J. Am. Chem. Soc., 1997, 119(38), 9065-9066, DOI:10.1021/ja9719182

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

REVISED MANUSCRIPT SUPPORTING INFORMATION

A New Stereoselective Method for the Preparation of Allylic Alcohols

Eric Oblinger and John Montgomery*
Department of Chemistry, Wayne State University, Detroit, MI 48202-3489

Experimental Procedures

Unless otherwise noted, reagents were commercially available and were used without purification. Tetrahydrofuran (THF) and diethyl ether were freshly distilled from sodium/benzophenone ketyl. Dichloromethane was distilled from calcium hydride. All organolithium reagents were freshly titrated with 2,5-dimethoxybenzyl alcohol. Zinc chloride was dried at $150{ }^{\circ} \mathrm{C}$ at 0.1 mm overnight, then thoroughly ground by mortar and pestle in an inert atmosphere glovebox, and then dried again overnight at $150^{\circ} \mathrm{C}$ at $0.1 \mathrm{~mm} . \mathrm{Ni}(\mathrm{COD})_{2}$ and anhydrous ZnCl_{2} were stored and weighed in an inert atmosphere glovebox. All reactions were conducted in flame-dried glassware under a nitrogen or argon atmosphere.

General Procedure A for Alkylative Cyclization of Ynals. A $0.5-0.6 \mathrm{M}$ solution of ZnCl_{2} (2.5-3.0 equiv.) in THF was stirred at $0^{\circ} \mathrm{C}$, and the organolithium or Grignard reagent (3.7-4.5 equiv.) was added by syringe followed by stirring for $10-15$ minutes at $0^{\circ} \mathrm{C}$. A 0.02 0.04 M THF solution of $\mathrm{Ni}(\mathrm{COD})_{2}$ ($0.05-0.20$ equiv.) was added and the resultant mixture was immediately transferred by cannula to a $0.1-0.2 \mathrm{M}$ solution of ynal (1.0 equiv.). After consumption of starting material by TLC analysis (typically $0.25-0.5 \mathrm{~h}$ at $0^{\circ} \mathrm{C}$), the reaction mixture was subjected to an extractive work-up $\left(\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH} \mathrm{pH}=8\right.$ buffer/ $/ \mathrm{Et}_{2} \mathrm{O}$) followed by flash chromatography on SiO_{2}.

General Procedure B for Reductive Cyclization of Ynals. A $0.04-0.05 \mathrm{M}$ solution of tributylphosphine (4 equiv. relative to $\left.\mathrm{Ni}(\mathrm{COD})_{2}\right)$ in THF was added to $\mathrm{Ni}(\mathrm{COD})_{2}(0.05-0.20$ equiv.) at $25^{\circ} \mathrm{C}$ followed by stirring for 3-5 minutes. The nickel solution was transferred to a $0.5-0.6 \mathrm{M}$ solution of commercial $\mathrm{Et}_{2} \mathrm{Zn}\left(2.5-3.5\right.$ equiv.) in THF at $0^{\circ} \mathrm{C}$, and the resultant mixture was immediately transferred by cannula to a $0.10 \mathrm{M} 0^{\circ} \mathrm{C}$ THF solution of ynal (1.0 equiv.). After consumption of starting material by TLC analysis (typically $0.25-2.0 \mathrm{~h}$ at $0^{\circ} \mathrm{C}$), the reaction mixture was subjected to an extractive work-up $\left(\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH} \mathrm{pH}=8\right.$ buffer/Et2 O) followed by flash chromatography on SiO_{2}.

General Procedure \mathbf{C} for Three Component Couplings. A 1.0 M solution of $\mathrm{ZnCl}_{2}(2.5$ - 3.0 equiv.) in THF was stirred at $0^{\circ} \mathrm{C}$, and the organolithium or Grignard reagent (4.5-5.4 equiv.) was added by syringe followed by stirring for $10-15$ minutes at $0^{\circ} \mathrm{C}$. A 0.05 M THF solution of $\mathrm{Ni}(\mathrm{COD})_{2}$ (0.20 equiv.) and a solution containing the aldehyde (3.0 equiv.) and the alkyne (1.0 equiv., $0.3-0.4 \mathrm{M}$ in THF relative to the alkyne) were added sequentially to the organozinc reagent. After consumption of starting material by TLC analysis (typically $0.25-0.5 \mathrm{~h}$ at $\left.0^{\circ} \mathrm{C}\right)$, the reaction mixture was subjected to an extractive work-up $\left(\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH} \mathrm{pH}=8\right.$ buffer/Et $t_{2} \mathrm{O}$) followed by flash chromatography on SiO_{2}. With the alkyne as the limiting reagent, the product derived from direct addition of the organozinc to the aldehyde was observed as a significant byproduct. In cases in which separation of this byproduct was problematic, slightly lower yields were obtained, with simpler purification, by employing the aldehyde as the limiting reagent.
(Z)-2-(Ethylidene)cyclopentyl benzoate (Table 1, entry 1). Following general procedure A, 5 -hexynal ($192 \mathrm{mg}, 2.0 \mathrm{mmol}$), $\mathrm{MeLi}\left(6.4 \mathrm{~mL}, 9.0 \mathrm{mmol}\right.$ of a 1.4 M ether solution), ZnCl_{2} ($680 \mathrm{mg}, 5.0 \mathrm{mmol}$), and $\mathrm{Ni}(\mathrm{COD})_{2}(29 \mathrm{mg}, 0.11 \mathrm{mmol}$) were employed, and the crude product was treated with benzoyl chloride ($0.3 \mathrm{~mL}, 2.6 \mathrm{mmol}$) and pyridine ($0.5 \mathrm{~mL}, 6.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, to produce, after flash chromatography (19:1 hexanes: EtOAc), 300 mg (70%) of product as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}), 7.43$
$(\mathrm{m}, 2 \mathrm{H}), 5.92(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{dq}, \mathrm{J}=2.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~m}$, $1 \mathrm{H}), 1.80-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz})$ $\delta 166.3,141.1,132.7,130.7,129.6,128.3,122.5,74.2,34.4,32.1,23.5,14.8$; IR (film) 1716 cm^{-1}; HRMS (EI) m/e calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} 216.1150$, found $216.1147\left(\mathrm{M}^{+}\right)$.
(Z)-2-(Benzylidene)cyclopentanol (Table 1, entry 2). Following general procedure A, 5hexynal ($96 \mathrm{mg}, 1.00 \mathrm{mmol}$), $\mathrm{PhMgBr}\left(4.5 \mathrm{~mL}, 4.5 \mathrm{mmol}\right.$ of a 1.0 M THF solution), ZnCl_{2} (360 $\mathrm{mg}, 2.6 \mathrm{mmol})$, and $\mathrm{Ni}(\mathrm{COD})_{2}(14 \mathrm{mg}, 0.05 \mathrm{mmol})$ were employed to produce, after flash chromatography (4:1 hexanes: EtOAc), $126 \mathrm{mg}(72 \%)$ of product as a colorless oil. Spectral data were identical to those previously reported. See ref. 16.
(Z)-2-(Pentylidene)cyclopentanol (Table 1, entry 3). Following general procedure A, 5hexynal ($100 \mathrm{mg}, 1.04 \mathrm{mmol}$), $n-\mathrm{BuLi}\left(1.8 \mathrm{~mL}, 4.5 \mathrm{mmol}\right.$ of a 2.5 M hexane solution), ZnCl_{2} ($340 \mathrm{mg}, 2.5 \mathrm{mmol}$), and $\mathrm{Ni}(\mathrm{COD})_{2}$ ($14 \mathrm{mg}, 0.05 \mathrm{mmol}$) were employed to produce, after flash chromatography ($7: 3$ hexanes: $\mathrm{Et}_{2} \mathrm{O}$), 99 mg (62%) of product as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.42(\mathrm{dt}, \mathrm{J}=1.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 3 \mathrm{H}), 1.73$ - $1.82(\mathrm{~m}, 3 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~m}, 5 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz) δ $145.0,126.3,71.1,36.4,32.2,31.6,29.0,23.0,22.4,13.9$; IR (film) $3352 \mathrm{~cm}^{-1}$; HRMS (EI) m / e calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$ 154.1358, found $154.1353\left(\mathrm{M}^{+}\right)$.
(Z)-2-(1-Phenylethylidene)cyclopentanol (Table 1, entry 4). Following general procedure A, 5-heptynal ($114 \mathrm{mg}, 1.04 \mathrm{mmol}$), $\mathrm{PhMgBr}(3.8 \mathrm{~mL}, 3.8 \mathrm{mmol}$ of a 1.0 M THF solution), $\mathrm{ZnCl}_{2}(340 \mathrm{mg}, 2.5 \mathrm{mmol})$, and $\mathrm{Ni}(\mathrm{COD})_{2}(31 \mathrm{mg}, 0.22 \mathrm{mmol})$ were employed to produce, after flash chromatography ($4: 1$ hexanes: EtOAc), 126 mg (64%) of product as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dd}, \mathrm{J}=17.0,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33(\mathrm{dt}, \mathrm{J}=17.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.80(\mathrm{~m}, 3 \mathrm{H})$, $1.33(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 143.4,142.0,132.4,128.3,127.6,126.7,72.8,36.0,29.7,22.5$, 21.8; IR (film) $3378 \mathrm{~cm}^{-1}$; HRMS (EI) m / e calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$ 188.1201, found $188.1202\left(\mathrm{M}^{+}\right)$.
(Z)-2-(1-Methylpentylidene)cyclopentanol (Table 1, entry 5). Following general procedure A, 5 -heptynal ($126 \mathrm{mg}, 1.14 \mathrm{mmol}$), $n-\operatorname{BuLi}(1.5 \mathrm{~mL}, 3.8 \mathrm{mmol}$ of a 2.5 M hexane solution), ZnCl_{2} ($340 \mathrm{mg}, 2.5 \mathrm{mmol}$), and $\mathrm{Ni}(\mathrm{COD})_{2}(55 \mathrm{mg}, 0.20 \mathrm{mmol}$) were employed to produce, after flash chromatography ($4: 1$ hexanes: EtOAc), $146 \mathrm{mg}(76 \%)$ of product as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.65(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, \mathrm{J}=16.8,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.21(\mathrm{dt}, \mathrm{J}=13.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.71$ $(\mathrm{m}, 5 \mathrm{H}), 1.38(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 139.2$, 132.5, 71.9, 36.5, 34.9, 30.8, 29.2, 23.0, 22.8, 18.7, 14.1; IR (film) $3322 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}$ 168.1514, found $168.1520\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}: \mathrm{C}, 78.51 ; \mathrm{H}$, 11.98. Found: C, 78.52; H, 12.04.
(E)-2-(1-Phenylethylidene)cyclopentanol (Table 1, entry 6). Following general procedure A, 6-phenyl-5-hexynal ($114 \mathrm{mg}, 0.66 \mathrm{mmol}$), MeMgCl ($0.75 \mathrm{~mL}, 2.25 \mathrm{mmol}$ of a 3.0 M THF solution), ZnCl_{2} ($195 \mathrm{mg}, 1.44 \mathrm{mmol}$), and $\mathrm{Ni}(\mathrm{COD})_{2}(31 \mathrm{mg}, 0.11 \mathrm{mmol})$ were employed to produce, after flash chromatography ($3: 1$ hexanes: EtOAc), $90 \mathrm{mg}(73 \%)$ of product as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 3 \mathrm{H}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.42(\mathrm{~m}$, $1 \mathrm{H}), 2.18(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.91(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 144.0,141.9$, 132.7, 128.0, 127.5, 126.5, 73.0, 36.5, 31.1, 23.7, 20.8; IR (film) $3352 \mathrm{~cm}^{-1}$; HRMS (EI) m / e calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O} 188.1201$, found $188.1206\left(\mathrm{M}^{+}\right)$.
(E)-2-(1-Phenylpropylidene)cyclopentanol (Table 1, entry 7). Following general procedure A, 6-phenyl-5-hexynal ($114 \mathrm{mg}, 0.66 \mathrm{mmol}$), EtMgCl ($1.2 \mathrm{~mL}, 2.4 \mathrm{mmol}$ of a 2.0 M THF solution), ZnCl_{2} ($195 \mathrm{mg}, 1.44 \mathrm{mmol}$), and $\mathrm{Ni}(\mathrm{COD})_{2}(32 \mathrm{mg}, 0.11 \mathrm{mmol})$ were employed to produce, after flash chromatography ($3: 1$ hexanes: EtOAc), $88 \mathrm{mg}(67 \%)$ of product as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{t}$, $\mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{dt}, \mathrm{J}=16.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-$ $1.85(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.0,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 142.5$,
141.1, 139.7, 128.1, 128.0, 126.4, 72.4, 36.6, 30.7, 27.8, 23.4, 13.7; IR (film) $3313 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ 202.1358, found $202.1362\left(\mathrm{M}^{+}\right)$.
(Z)-1-Benzoyl-4-(ethylidene)pyrrolidin-3-ol (Table 1, entry 8) Following general procedure A, N-(benzoyl)- N-(prop-2-ynyl)-2-aminoethanal ($50 \mathrm{mg}, 0.25 \mathrm{mmol}$), methyllithium ($0.72 \mathrm{~mL}, 1.0 \mathrm{mmol}$ of a 1.4 mmol ether solution), zinc chloride ($85 \mathrm{mg}, 0.63 \mathrm{mmol}$), and $\mathrm{Ni}(\mathrm{COD})_{2}(7 \mathrm{mg}, 0.03 \mathrm{mmol})$ were employed to produce, after chromatography $\left(\mathrm{SiO}_{2}, 1: 2\right.$ hexanes:EtOAc to pure EtOAc), $39 \mathrm{mg}(0.17 \mathrm{mmol}, 72 \%)$ of product as a colorless oil that was homogeneous by TLC analysis. Two distinct rotamers were evident by $25^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.3-7.5(\mathrm{~m}, 5 \mathrm{H}), 5.63\left(\mathrm{~m}, 1 \mathrm{H}_{\text {major }}\right), 5.45(\mathrm{~m}$, $1 \mathrm{H}_{\text {minor }}$), $4.88\left(\mathrm{~m}, 1 \mathrm{H}_{\text {minor }}\right), 4.76\left(\mathrm{~m}, 1 \mathrm{H}_{\text {major }}\right), 4.56\left(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}_{\text {major }}\right), 4.28(\mathrm{~d}, \mathrm{~J}=$ $\left.14.0 \mathrm{~Hz}, 1 \mathrm{H}_{\text {minor }}\right), 4.06\left(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}_{\text {major }}\right), 3.98\left(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}_{\text {major }}\right), 3.87(\mathrm{~d}, \mathrm{~J}=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}_{\text {minor }}$), $3.70\left(\mathrm{dd}, \mathrm{J}=14.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}_{\text {minor }}\right.$), $3.60\left(\mathrm{~m}, 1 \mathrm{H}_{\text {both }}\right), 2.99$ (br s, $1 \mathrm{H}_{\text {minor }}$), 2.80 (br s, $1 \mathrm{H}_{\text {major }}$), $1.77\left(\mathrm{~m}, 3 \mathrm{H}_{\text {both }}\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 170.3,170.1,138.5$, 137.7, 136.4, 136.1, 130.0, 128.3, 127.3, 127.0, 122.1, 121.8, 68.6, 67.2, 58.1, 55.0, 52.5, 49.2, 14.4, 14.2; IR (film) $1606,1574 \mathrm{~cm}^{-1}$; HRMS (EI) m / e calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$ 217.1103, found $217.1100\left(\mathrm{M}^{+}\right)$.

2-(Methylidene)cyclopentyl benzoate (Table 2, entry 1). Following general procedure B, 5hexynal ($192 \mathrm{mg}, 2.0 \mathrm{mmol}$), $\mathrm{Et}_{2} \mathrm{Zn}(0.6 \mathrm{~mL}, 5.9 \mathrm{mmol}), \mathrm{PBu}_{3}(0.4 \mathrm{~mL}, 1.6 \mathrm{mmol})$, and $\mathrm{Ni}(\mathrm{COD})_{2}(110 \mathrm{mg}, 0.4 \mathrm{mmol})$ were employed, and the crude product was treated with benzoyl chloride ($0.3 \mathrm{~mL}, 2.6 \mathrm{mmol}$) and pyridine ($0.5 \mathrm{~mL}, 6.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ to produce, after flash chromatography ($19: 1$ hexanes: EtOAc), $300 \mathrm{mg}(74 \%)$ of product as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{~m}, 1 \mathrm{H}), 5.25$ $(\mathrm{m}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.76$ (m, 1H); ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 166.4,150.1,132.8,130.7,129.6,128.3,110.6,77.1,33.1$, 30.7, 22.6; IR (film) $1717 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} 202.0994$, found 202.0994
$\left(\mathrm{M}^{+}\right)$. The allylic alcohol was previously reported. Jitsukawa, K.; Kaneda, K.; Teranishi, S. J. Org. Chem. 1983, 48, 389.
(E)-2-(Ethylidene)cyclopentyl benzoate (Table 2, entry 2). Following general procedure B, 5-heptynal ($220 \mathrm{mg}, 2.0 \mathrm{mmol}$), $\mathrm{Et}_{2} \mathrm{Zn}(0.6 \mathrm{~mL}, 5.9 \mathrm{mmol}), \mathrm{PBu}_{3}(0.4 \mathrm{~mL}, 1.6 \mathrm{mmol})$, and $\mathrm{Ni}(\mathrm{COD})_{2}(110 \mathrm{mg}, 0.4 \mathrm{mmol})$ were employed, and the crude product was treated with benzoyl chloride ($0.3 \mathrm{~mL}, 2.6 \mathrm{mmol}$) and pyridine $\left(0.5 \mathrm{~mL}, 6.2 \mathrm{mmol}\right.$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ to produce, after flash chromatography (19:1 hexanes: EtOAc), 289 mg (67%) of product as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 5.69(\mathrm{~m}$, $1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.87-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{dq}, \mathrm{J}=6.8,1.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 166.4,141.6,132.7,130.9,129.6,128.2,122.0,78.2,33.3$, 27.0, 22.7, 14.9; IR (film) $1716 \mathrm{~cm}^{-1}$; HRMS (EI) m / e calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} 216.1150$, found $216.1144\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$: $\mathrm{C}, 77.75$; $\mathrm{H}, 7.46$. Found: $\mathrm{C}, 77.68 ; \mathrm{H}, 7.53$. The allylic alcohol was previously reported. Khazanie, P. G.; Lee-Ruff, E. Can. J. Chem. 1973, 51, 3173.
(E)-2-(Benzylidene)cyclopentanol (Table 2, entry 3). Following general procedure B, 6-phenyl-5-hexynal ($113 \mathrm{mg}, 0.65 \mathrm{mmol}$), $\mathrm{Et}_{2} \mathrm{Zn}(200 \mu \mathrm{~L}, 1.95 \mathrm{mmol}), \mathrm{PBu}_{3}(110 \mu \mathrm{~L}, 0.44$ mmol), and $\mathrm{Ni}(\mathrm{COD})_{2}$ ($30 \mathrm{mg}, 0.11 \mathrm{mmol}$) were employed to produce, after flash chromatography (19:1 hexanes: EtOAc), 70 mg (62%) of product as a colorless oil. Spectral data were identical to those previously reported. See ref. 16.

1-Benzoyl-4-(methylidene)pyrrolidin-3-ol (Table 2, entry 4) Following general procedure B, N-(benzoyl)- N-(prop-2-ynyl)-2-aminoethanal ($48 \mathrm{mg}, 0.24 \mathrm{mmol}$), diethylzinc ($0.13 \mathrm{~mL}, 1.25$ mmol), $\mathrm{Ni}(\mathrm{COD})_{2}(14 \mathrm{mg}, 0.05 \mathrm{mmol})$, and $\mathrm{PBu}_{3}(51 \mathrm{mg}, 0.25 \mathrm{mmol})$ were employed to produce, after chromatography ($\mathrm{SiO}_{2}, 1: 2$ to $1: 4$ hexanes:EtOAc), $38 \mathrm{mg}(0.19 \mathrm{mmol}, 79 \%)$ of a 7:1 inseparable mixture of desired product and the corresponding ethyl-containing alkylative cyclization product as a colorless oil. Two distinct rotamers (2:1) were evident by $25^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.3-7.5(\mathrm{~m}, 5 \mathrm{H}), 5.26\left(\mathrm{~s}, 1 \mathrm{H}_{\text {major }}\right), 5.23(\mathrm{~s}$,
$\left.1 \mathrm{H}_{\text {minor }}\right), 5.15\left(\mathrm{~s}, 1 \mathrm{H}_{\text {major }}\right), 4.99\left(\mathrm{~s}, 1 \mathrm{H}_{\text {minor }}\right), 4.62\left(\mathrm{~s}, 1 \mathrm{H}_{\text {minor }}\right), 4.50\left(\mathrm{~s}, 1 \mathrm{H}_{\text {major }}\right), 3.4-4.4(\mathrm{~m}$, 4 H), (diagnostic signal for ethyl-substituted compound: $\delta 0.89(\mathrm{~m}, 3 \mathrm{H})$); ${ }^{13} \mathrm{C}$ NMR (125 MHz) δ $170.6,170.1,147.1,146.4,135.9,135.7,130.2,128.43,128.35,127.3,127.0,109.6,109.4$, 71.8, 70.9, 56.6, 53.6, 52.1, 49.0; IR (film) 1677, 1612, $1575 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$ 203.0946, found $203.0944\left(\mathrm{M}^{+}\right)$; For the ethyl-substituted compound: HRMS (EI) m / e calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} 231.1259$, found $231.1258\left(\mathrm{M}^{+}\right)$.
(\boldsymbol{E})-1,3-Diphenyl-but-2-en-1-ol (Table 3, entry 1). Following general procedure C, benzaldehyde ($106 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), phenylacetylene ($132 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$), MeLi ($3.2 \mathrm{~mL}, 4.5$ mmol of a 1.4 M ether solution), $\mathrm{ZnCl}_{2}(340 \mathrm{mg}, 2.5 \mathrm{mmol})$, and $\mathrm{Ni}(\mathrm{COD})_{2}(14 \mathrm{mg}, 0.05 \mathrm{mmol})$ were employed to produce, after flash chromatography ($4: 1$ hexanes: EtOAc), $134 \mathrm{mg}(60 \%)$ of product as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.36(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{~m}$, 4 H), 5.97 (dd, J = 9.0, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.39(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~d}, \mathrm{~J}=1.0$ $\mathrm{Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 144.3,142.8,136.2,130.9,128.4,128.1,127.1$, 126.1, 125.9, 70.7, 15.9; IR (film) $3341 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O} 224.1201$, found $224.1195\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 85.68 ; \mathrm{H}, 7.19$. Found: C, 85.69; H, 7.15. The alkene stereochemistry was assigned by observation of a 4.1% NOE of the allylic methine proton ($\delta 5.39$) upon irradiation of the vinyl methyl group ($\delta 1.86$). Assignments were confirmed by H-C COSY NMR experiments. This compound was previously reported. Wasserman, H. H.; Aubrey, N. E. J. Am. Chem. Soc. 1955, 77, 590.
(\boldsymbol{E})-1-Phenyl-3-methylnon-2-en-1-ol (Table 3, entry 2). Following general procedure C, benzaldehyde ($300 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$), octyne ($150 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), MeLi ($3.8 \mathrm{~mL}, 5.3 \mathrm{mmol}$ of a 1.4 M ether solution), $\mathrm{ZnCl}_{2}(400 \mathrm{mg}, 2.9 \mathrm{mmol})$, and $\mathrm{Ni}(\mathrm{COD})_{2}(54 \mathrm{mg}, 0.20 \mathrm{mmol})$ were employed to produce, after flash chromatography ($9: 1$ hexanes: EtOAc), $171 \mathrm{mg}(74 \%)$ of product as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=9.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $5.43(\mathrm{dd}, \mathrm{J}=8.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~d}, \mathrm{~J}=$ $1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}) \delta$
$144.3,139.1,128.4,127.2,125.9,70.6,39.6,31.7,29.0,27.6,22.7,16.7,14.1$; IR (film) $3354 \mathrm{~cm}^{-1}$; HRMS (EI) m/e calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O} 232.1827$, found $232.1828\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 82.70 ; \mathrm{H}, 10.41$. Found: C, $82.57 ; \mathrm{H}, 10.43$. The alkene stereochemistry was assigned by observation of a 4.6% NOE of the allylic methine proton $(\delta 5.48)$ upon irradiation of the vinyl methyl group ($\delta 1.79$). Assignments were confirmed by H-C COSY NMR experiments.
(\boldsymbol{E})-1-Phenyl-3-butylnon-2-en-1-ol (Table 3, entry 3). Following general procedure C , benzaldehyde ($300 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$), octyne ($150 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), $\mathrm{BuLi}(1.8 \mathrm{~mL}, 4.5 \mathrm{mmol}$ of a 2.5 M hexane solution), ZnCl_{2} ($340 \mathrm{mg}, 2.5 \mathrm{mmol}$), and $\mathrm{Ni}(\mathrm{COD}) 2$ ($54 \mathrm{mg}, 0.20 \mathrm{mmol}$) were employed to produce, after flash chromatography ($9: 1$ hexanes: EtOAc), 195 mg (71%) of product as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H})$, $5.49(\mathrm{~d}, \mathrm{~J}=9.0,1 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.8(\mathrm{~m}$, $1 \mathrm{H}), 1.27-1.44(\mathrm{~m}, 12 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.0,3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 144.3,143.8,128.4,127.2,127.0,126.0,70.3,36.8,31.7,31.0,30.5,29.1,27.9,23.0$, 22.6, 14.1, 14.0; IR (film) $3355 \mathrm{~cm}^{-1}$ HRMS (EI) m / e calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O} 274.2297$, found $274.2293\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}: \mathrm{C}, 83.15$; H, 11.02. Found: C, $83.07 ; \mathrm{H}, 11.20$. Sample contains less than 3% of an impurity with distinct signals in the ${ }^{1} H$ NMR proton spectrum at 6.7 and 6.2 ppm. This compound was previously reported. Boeckman, R. K. Jr.; O'Conner, K. J. Tetrahedron Lett. 1989, 30, 3271.
(E)-2-Methyl-5-phenyl-4-hexenyl-3-acetate (Table 3, entry 4). Following general procedure C , isobutyraldehyde ($100 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), phenylacetylene ($280 \mu \mathrm{~L}, 3.1 \mathrm{mmol}$), MeLi ($3.2 \mathrm{~mL}, 4.5 \mathrm{mmol}$ of a 1.4 M ether solution), ZnCl_{2} ($340 \mathrm{mg}, 2.5 \mathrm{mmol}$), and $\mathrm{Ni}(\mathrm{COD}$) 2 (54 $\mathrm{mg}, 0.20 \mathrm{mmol}$) were employed, and the crude mixture was treated with pyridine ($0.24 \mathrm{~mL}, 3.0$ mmol), acetic anhydride ($95 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), and acetyl chloride ($79 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) to produce, after flash chromatography ($95: 5$ hexanes: EtOAc), $60 \mathrm{mg}(21 \%)$ of product as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{dd}$,
$\mathrm{J}=9.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, \mathrm{J}=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$, 1.96 (octet, $\mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}) \delta 170.5,143.0,139.5,128.2,127.3,125.9,125.0,76.1,32.8,21.3,18.4,18.0,16.8 ;$ IR (film) $1733 \mathrm{~cm}^{-1}$; HRMS (EI) m / e calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} 232.1463$, found 232.1461(M^{+}).

(Table 1, entry 1).

(Table 1, entry 3)

(Table 1, entry 4)

(Table 1, entry 6)
$\frac{\ln }{n}$

(Table 1, entry 7)

$\frac{\infty}{n}$

(Table 2, entry 1)

$$
\text { pravie } 2 \text {, entiry }
$$

(Table 2, entry 2)
.

(
(Table 3, entry 1)
$\stackrel{\gamma}{n}$

(Table 3, entry 4) .

