

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

© 1998 American Chemical Society, J. Am. Chem. Soc., Matter ja982415e Supporting Info Page 1

Table S1: ¹H chemical shifts δ [ppm] for <u>6a</u> and <u>6b</u> in CDCl₃ solution at 300 K reported relative to TMS.^{a)}

2

Proton ^{b)}	δ [ppm] <u>6a</u>	δ [ppm] <u>6b</u>
Н1	4.96	4.90
H2a	3.30	2.79
H2e	2.80	3.08
НЗ	3.10	3.05
H4	3.97	4.24
H5a	3.00	3.03
H5e	2.47	2.56
Hб	7.02	7.00
H7	7.17	7.15
Н8	7.21	7.17
Н9	7.12	7.08
H10a	4.43	4.42
H10e	4.65	4.75
H11	7.82	7.85
H12	7.65	7.61
H13	7.57	7.56
H14	7.48	7.48
H15	7.43	7.42
H16	2.75	2.57

a) a: axial; e: equatorial.

b) see figure 1 for C/H assignment

Table S2: Experimental and backcalculated homonuclear ${}^{3}J(H,H)$ coupling constants for <u>6a</u> and <u>6b</u> from 600 MHz 2D-DQF COSY and 1D spectra at 300 K in CDCl₃ solution.

3

م. مترزق

<u>6a:</u>

Proton	Proton	$^{3}J_{exp}$	NMR ^{a)}	³ J _{NMR} ^{c)}	Xray ^{b)}	³ J _{Xray} ^{c)}
н1	H2a	9.0	-12.1	9.31	-7.1	9.56
Н1	H2e	7.1	-170.1	12.59	-171.5	12.67
H2a	НЗ	1.0	-90.2	1.80	-112.6	3.82
H2e	НЗ	7.6	31.9	7.29	56.9	3.75
НЗ	H4	10.2	-178.2	12.89	-178.0	12.89
H4	H5a	2.0	66.3	2.69	87.7	1.75
H4	H5e	5.8	-62.4	3.09	-58.3	3.58

- 6	h	٠
U	ν	٠

Proton	Proton	$^{3}J_{exp}$	NMR ^{a)}	³ J _{NMR} ^{c)}	Xray ^{b)}	$^{3}J_{Xray}^{c)}$
H1 H1 H4	H2e	9.0 4.5 6.0	-31.7 89.3 -55.4	1.78	-11.8 108.8 -64.4	9.33 3.30 2.88

a) Dihedral angle obtained using the best NMR derived structure.

b) Dihedral angle obtained using the solid state structure.

c) Computed coupling constants using Karplus' equation $(^{13})$ and the following parameters: A=9.5, B=-1.6, C=1.8.

ATOM1	ATOM2	LOWER	UPPER	AV_DIST	AV_VIOL	RMS_VIOL
H1 H1 H1 H1 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3	H4 H2a H3 H2e H11 H11a H4 H10e H3 H10a H3 H10a H10a H10a H10e H4 QC16 H11 H5a H5e QC16 H6 H10a H6 H10a H10e H11	2.43 1.80 1.80 2.88 3.60 2.43 3.96 1.80 2.79 2.16 3.60 2.43 3.96 1.80 2.79 2.16 3.60 2.43 3.87 2.61 2.07 2.25 2.34 2.16 3.33 2.34 3.60 2.88 2.97 2.70	$\begin{array}{c} 2.97\\ 5.00\\ 5.00\\ 3.52\\ 6.40\\ 4.40\\ 2.97\\ 4.84\\ 5.00\\ 3.41\\ 2.64\\ 4.40\\ 2.97\\ 4.73\\ 3.19\\ 3.53\\ 4.75\\ 2.86\\ 2.64\\ 5.07\\ 2.86\\ 4.40\\ 3.52\\ 3.63\\ 5.30\\ \end{array}$	2.42 2.53 3.86 3.08 3.58 4.15 2.86 4.18 2.78 3.02 2.37 3.57 2.47 3.57 2.47 3.07 2.80 3.18 2.48 2.51 4.29 2.48 4.29 3.72 4.79	0.01 0.00 0.00 0.00 0.02 0.01 0.00	0.01 0.00 0.00 0.02 0.02 0.02 0.00
H5e	Н11	2.70	5.30	4.79	0.00	0.00
H5e	H11 QC16 H10e H10a	2.97	3.63 5.30 5.18 3.08 3.19 2.97	4.79 4.01 2.65		
H12	H13	1.80		2.31	0.11	0.11

Table S3: NOE Analysis for most acceptable 20 conformers for <u>6a</u> with RSS configuration.

Δ

Average Restraint Violation: 0.013 Average RMS Restr Violation: 0.017

ATOM1	ATOM2	LOWER	UPPER	AV_DIST	AV_VIOL	RMS_VIOL
н1	 H4	3.60	4.40	3.95	0.00	0.00
	H2e	2.70	3.30	2.53	0.17	0.17
	H2a	2.16	2.64	2.76	0.12	0.12
H1	QC16	2.43	3.97	4.07	0.10	0.10
	H11a	3.24		4.03		0.07
H2a	QC16	1.80	5.00	4.50	0.00	0.00
H2a	H10a	3.33		4.26		0.19
H2a	НЗ	1.80		2.71		0.00
НЗ	H4	1.98		2.84		0.42
НЗ	H10a	2.25		2.47		0.00
НЗ	Н9	1.80		4.27		0.00
H4	H5e	2.07	2.53	2.45		0.00
H4	H5a	1.89		2.40	0.09	0.09
H4	H10e	3.51		4.00		0.00
H4	H11	2.25		2.84		0.09
H5a -	Н6	2.25		2.49		0.00
H5e	H10e			3.49		0.00
H5e	Н6			3.13		0.05
H5e	H12	1.80		4.26		0.00
H5e	H11	2.79				0.00
Н9				5.78		0.00
Н9	H10e	2.43			0.00	0.01
Н9		2.43			0.00	0.00
H10e		2.34		3.08		0.22
		3.33			0.00	0.01
H12	H13	2.70	3.30	2.91	0.00	0.00

Table S4: NOE Analysis for most acceptable 28 conformers for $\underline{6b}$ with RSR configuration.

Average Restraint Violation: 0.059 Average RMS Restr Violation: 0.059 © 1998 American Chemical Society, J. Am. Chem. Soc., Matter ja982415e Supporting Info Page 5

Experimental conditions, 2: 20 g of (R)-tetrahydroisoquinolinecarboxylic acid and 2 equiv of potassium carbonate were dissolved in 1.6 L of THF/water (1:1). 4-Biphenyl-sulfonyl chloride (1.2 equiv in 800 mL of THF) was added at room temperature during 30 min. Workup was performed after 4 h by acidification (HCl), extraction with ethyl acetate, and flash chromatography (EtOAc/cyclohexane/1% HOAc); yield, 77%. 3: 25 g of 2 were dissolved in 300 mL of THF, heated to 50 °C and 1 equiv of neat BMS (borane-dimethyl sulfide complex) was added during 30 min. The reaction mixture was kept at 50 °C until completion. After filtration and evaporation, 150 mL of absolute methanol was added, and the product was repeatedly evaporated after addition of methanol, and then dissolved in dichloromethane, treated with charcoal, and evaporated; yield, 79%. 4: 17 g of 3 were dissolved in 250 mL of absolute DMSO, 1.5 equiv IBX was added and the mixture stirred overnight. The product was extracted from water/ethyl acetate, dried, evaporated, and directly converted to the nitrone. 5: 2.7 g of 4 were dissolved in 100 mL of THF with 1.5 equiv of each NMM and N-methylhydroxylamine hydrochloride. Then 3 equiv of sodium sulfate was added. The reaction was complete after 12 h, the product was isolated by filtration, evaporation, and chromatography (gradient EtOAc/MeOH 40:1 to 10:1); yield, 70%. Cycloaddition: 960 mg of 5 was dissolved in 40 mL of acrylnitril and heated to 65 °C for 12 h. Both isomers in the crude product after evaporation (1.05 g) were separated by flash chromatography on silica gel using a gradient of ethyl acetate/cyclohexane (from 1:2 to 2:1). Yield of 6a, 296 mg; 6b, 280 mg.

Both compounds were crystallized as racemates. Crystals for **6a** were grown from ethanol. Direct methods were used for solving the phase problem, the refinement of structure parameters was done by least-squares methods (minimization of $(F_0{}^2 - F_c{}^2)^2$ leading to R = 0.115 for all 2375 reflections including most of the hydrogens obtained from a difference Fourier synthesis of the electron density. Crystals for **6b** were made by diffusion of *n*-heptane in the gas phase into a solution of this compound in ethanol. Applying similar methods to solve the structure lead to R = 0.0672 for all 3362 reflections including all hydrogens. Full details on both structures and all experimental conditions will be given elsewhere (Paulus, E. F.; Schwab, W.; Knauf, M.; Matter, H. 1998, in preparation.).