}), 3.89(1 \mathrm{H}, \mathrm{m}), 3.60-3.52(2 \mathrm{H}, \mathrm{m}), 2.08(3 \mathrm{H}, \mathrm{m})$. The peaks at 8.37 and 8.22 ppm appear as closely spaced doublets at room temperature, but show no COSY correlations to other peaks, and they coalesce into sharp singlets above $70^{\circ} \mathrm{C} .{ }^{13} \mathrm{C}$ NMR(75.5 MHz, DMSO-d $_{6}$) $\delta 168.8(\mathrm{C}), 156.2(\mathrm{C}), 148.5(\mathrm{CH}), 147.4(\mathrm{C}), 139.5(\mathrm{C}), 139.3(\mathrm{CH})$, $137.5(\mathrm{C}), 135.0(\mathrm{C}), 134.3(\mathrm{C}), 131.0(\mathrm{CH}), 128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 127.4(\mathrm{CH}), 123.4(\mathrm{C})$, $120.0(\mathrm{CH}), 119.3(\mathrm{CH}), 87.3(\mathrm{CH}), 85.6(\mathrm{CH}), 74.3(\mathrm{CH}), 70.1(\mathrm{CH}), 61.2\left(\mathrm{CH}_{2}\right), 24.1\left(\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$
peaks at $147.4,139.3,123.4,87.3$ and 70.1 ppm also show temperature dependent coalescence over the same temperature range as the ${ }^{1} \mathrm{H}$ resonances described above. $\mathrm{MS}: \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{6}{ }^{+}$ requires $478.2 \mathrm{~m} / \mathrm{e}$; $\mathrm{FAB}-\mathrm{MS}$, (m-NBA matrix) found $478.3 \mathrm{~m} / \mathrm{e} ; \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Na}^{+}$requires 500.2 m / e; $\mathrm{FAB}-\mathrm{MS}$, (m-NBA matrix) found $500.3 \mathrm{~m} / \mathrm{e} ; \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~K}^{+}$requires $516.3 \mathrm{~m} / \mathrm{e}$; FAB-MS, (m-NBA matrix) found $516.3 \mathrm{~m} / \mathrm{e}$. Table S .4 is a COSY correlation table for the ${ }^{1} \mathrm{H}$ signals of 7a. Table S .5 is a XHCORR table for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of 7a.

N -(Inosin-8-yl)-4-aminobiphenyl(6b) and 3-(Inosin-O ${ }^{6}$-yl)-4-aminobiphenyl(7b):
A 250 mL 60 mM solution of I was incubated as 70 mg of $\mathbf{1 b}$ was added as described above. About 1 h after the addition the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer contained I, salts, $\mathbf{6 b}$, and $\mathbf{7 b}$. Isolation of $\mathbf{6 b}$ and $\mathbf{7 b}$ was accomplished with $\mathrm{C}-18$ reverse phase column chromatography with $1 / 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ eluent. Purification of $7 \mathbf{b}$ was performed by HPLC as described above for $7 \mathbf{7 a}$ (yield: $26 \mathrm{mg}, 23 \%$). Purification of $\mathbf{6 b}$ was accomplished by HPLC methods using $3 / 2 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ eluent (yield: $22 \mathrm{mg}, 20 \%$). 6b: ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}\right) \delta 9.12(1 \mathrm{H}, \mathrm{bs}), 7.93(1 \mathrm{H}, \mathrm{s}), 7.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 7.62(4 \mathrm{H}, \mathrm{m})$, $7.43(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.29(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 6.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,5.5$ $\mathrm{Hz}), 4.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.4,1.6 \mathrm{~Hz}), 4.03(1 \mathrm{H}, \mathrm{m}), 3.73-3.53(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz , DMSO- d_{6}) $\delta 174.5(\mathrm{C}), 156.9(\mathrm{C}), 147.3(\mathrm{C}), 145.6(\mathrm{C}), 144.7(\mathrm{CH}), 139.9(\mathrm{C}), 132.8(\mathrm{C})$, $128.8(\mathrm{CH}), 126.7(\mathrm{CH}), 126.6(\mathrm{CH}), 126.1(\mathrm{CH}), 121.1(\mathrm{C}), 118.3(\mathrm{CH}), 86.8(\mathrm{CH}), 86.1(\mathrm{CH})$, 71.4(CH), 70.9(CH), 61.5(CH_{2}). MS: $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{5}{ }^{+}$requires $436.2 \mathrm{~m} / \mathrm{e}$; FAB-MS, (m-NBA matrix) found $436.2 \mathrm{~m} / \mathrm{e}$; $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}^{+}$requires $458.1 \mathrm{~m} / \mathrm{e}$; $\mathrm{FAB}-\mathrm{MS}$, (m-NBA matrix) found $458.2 \mathrm{~m} / \mathrm{e}$. Table S .6 is a COSY correlation table for the ${ }^{1} \mathrm{H}$ resonances of $\mathbf{6 b} .7 \mathbf{b}$: ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO $\left._{6}\right) \delta 8.36(1 \mathrm{H}, \mathrm{s}), 8.14(1 \mathrm{H}, \mathrm{s}), 7.23-7.07(6 \mathrm{H}, \mathrm{m}), 6.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3,2.3 \mathrm{~Hz})$,
$6.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}), 5.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7 \mathrm{~Hz}), 5.54(2 \mathrm{H}, \mathrm{bs}), 4.40(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=5.7 \mathrm{~Hz}), 4.08(1 \mathrm{H}$, $\mathrm{m}), 3.89(1 \mathrm{H}, \mathrm{m}), 3.61-3.50(2 \mathrm{H}, \mathrm{m})$. The peaks at 8.36 and 8.14 ppm show temperature dependence similar to the corresponding peaks of $7 \mathrm{a} .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d $\left.{ }_{6}\right) \delta$ $156.2(\mathrm{C}), 149.2(\mathrm{C}), 148.6(\mathrm{CH}), 147.3(\mathrm{C}), 139.1(\mathrm{C}), 138.4(\mathrm{C}), 135.5(\mathrm{C}), 131.2(\mathrm{CH}), 128.5(\mathrm{CH})$, $128.5(\mathrm{CH}), 126.7(\mathrm{CH}), 126.5(\mathrm{CH}), 123.5(\mathrm{C}), 114.9(\mathrm{CH}), 113.7(\mathrm{CH}), 87.1(\mathrm{CH}), 85.5(\mathrm{CH})$, $74.3(\mathrm{CH}), 70.1(\mathrm{CH}), 61.2\left(\mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ peaks at $147.4,139.1,123.5,87.1$ and 74.3 ppm show temperature dependent coalescence similar to ${ }^{13} \mathrm{C}$ peaks of 7a. MS: $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}^{+}$requires $458.1 \mathrm{~m} / \mathrm{e}$; FAB-MS, (m-NBA matrix) found $458.2 \mathrm{~m} / \mathrm{e}$. Table S .7 is a COSY correlation table for the ${ }^{1} \mathrm{H}$ resonances of $\mathbf{7 b}$.

N -(7,8-Dihydro-8-methylguanosin-8-yl)-4-acetylaminobiphenyl (8a):

A 25 mL saturated solution of $8-\mathrm{MeG}(\mathrm{ca} .15 \mathrm{mM})$ was stirred as 51 mg (0.148 mmole) of 1a was added as described above. About 3 days after the addition, the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer, containing $8 \mathbf{a}$, was lyophilized and products were separated using HPLC as described above for 7 a except that the eluent was $55 / 45 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$. Diastereomer 1 (yield: $14 \mathrm{mg}, 19 \%$) (8a): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.48(2 \mathrm{H} \mathrm{bs}), 7.81-$ $7.37(5 \mathrm{H}, \mathrm{m}), 7.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.50(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}), 5.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}), 5.25(2 \mathrm{H}$, bs), $4.65(2 \mathrm{H}, \mathrm{m}), 4.03(1 \mathrm{H}, \mathrm{m}), 3.81(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=4.3 \mathrm{~Hz}), 3.58-3.46(2 \mathrm{H}, \mathrm{m}), 1.68(3 \mathrm{H}, \mathrm{s}), 1.42(3 \mathrm{H}$, s). ${ }^{13} \mathrm{C}$ NMR ($\left.75.5 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 170.5(\mathrm{C}), 165.6(\mathrm{C}), 162.5(\mathrm{C}), 160.9(\mathrm{C}), 152.7(\mathrm{C})$, $140.3(\mathrm{C}), 139.6(\mathrm{C}), 138.9(\mathrm{C}), 131.0(\mathrm{CH}), 129.1(\mathrm{CH}), 128.0(\mathrm{CH}), 127.6(\mathrm{CH}), 126.8(\mathrm{CH})$, $99.4(\mathrm{C}), 88.3(\mathrm{CH}), 84.7(\mathrm{CH}), 70.6(\mathrm{CH}), 69.8(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ peaks at 131.0 and 127.6 ppm show temperature dependent coalescence from apparent doublets to singlets. MS analysis of this compound failed to generate a molecular ion. MS: $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}^{+}$
$\left(\mathrm{PhC}_{6} \mathrm{H}_{4} \mathrm{NHAc}^{+}\right)$requires $211.0997 \mathrm{~m} / \mathrm{e}$; EI MS found $211.1023 \mathrm{~m} / \mathrm{e} . \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}^{+}\left(\mathrm{PhC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}^{+}\right)$ requires $169.0892 \mathrm{~m} / \mathrm{e}$; EI MS found $169.0931 \mathrm{~m} / \mathrm{e} . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}^{+}$requires $212.1 \mathrm{~m} / \mathrm{e} ; \mathrm{FAB}-\mathrm{MS}(\alpha-$ thioglycerol matrix) found $212.1 \mathrm{~m} / \mathrm{e} . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}^{+}$requires $170.1 \mathrm{~m} / \mathrm{e} ; \mathrm{FAB}-\mathrm{MS}$ (α-thioglycerol matrix) found $170.1 \mathrm{~m} / \mathrm{e}$. Diastereomer 2 (yield: $12 \mathrm{mg}, 16 \%$) (8a): ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{DMSO}_{6}\right) \delta 9.49(2 \mathrm{H}, \mathrm{bs}), 7.85-7.40(9 \mathrm{H}, \mathrm{m}), 5.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}), 5.25(2 \mathrm{H}, \mathrm{bs}), 4.65(1 \mathrm{H}, \mathrm{m})$, $4.46(1 \mathrm{H}, \mathrm{bs}), 4.06(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=4.5 \mathrm{~Hz}), 3.68-3.46(2 \mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{s})$, $1.38(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz, DMSO-d ${ }_{6}$) $\delta 170.3(\mathrm{C}), 165.6(\mathrm{C}), 162.4(\mathrm{C}), 161.0(\mathrm{C})$, $151.8(\mathrm{C}), 140.4(\mathrm{C}), 139.5(\mathrm{C}), 138.9(\mathrm{C}), 131.0(\mathrm{CH}), 129.0(\mathrm{CH}), 127.9(\mathrm{CH}), 127.7(\mathrm{CH})$, $126.8(\mathrm{CH}), 99.5(\mathrm{C}), 89.4(\mathrm{CH}), 84.4(\mathrm{CH}), 70.3(\mathrm{CH}), 70.0(\mathrm{CH}), 61.8\left(\mathrm{CH}_{2}\right), 26.3\left(\mathrm{CH}_{3}\right)$, $25.4\left(\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ peaks at 131.0 and 127.7 ppm show temperature dependent coalescence from apparent doublets to singlets as above for diastereomer 1. MS results were equivalent to diastereomer 1. Table S .8 is a COSY correlation table for the ${ }^{1} \mathrm{H}$ signals of $\mathbf{8 a}$ (diastereomer 2). Table S. 9 is a XHCORR correlation table for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals of 8 a (diastereomer 2).

N-(7,8-Dihydro-8-methylguanosin-8-yl)-4-aminobiphenyl(8b):

A 250 mL saturated solution of $8-\mathrm{MeG}$ was incubated as 70 mg of $\mathbf{1 b}$ was added as described above. About 48 h after the addition, the mixture was extracted several times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were combined and evaporated to dryness to leave a mixture containing 4-aminobiphenyl (15), N -acetyl-4-aminobiphenyl(10) and the hydrolysis product 13. The products were isolated and purified by column chromatography(230-400 mesh silica gel, $1 / 1$ toluene/EtOAc eluent). NMR comparisons to authentic compounds confirmed 10 and 15 were isolated. ${ }^{10}$ The aqueous layer, containing salts, $8-\mathrm{MeG}$, and $\mathbf{8 b}$, was freeze dried. The two diastereomers of $\mathbf{8 b}$ were separated from the $8-\mathrm{MeG}$ and salts by $\mathrm{C}-18$ reverse phase
chromatography($1 / 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ eluent). The two diastereomers were isolated and purified by HPLC as described above for 7a. Diastereomer 1(yield: $20 \mathrm{mg}, 17 \%$) (8b): ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 7.95(1 \mathrm{H}, \mathrm{bs}), 7.91(1 \mathrm{H}, \mathrm{bs}), 7.75-7.66(6 \mathrm{H}, \mathrm{m}), 7.56(1 \mathrm{H}, \mathrm{bs}), 7.46(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}), 7.35(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 5.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), 5.28(1 \mathrm{H}, \mathrm{bs}), 5.00(2 \mathrm{H}, \mathrm{bs}), 4.50(1 \mathrm{H}$, bs), $4.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}), 3.58-3.43(5 \mathrm{H}, \mathrm{m}), 1.22(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75.5 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right) \delta$ 184.6(C), 172.1(C), 172.1(C), 168.2(C), 139.4(C), 136.9(C), 135.9(C), 128.9(CH), 127.4(CH), $127.2(\mathrm{CH}), 126.5(\mathrm{CH}), 122.3(\mathrm{CH}), 81.3(\mathrm{C}), 73.8(\mathrm{CH}), 72.8(\mathrm{CH}), 71.5(\mathrm{CH}), 68.2(\mathrm{CH})$, $62.8\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{3}\right)$. MS analysis of this compound failed to generate a molecular ion. MS: $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}^{+}\left(\mathrm{PbC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}^{+}\right)$requires $169.0892 \mathrm{~m} /$ e; EI MS found 169.0896. Table S .10 is a COSY correlation table for the ${ }^{1} \mathrm{H}$ signals of $\mathbf{8 b}$ (diastereomer 1). Table S. 11 is a XHCORR table for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals for $\mathbf{8 b}$ (diastereomer 1).

Diastereomer 2 (yield: $18 \mathrm{mg}, 15 \%$) (8b): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 9.00(1 \mathrm{H}, \mathrm{bs}$),
$8.18(1 \mathrm{H}, \mathrm{bs}), 8.03(1 \mathrm{H}, \mathrm{bs}), 7.73(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.70-7.67(2 \mathrm{H}, \mathrm{m}), 7.56(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz})$, $7.46(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 5.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 5.32(2 \mathrm{H}, \mathrm{bs}), 4.80(1 \mathrm{H}$, bs), $4.48(1 \mathrm{H}, \mathrm{bs}), 4.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}), 3.65-3.49(5 \mathrm{H}, \mathrm{m}), 1.22(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}(75.5 \mathrm{MHz}$, DMSO-d $_{6}$) $\delta 187.2(\mathrm{C}), 171.9(\mathrm{C}), 171.9(\mathrm{C}), 166.5(\mathrm{C}), 139.3(\mathrm{C}), 137.6(\mathrm{C}), 135.3(\mathrm{C}), 129.0(\mathrm{CH})$, $127.5(\mathrm{CH}), 127.1(\mathrm{CH}), 126.6(\mathrm{CH}), 123.6(\mathrm{CH}), 81.4(\mathrm{C}), 73.4(\mathrm{CH}), 72.7(\mathrm{CH}), 72.3(\mathrm{CH})$, $66.7(\mathrm{CH}), 63.1\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{3}\right) . \mathrm{MS}$ results were equivalent to diastereomer 1.

3-Acetamido-6-phenyl-7-(adenosin- ${ }^{6}$-yl)-7-azabicyclo[4.1.0]hepta-2,4-diene(11a):

A 25 mL saturated solution of A (ca. 50 mM$)$ was stirred as $48 \mathrm{mg}(0.139 \mathrm{mmol})$ of $\mathbf{1 a}$ was added as described above. About 5 h after the addition the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the aqueous solution, containing $11 \mathbf{a}$, was freeze-dried. Isolation of $11 \mathbf{a}$ was
performed by column chromatography using C-18 reverse phase silica gel with $1 / 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ eluent. Purification was performed by HPLC as described above for 7 a (yield: $20 \mathrm{mg}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $9.53(1 \mathrm{H}, \mathrm{s}), 8.24(1 \mathrm{H}, \mathrm{s}), 7.93(1 \mathrm{H}, \mathrm{s}), 7.38-7.24(5 \mathrm{H}, \mathrm{m})$, $6.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}), 5.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.7$ $\mathrm{Hz}), 5.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}), 5.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.9 \mathrm{~Hz}), 5.12(1 \mathrm{H}, \mathrm{m}), 4.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.8,2.6 \mathrm{~Hz})$, $4.42(1 \mathrm{H}, \mathrm{m}), 4.09(1 \mathrm{H}, \mathrm{m}), 3.92(1 \mathrm{H}, \mathrm{m}), 3.65-3.53(2 \mathrm{H}, \mathrm{m}), 1.99(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75.5 MHz , DMSO-d $_{6}$) $169.3(\mathrm{C}), 150.1(\mathrm{C}), 145.9(\mathrm{C}), 145.2(\mathrm{C}), 143.5(\mathrm{CH}), 138.4(\mathrm{CH}), 134.6(\mathrm{C})$, $134.1(\mathrm{CH}), 128.6(\mathrm{CH}), 127.3(\mathrm{CH}), 125.3(\mathrm{CH}), 119.6(\mathrm{C}), 118.9(\mathrm{CH}), 97.3(\mathrm{CH}), 87.7(\mathrm{CH})$, $85.6(\mathrm{CH}), 74.1(\mathrm{CH}), 72.6(\mathrm{C}), 70.3(\mathrm{CH}), 62.9(\mathrm{CH}), 61.4\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ peaks at 138.4 , 134.1, 119.6, 118.9, 87.7 and 74.1 ppm are doublets at room temperature. They coalesce into singlets at higher temperature. MS: $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}^{+}$requires $499.2 \mathrm{~m} / \mathrm{e}$; FAB MS, $(\alpha-$ thioglycerol matrix) found $499.3 \mathrm{~m} / \mathrm{e}$; LD-TOF MS found $499.7 \mathrm{~m} / \mathrm{e}$. Table S .12 is a COSY correlation table for the ${ }^{1} \mathrm{H}$ signals of 11 a . Table S .13 is a XHCORR table for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ signals for 11a.

3-Amino-6-phenyl-7-(adenosin-N ${ }^{6}$-yl)-7-azabicyclo[4.1.0]hepta-2,4-diene(11b):

A 25 mL saturated solution of A was stirred as $58 \mathrm{mg}(0.22 \mathrm{~mol})$ of $\mathbf{1 b}$ was added as described above. About 24 h after the addition, the aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Isolation and purification were performed in the same manner as described for $\mathbf{1 1 a}$ (yield: 18 mg , $19 \%) .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d $_{6}$) $\delta 8.28(1 \mathrm{H}, \mathrm{s}), 8.24(1 \mathrm{H}, \mathrm{s}), 7.55(2 \mathrm{H}, \mathrm{m}), 7.43(2 \mathrm{H}, \mathrm{m})$, $7.36(1 \mathrm{H}, \mathrm{m}), 6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}), 6.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}), 5.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.8,2.1 \mathrm{~Hz})$, $5.45(2 \mathrm{H}, \mathrm{bs}), 5.15(1 \mathrm{H}, \mathrm{bs}), 4.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15.6,5.4 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{m})$, $4.05(2 \mathrm{H}, \mathrm{bs}), 3.92(1 \mathrm{H}, \mathrm{m}), 3.66-3.51(2 \mathrm{H}, \mathrm{m}), 3.22-3.14(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR(75.5 MHz , DMSO-
$\left.d_{6}\right) \delta 150.5(\mathrm{C}), 146.3(\mathrm{CH}), 145.1(\mathrm{C}), 143.6(\mathrm{CH}), 142.2(\mathrm{C}), 138.7(\mathrm{CH}), 128.9(\mathrm{CH}), 128.7(\mathrm{CH})$, $128.2(\mathrm{C}), 127.9(\mathrm{CH}), 126.5(\mathrm{CH}), 125.1(\mathrm{CH}), 119.9(\mathrm{C}), 87.7(\mathrm{CH}), 85.7(\mathrm{CH}), 74.0(\mathrm{CH}), 72.4(\mathrm{C})$, $70.3(\mathrm{CH}), 64.4(\mathrm{CH}), 61.3\left(\mathrm{CH}_{2}\right) \cdot{ }^{13} \mathrm{C}$ peaks at $145.1,138.7,119.9,87.7$ and 74.0 ppm show temperature dependent coalescence similar to that observed for 11a. MS: $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Na}^{+}+\alpha-$ thioglycerol matrix requires $566.2 \mathrm{~m} / \mathrm{e}$; FAB-MS, (Thio-Gly matrix) found $566.3 \mathrm{~m} / \mathrm{e}$. Table S. 14 is a COSY correlation table for the ${ }^{1} \mathrm{H}$ signals of $\mathbf{1 1 b}$.

Table S1. COSY Correlations for ${ }^{1} \mathrm{H}$ Signals of 5a
${ }^{1} \mathrm{H}$ Signal (ppm)
$7.67 \quad 7.45$
7.45
7.35
5.50
4.90
$4.03 \quad 4.90,3.90-3.52$
3.90-3.52 4.03, 3.90-3.52

Correlation (ppm)
7.67, 7.35
7.45
4.90
5.50, 4.03

Table S2. COSY Correlations for ${ }^{1} \mathrm{H}$ Signals of $\mathbf{5 b}$
${ }^{1} \mathrm{H}$ Signal (ppm)
Correlation (ppm)
7.67
7.58
$7.58 \quad 7.67$
7.65-7.60 7.42
7.42 7.65-7.60, 7.29
$7.29 \quad 7.42$
$5.91 \quad 4.28$
$4.28 \quad 5.91,4.07$
$4.07 \quad 4.28,3.74$
$3.74 \quad 4.07$

Table S3. COSY Correlations for ${ }^{1} \mathrm{H}$ Signals of $\mathbf{6 a}$
1H Signal (ppm) Correlation (ppm)
7.68 7.48-7.35
$7.48-7.35$ 7.68
5.74 5.02
5.02 5.74, 4.14
4.14

$$
5.02,3.93
$$3.93

$$
4.14,3.69-3.32
$$

3.69-3.32 3.93

Table S4. COSY Correlations for ${ }^{1} \mathrm{H}$ Signals of $7 \mathbf{a}$
${ }^{1} \mathrm{H}$ Signal (ppm)
7.73
7.45
5.79
4.37
4.09
3.89
3.60-3.52
3.89

Table S5. XHCORR Correlations for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Signals of 7a
${ }^{1} \mathrm{H}$ Signal (ppm)
8.37
8.22
7.73
7.45
7.27-7.14
5.79
4.37
4.09
$3.89 \quad 85.6$
3.60-3.52
61.2
2.08
24.1

Table S6. COSY Correlations for ${ }^{1} \mathrm{H}$ Signals of $\mathbf{6} \mathbf{b}$
${ }^{1} \mathrm{H}$ Signal (ppm)
Correlation (ppm)
7.90
7.62
$7.62 \quad 7.90,7.43$
7.43
7.62, 7.29
7.29
7.43
6.09
4.58
4.58
6.09, 4.16
4.16
4.58, 4.03
4.03
4.16, 3.73-3.53
3.73-3.53
4.03

Table S7. COSY Correlations for ${ }^{1} \mathrm{H}$ Signals of $\mathbf{7 b}$
${ }^{1} \mathrm{H}$ Signal (ppm)
7.23-7.07
6.77
6.55
5.79
4.40
4.40
5.79, 4.08
4.08
3.89
4.40, 3.89
4.08, 3.61-3.50
3.61-3.50
3.89

Table S8. COSY Correlations for the ${ }^{1} \mathrm{H}$ of 8a (diastereomer 2)

${ }^{1} \mathrm{H}$ Signal (ppm)	Correlation (ppm)
5.26	4.65
4.65	$5.26,4.06$
4.06	$4.65,3.75$
3.75	$4.06,3.68-3.46$
$3.68-3.46$	3.75

Table S9. XHCORR Correlations Between the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Signals for $\mathbf{8 a}$ (diastereomer 2)
${ }^{1} \mathrm{H}$ Signal (ppm)
7.85-7.40
5.26
4.65
4.06
$3.75 \quad 84.4$
$\begin{array}{ll}3.68-3.46 & 61.8\end{array}$
$1.65 \quad 25.4$
1.38
${ }^{13} \mathrm{C}$ Signal (ppm)
131.0, 129.0, 127.9, 127.7, 126.8
89.4
70.3
$4.06 \quad 70.0$
26.3

Table S10. COSY Correlations for the ${ }^{1} \mathrm{H}$ of $\mathbf{8 b}$ (diastereomer 1)
${ }^{1} \mathrm{H}$ Signal (ppm)
7.75-7.66
7.46
7.35
5.64
5.28
4.50
4.15
3.58-3.43

Correlation (ppm)
$7.75-7.66,7.46,7.35$
$7.70-7.67,7.35$
$7.70-7.67,7.46$
4.15, 3.58-3.43
3.58-3.43
3.58-3.43
5.64, 3.58-3.43
$5.28,4.50,4.15,3.58-3.43$

Table S11. XHCORR Correlations Between ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Signals for $\mathbf{8 b}$ (diastereomer 1)
${ }^{1} \mathrm{H}$ Signal (ppm) Carbon Signal (ppm)
$7.75-7.66$ $127.2,126.5,122.3$
7.46 128.9
7.35 127.4
5.64 72.8
3.58-3.43 $73.8,71.5,68.2,62.8$
1.2229.0

Table S12. COSY Correlations for ${ }^{1} \mathrm{H}$ Signals of 11a

${ }^{1} \mathrm{H}$ Signal (ppm)	Correlation (ppm)
6.65	$5.98,5.86,4.96$
5.98	$6.65,5.86$
5.86	$6.65,5.98,4.96$
5.78	4.42
5.46	$5.78,4.42$
5.19	4.09
5.12	$3.65-3.53$
4.96	$6.65,5.86$
4.42	$5.78,5.46,4.09$
4.09	$5.19,4.42,3.92$
3.92	$4.09,3.65-3.53$
$3.65-3.53$	$5.12,3.92$

Table S13. XHCORR Correlations Between ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Signals of 11a
${ }^{1} \mathrm{H}$ Signal (ppm) Carbon Signal (ppm)
$8.24 \quad 138.4$
$7.93 \quad 143.5$
7.38-7.24 128.6, 127.3, 125.3
$6.65 \quad 97.3$
$5.98 \quad 118.9$
$5.86 \quad 134.1$
5.46 87.7
$4.96 \quad 62.9$
$4.42 \quad 74.1$
$4.09 \quad 70.4$
$3.92 \quad 85.6$
3.65-3.53 61.4
1.9924 .0

Table S14. COSY Correlation for ${ }^{1} \mathrm{H}$ Signals of $\mathbf{1 1 b}$
${ }^{1} \mathrm{H}$ Signal (ppm)Correlation (ppm)
7.55 7.43
7.43 7.55, 7.36
7.36 7.43
6.62 6.02, 4.57
6.02 6.62
5.80 4.46
4.57 6.62, 3.22-3.144.46
4.095.80, 4.09
3.924.46, 3.92
3.66-3.51 3.92
3.22-3.14 4.57

Fig. S1. Trapping Data for 1 b and $\mathrm{d}-\mathrm{G}$ at pH 7.5

- 2 b

Fig. S2. Trapping Data for 1 a and $8-\mathrm{MeG}$ at pH 7.5

- 14a $0 \quad 13 \quad 8 \mathrm{a}(1+2)$

Fig. S3. Trapping Data for 1 b and $8-\mathrm{MeG}$ at pH 7.5

Fig. S4. Trapping Data for 1a and A at pH 7.5
4 11a • 14a ○ 13

Fig. S5. Trapping Data for 1 b and A at pH 7.5

- 11b 13

Fig. S6. Trapping Data for 1a and I at pH 7.5
$\Delta \quad 7 a$

- 6 a

Fig. S7. pH Dependence of $\mathrm{k}_{\mathrm{x}} / \mathrm{k}_{\text {s }}$ for 1 b

