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Molecular Computation and Oligonucleotide Arrays
Richard V. Connors and Michael C. Pirrung

1] Introduction: ‘ ,

The emergence of inexpensive, miniaturized computer circuitry has revolutionized the way information is stored
and manipulated in modern society. The availability of small, powerful, desktop computers gives users
unprecedented power. Desktop PCs connected by local networks, and, in turn, worldwide via the interne;[, has
given rise to tremendous mobility of information. With the advent of this new information age, data storage and
manipulation are so efficient that information management has become a oenfral issue. The development and
widespread use of the internet has fostered an intense interest in information security among its users, with just
cause. Computers presently transfer and control so much money and information that their transactions present
a lucrative opportunity for criminals. Moreover, the sensitive information contained i in government computer
systems is subject to attack by subversive foreign mterests Indeed, the relative anonymlty that networks offer
and the ingenuity of clandestine pirates has govemment fearing a future wave of info-crime. Government,
paradoxically, can also curtail the development and use of security systems because they limit its ability to
eavesdrop on private communications. It is a safe,pfesumption that in the future, secure information exchange
will be of vital national and corporaté interest. Secure information exchange is offered by cryptogréphy._.

Modemn cryptography is based on the idea that information stored as alphanumeric strings is fundamentally a .
sequence of binary numbers. Encryption ‘involves applying a mathematical function (key) to an intelligible
binary number sequence (plaintext), transforming it into a nonsense sequence (cyphertext) that can only be read
'by an individual who poss_esSes the key. The Data Encryption Standard (DES), for instance, uses a unique 56
bit key to transform a 64 bit plaintext message into a 64 bit cyphertext messagel. To crack DES, one would take
a plaintext-cyphertext pair and apply all 2% keys to the plaintext until the cyphertext is obtained. \This process

molecule [ Dl:;%kﬂ:l}' [ D536 er'cf

Plaintext S Cyphertext

is analogous to trying all poss1ble combinations of a combination lock to open. it. This shotgun approach
strategy is the only known way to crack most digital and mechanical cryptosystems. The security of such
systems is a function of the number of possible combinations. The DES1 for example, has 2% possible
combinations, thus, one would have to try something approaching 2% or 10 7 different keys before the solution
could be found In general, the cracking of cryptosystems can be seen as a smgle type of problem with the
following characteristics:

e The problem has a large number of possible solutions.

e Only one solution will solve the problem.

e Each potential solution may be checked quickly.
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~ These characteristics are shared by a problem class that has attracted considerable interest among complexity .
theorists, the class NP-complete. NP-complete problems are notoriously difficult to solve. Most
cryptosystems are based on NP-complete problems, hence, if an efficient algorithm was devised to solve
problems in NP, many cryptosystems would be compromised. Until recently, no efficient algorithm was
available that could solve NP-complete problems. The only algorithms available were variations on exhaustive
search. In a pioneering paper, Adelman recently disclosed” that the directed Hamiltonian Path Problem (HPP), a
famous NP-complete problem, could be solved in reasonable time using DNA and the tools of molecular
biology. Before appreciating the implications of A@elman’s discovery, a basic understanding of the concept of
NP-completeness is essential. 4 '

2] Complexity theory: ‘ _

In recent years, practitioners of complexity theory have focused much of their r_es‘earch efforts on the notion of
NP-completeness, indeed, as Michael Garey and David Johnson noted in their ground-breaking book:’
Computers and Intractability - A Guide to the Theory of NP Completeness, “few technical terms have gained such
rapid notoriety as the appellation NP-compl‘ete.” The concept of NP-completeness was first introduced by
Stephen Cook* of the University of Toronto in 1971 and has since ’éome to represeht a growing number of
inherently intractable problems that have confronted algorithm‘designers as they have sought to expand the .
limits of cbmpﬁtation. Many commonly encountered problems in mathematics-and the sciences are now known -
to be NP-complete, and the list is continually growing. Virtually every scientific and engineering endeavor from
molecular modeling to spacecraft design faces NP-complete problems. In fact, the scientific process itself
involves formulatfng and testing hypotheses that are invariably NP-complete problems. The computer security
field is an important example of a specific area that is profoundly affected by the theory of NP-completeness.
Most of the sensitive military and economic intelligence maintained by. the US and other G-7 nations is
protected by encryption schemes based on-“intractable” NP-complete problems. The United States Data
Encryption Standard (DES)', for example, is widely used by the US government to protect sensitive
information. Clearly, with such wide-ranging implications, the sfudy of complexity theory and the theory “of
NP-completeness will certainly attract intense interest from scientists and engineers for mahy years to come.

2.1] Polynomial-time versus exponential-time:

The degree to which the difficulty of a problem increases as its size increases is the central criterion by which
complexity theorists judge whether or not the problem is intractable. Usually a problem is described by giving a
general description of all its parameters or variables and stating what properties the solution is required to
satisfy. An instance of a problem is obtained by spec@fying values for the variables. The time requirements of an
algorithm designed to solve the problem are expressed in terms of a single variable, repfesenting the size, which
reflects the amount of input data needed to describe the. instance. The time complexity function for an élgorithm, ”
which is a function of the difficulty of the problem, expressés the maximum amount of time required to solve a
problem instance of a given size. Coniputer scientists have organized algorithms/problems (computations) into
two basic classes, polynomial-time and exponential-time, based on the relationship between size and time
complexity function. With polynomial-time computations, the time complexity function is a polynomial

function of problem size. Historically, scientists have preferred to work with “easy” polynomial-time problems.

SH
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Many scientific laws are expressed as a relationship between two or more measured quantities. Reaction
kinetics, for instance, involve following the appearance or disappearance of chemical species during the time
course of a reaction. In epidemiological studies, certain behaviors, genes or environmental toxins are linearly
correlated with disease states. Much more troublesome are the exponential-time computations, for which the
time complexity function is an exponential function of problem size. This type of problem is commonly
encountered in molecular or quantum mechanical calculations where the computation time rises astronomically -
as the number of atoms and bonds increases. Similarly, biochemists wrestle with the challenges of predicting the
secondary and tertiary structures of proteins, problems that become insurmountable as the number of peptide
residues increases. Pharmaceutical chemists are also confronted with this problem when attempting to create
small molecules capable of binding to biologically relevant receptors. The table below clearly illustrates the
chasm that opens between polynomial-time and exponential-time éomplexity functions as problem instance size
(n) increases and why the polynomial- exponential-time dichotomy is a fundamental organizing principle in
complexity theory. From the perspective of an algorithm designer or computer programmer, polynomial-time
problems are easy to solve, meaning their solutions are arrived at relatively quickly. Conversely, while
exponential-time problems may be manageable with a few variables, they quickly become intractable as the
number of variables increases and the computing time required to find a solution becomes prohibitive. Most
exponential-time algorithms are variants of exhaustive searches whereas polynomial-time algorithms are devised
based on a deep understanding of the structure of a problem. There is consensus among computer scientists that
a problem is not considered well-solved until a polynomial-time algorithm is designed for it and is cons1dered
intractable if no polynomial-time algorithm can possibly solve it.’

Size Time complexity function

n n’ n’ 2" 3"
1 1 1 2 3

2 4 8 -4 9
3. 9 27 N 27
4 16 64 16 81
5 25 . 125 32 243
10 100 1000 1024 104
20 400 8000 . 10° 10°
30 900 27000 107 10"
40 1600 64000 -10% 10

2.2] P versus NP:

Intractability has two root causes. In the first type, the problem is so difficult that an exponential amount of
time is needed to discover a solution (i.e. the solution is too hard to find), and in the second type, the solution is
so extensive that it cannot be described with an expression that is a polynomial function of the input length (i.e.
the solution is too big to describe). Intractable problems of the second type are super-hard problems that have
been termed “undecidable” by computer scientists. Pedagogically speaking, undecidable problems and more
difficult problems can be considered an abstract universe in which all problems exist. The most difficult
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problems reside at the shadowy frontiers of this abstract universe and are therefore not well characterized (and
may never be). The simplest problems, i.e. those in P (polynomial-time), form a well-characterized enclave
within the abstract problem universe. Before discussing the NP problem types, it is necessary to understand-the
concept of deterministic and nondeterministic computation. Computer scientists formalize the notion of an
algorithm using the deterministic one-tape Turing machine (DTM) model, which is illustrated below. The DTM
consists of a finite state control, a read-write head, and an infinitely long tape divided into squares labeled ...-2,-
1,0,1,2,... '

Finite State Control

Read-write head
- Tape i

o [T T[] [

32 -1 0 +1.42 +3 +4

The deterministic one-tape Turing machine

A program for a DTM specifies the follov@ring‘ information: :
(1) A finite set S of tape symbols', including a subset 1 < S of ihput symbols and a distinguished
blank symbol be S—1. . | | . -
(2) A finite set () of states, including a distinguished start-state g, and two distinguished
stop-states gy and gy. ' | ‘
3) A transition function F:([Q—{gv,gn}],s € S) = (Q,5'€ S,A)

qg-==--=-====-=---- -~/
bl1]olr][ofofb]

Loading the input stringx onto the DTM tape

Execution of a DTM program begins at start-state=qgy by writing the input string x (in this example taken from

Garey and Johnson® the input string x=10100) onto the tape one‘square at a time beginning at square 1; all other .
squares initially contain the blank symbol b. After the input string is written to the tape, the read-write head

returns to square 1 and then the rest of the program executes one step at a time. During each step the read-write

head reads the contents (S) of the current square, writes in a new value (s") that is prescribed by the program,

moves either (+1) or (-1) to the next square as prescribed by the program and then sets the current state g, to

the next g, ;. If the current state is gy or gy the program stops with the answer being “yes” if g=gy and “no” if
g=qx. A rudimentary DTM program M is illustrated in tabular form below: '

$={0,1,b}; I={0,1}; 0={40.91,9295 91}

State ‘ ' Tr;(m'sition Function F(q,s,A)

@ s=0 s=1 - s=b

qo (QO70>+1) (q0913+1) (QI,b,'l)
qr - (qZ:b:'l) ) (Q3:b:‘1) _ (QN,b,‘l)
q: X (qub’_l) (qN,b,'l) (QNsba'l)

/K ‘(qN:ba'l) - (qN:ba'l) . (qNaba'l)
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The first step (go) of program M after the input string x is loaded proceeds as follows: the read-write head reads
the value s=1 from square 1. Because the current state is g, and the current square contains s=1, the new values
of g,s and A are taken from row ¢, and column s=1 of the program table. Thus (g,s,A)=(gy,1,+1), so the read-
~ write head writes s=1 to square 1 and, because A=+1, moves one square right to 'squafe 2. Finally, the state is set
to go. This procedure continues until g=gy or gy at which time the program stops. The computation of M with

input x is schematically depicted below:

Cefi]oli]ofole]l =[] 1ol 1] o]o]u]=[s]1T0[1]0]0]b]=
90 . U ' , 9o

VAR \V4 ' \V4
Lol 1]of1]ofofb]=>[s1]o[1]0T0lb]=>[b]1 o 1 o o]b]=>
90 90 - 9o

\Y. v \Y
[olilolilololb]=[bl1]o]1]o]u]o]=[6] 1ol 1]b]b]b]
q; _ qz ' : ‘

v qy " stops
. The computation of the program M on input 10100

This computation stops after 8 steps in state gy which means the answer for 10100 is “yes.” Generally, it is
said that the DTM program M with input alphabet I accepts x e I* (I* is the set of all finite strings over
alphabet /) if and only if M stops in state gy when applied to input x. The language Ly recognized by program
M is given by Ly,={ x € I'*: conditions under which M accepts x}. For instance, in the above example program
M recognizes the language Ly ={ x €{0,1}*: the rightmost two symbols of x are both 0} where {0,1}* is the set .
of all finite strings containing 0,1. This definition of language recognition does not require that M ‘stop for all
input strings in 7*, only for those in Ly;. If x belongs to {I*- Ly} then the computation of M on input x might
stop on gy or run'interminably. An algorithm is considered useful only if it stops on all possible strings over its
input alphabet 7*. Stated in familiar terrris, “rebognizing languages” means “solving problems,” thus a DTM
| algorithm is said to solve a problem if it stops for all input strings over its input alphabet. The important thing
to remember about the DTM is that, analogous to most modern CPU, it is a single linear data processor that

accesses a single sequential tape and can therefore perform only a very limited amount of work in a single step.

With a formal algorithm model in hand, one can formally define the time complexity function. The time required
for execution of a DTM program M on input x is a function of the number of steps until gy or gy is reached.

Thus, for a DTM program M that stops on all inputs x € I ¥, its time corﬁblexity function 7,,: Z* —» Z* (Z is _
the set of all positive integers) is given by: |

if there is anx e [ * with the length of x=n such
Twm(n)=max m:

that computation of M on input x takes time'm

Such a program M is called a polynomial-time DTM program if there exists a pblynomial p such that for all
neZ"; T,(n) < p(n). One can now formally define languages belonging to class P as follows:

P={L:if there is a polynomial-time DTM program M for which L=L}

St
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To extend the formalism to problem classification, a decision problem I1 (a problem with a yes/no solution)
belongs to class P under the encoding scheme e if L[ILe]e P, that is, if there is a polynomzal—tzme DTM
program that solves Il under encodzng scheme e.

On the surface, NP problems appear to be intractable exponential-time problems. For example, there is no
known polynomial-time algorithm for the TRAVELING SALESMAN problem, which asks, given a set of
cities, distances between the cities and a bound B, if there is a tour of all the cities having total length <B. Of
course, combinatorics is the source of difficulty in these problems, the myriad combinations of intercity
distances that increase exponentially with city number. What distinguishes NP problems from other
exponential-time problems is that their solutions may be quickly verified in polynomial-time. While it is a simple
matter to add up the intercity distances for an arbitrary ordering of cities in the TRAVELING SALESMAN
problem, what makes the problem difficult is the huge number of city orderings that must be checked. Thus, it is
the polynomial-time-verifiability exponential-time-solVab'ility dichotomy that isolates NP problems as a distinct
class. Computer scientists define NP in terms of what is called a nondeterministic algorithm. This algorithm
consists of a guessing stage and a checking stage. For the TRAVELING SALESMAN problem, the guessing
stage generates a random order of cities (hence the term nondeterministic algorithm) and the checking stage
verifies the solution (yes/no) using normal deterministic computation Nondeterministic computation is
formalized in terms of the Nondeterministic Turing Machlne model (NDTM), which is deplcted schematlcally

below:
Guessing Module - Finite State Control
ﬂ Guess-write head Read-write head
Tape . .

e | | [ [T T T T ==
302 1 0 41 42 43 44

The nondeterministic one- tape Turing machine

The NDTM has the same structure as the DTM except for the guessing module and the guess- -write- -only head,
which work together to randomly generate a solution structure: Of course, a single NDTM- will not compute a
solution to an instance of the TRAVELING SALESMAN problem in polynomial-time (unless it produces a
very lucky guess). To compute a solution in polynomial-time, it is necessary to employ an ensemble of
NDTMs whose number is > to the total number of potential solutions of the problem (hence the term
nondeterministic polynomial-time [NP] computation). There is general agreement among computer scientists that
the nondeterministic polynomial-time algorithm is merely an abstract device for understanding polynomial-time
verifiability and is not a realistic algorithm because the requirement for massively parallel computation (an
ensemble of NDTMs) is impractical. Of course, this attitude has changed since Adelmah"s pioneering use of
DNA to solve problems in this complexity class (vide infra). In a very real sense, Adelman constructed” the first
real-world NDTM from DNA, a biological nondeterministic computer; this may force computer scientists to
reformulate their ideas about the nature of intractability.

The placement of class NP in the abstract problem universe described above requires insight into the
relationship between P and NP. The question of whether P=NP or P#NP has been extensively studied by

computer scientists because of its implications for the relationship between problem solvability and solution
verifiability. Problems in class P, for instance, are solvable in polynomial-time whereas NP problems are

- 56
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verifiable in polynomial-time. If P=NP, then devising an algorithm that solves an NP problem in polynomial-
time should be possible. Considering that most computer enoryption systems are based on hard NP problems
'(INP-complete) whose solutions may be quickly verified (unlocked) in polynomial-time, developing an algorithm
that solves the problem in polynomial-time would compromise the security of ‘the encryption schemes the
world over. Fortunately, the consensus among computer ~scientlsts is that PzNP vbecause, to date, despite
considerable effort, no polynomial-time algorithms have been found for NP problems like the TRAVELING
SALESMAN problem and its cousins. HoWever while there is a strong consensus that P#NP, it has not been
rigorously proven. The fact that it is safe to assume that P#NP notwithstanding, the two problem classes share
an interesting characteristic: any problem IT that can be solved by a deterministic polynomial-time algorithm 4
can also be solved by a nondeterministic algorithm B by using 4 for the checking stage of B and i ignoring the
guess. Thus IIeP 1mplles IIeNP. So while P=NP, because any problem in P can be solved by a
nondeterministic algorithm, P must be a subset of NP, or stated formally PCNP. '

2.3] Polynomial transformations and NP-completeness:

If P#NP then discriminating between P and NP-P is vitally important because all problems in P can be solved
by polynomial-time algorithms whereas all problems in NP-P are intractable. Complexity theorists employ a
useful shortcut to facilitate proving that a problem ITe NP-P. Instead of showing that a new problem IT'e NP-P,
IT is polynomially transformed into an existing problem IT that is already known to be in NP-P. To examine this
concept, we must return to the idea of languages L (remember that a language L is a set of input strings x that are
all recognized by a DTM program M, ie. a set of solutions). A polynomzal transformation from language
L,cli*, belongmg to problem IT;, to language L2d2 , belonging to problem I1,, is a function f: [;*—I,* that

satisfies the following two conditions:

(1) There is a polynomial-time DTM program that computes

(2) For all xeI;*, xe L, if and only if f(x)s L,
In the parlance of complexity theory, if the language L‘1, belonging to IT;; can be 'pOIYnomially transformed into
language L,, belonging to IT,, then one wr1tes L;=<L,; the mechanics. of polynomlal transformatlon comes from

the followmg three lemmas

(1)  IfLyecL, then Lye P implies L, P, or Ly¢ P implies L;¢ P

(2)  IfLjecL; and If Ly<L; then LyecL,

3) IfL; and L, belong to NP, L, is NP—complete and L<L,,
then L, is NP—complete

If TT; and IT, are decision problems, with associated encoding schemes e; and e,, whenever there exists a
polynomial transformation from L[II;,e;] to L[ILe;] it is understood that ITjecIT,. In short, a polynomial
transformation translates one problem type, about which little is known, into second problem type, about

which much is known. In so doing, all the computational characteristics of the second problem can be applied to

i
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the first. For mstance if IT; can be solved by a polynomial-time algorithm then so can I, and if I1, is intractable
then so is IT; (lemma-1), and furthermore, if IT;o<IT, then IT; is “just as hard” as l'[l k ‘
Polynomial transformations are also transitive (lemma-2), for instance; if II1je<IT, and if IT,<IT; then T o<I15.
Similarly, whenever both Le<l, and Lje<L,; (both Hlécl'lz and l'[zocl_'ll); L, and L, (thus T, and IT) are said to be
polynomially equivalent and to belong to an equivalent class. Class P; for exan_iple, is an example of an
equivalence class consisting of the computationally easiest languages (problems). The class NP-complete is also
an example of a distinct equivalence class that contains the hardest languages (problems) in NP. Formally, a
language L is NP-complete if Le NP and, for all other languages L'e NP, L'«<L. Equivalently, a decision problem
IT is NP-complete if ITe NP and, for all other decision problems IT'c NP, IT'<I1. Recalling the inference from
lemma-1, if T1je<IT, then IT, is “just as hard” as IT,, and that proving IT to be NP-complete requires showing that
every other problem IT' in NP polynomially transforms into IT, leads to the conclusion that NP-complete
problems are “just as hard” as any other problems in NP and, therefore, that NP-complete problems are the
most difficult problems in NP. Thus, if any NP-complete problem can be solved with a’polynomial-time
algorithm A, then all NP problems can be solved w1th A. Furthermore if 3 any NP problem is intractable, then all
NP-complete problems are intractable.

Clearly, showing that every problem IT"in NP can be tra.nsformed into an NP-complete problem candrdate ITis
not an easy task. Thus lemma-3 is of great value because given a srngle NP-complete problem HNp, one can prove
any problem IT to be NP—complete merely by showing:

(1) ‘Hel\lP
(2 Tle<Ihe

2.4] Six basic NP-complete problems: :

In a landmark 1971 paper, Stephen Cook proved that the Satisfaction problem (SAT) is NP—complete (Cook’
theorem), and therefore, as hard or harder than any other problem in NP. Since then, hundreds of problems
have been classified as NP-complete by showrng that. they can be polynomially transformed into -SAT..
Subsequent to Cook’s discovery, Richard Karp compiled’ a list of 21 NP—complet‘e problems that he classified -
by polynomial transformatlon to SAT. Of these 21 problems, 6 have emerged as the core set of NP-complete
problems with which most others are proven NP—complete they are:

Six basic NP—complete problems. ‘

(1)  3-Satisfiability (3SAT) . A
INSTANCE: Given a set of clauses C={cy, C5,...cr,} '0n a finite set U of variables such
that | c; | =3 for 1<i<m. |
QUESTION: Is there a truth assignment for U that satisfies all the clauses in C?

2) 3-Dimensional Matching (3DM) 7 '

INSTANCE: A set McW x X X Y, ‘where W, X and Y are dlS]Olnt sets havrng the same
number q of elements.
'QUESTION: Does M contain a matchmg, that is, a subset M’cM such that | M’ |=q and

no two elements of M’ agree in any coordinate?

S(O
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(3)  Vertex cover (VC)
INSTANCE: A graph G=(V,E) and a positive integer K<| V |.
QUESTION: Is there a vertex cover of size K or less for G, that is, a subset V’CV such
that | V” |<K and, for each edge {u,v}€E, at least one of u and v belongs to V’?
@ Clique '
INSTANCE: A graph G=(V,E) and a positive integer J<| V |.
QUESTION: Does G contain a clique of size J or more, that is, a subset V’cV such that
| V’ [2J and every two vertices in V"’ are joined by an edge in E?
(5)  Hamiltonian circuit (HC)
INSTANCE: A graph G=(V,E)
QUESTION: Does G contain a Hamiltonian circuit, that is, an ordering {v;,v,, ...v,,}
of the vertices of G, where n=| V |, such that {v,,v;}€E and {v;,v;;;}€E for all I,
1<i<n?
6 Partition
INSTANCE: A finite set A and a “size” s(a)e Z" for each ac A.
QUESTION: Is there a subset A’CA such that

2 s(a)= 2 s(a)

agA’ acA-A'

Since these 6 problems form an equivalence class, for any two ITigar or Ilyc, for instance, IT35a1o<IIyc and
[Myco<ITsgar, therefore, the problems are equivalent. Furthermore, if one devises a polynomial-time algorithm

that solves HC then it can solve 3SAT, 3DM, VC, CLIQUE, PARTITION or any other NP—complete problem
as well.

3] Adelman’s algorithm:

In a seminal paper, Leonard Adelman described an algorithm? that uses DNA and the tools of molécular biology
to solve an instance of HC. When considering the equivalence properties of the class NP-complete, the gravity of
Adelman’s spectacular accomplishment becomes clear, that is, his algonthm or other variants of it could be used
to solve any NP-complete problem. Aldelman’s ingenious approach is both simple and intuitive. He uses the
massive parallelism accessible through the combinatorial ligation of single-stranded DNA to generate all possible
solutions to an instance of HC. He then applies the tools of molecular biology to sort through the myriad DNA
strands until a solution to HC is found. Amazingly, Adelman has effectively de{/ised a practical nondeterministic
polynomial-time algorithm, a program that conducts a parallel exhaustive search. Recall that until Adelman’s
disclosure, there was a consensus among computer scientists that nondeterministic polynomial-time algorithms
are not practically realizable but are merely abstract tools with which to understand the concept of polynomial-
time verifiability. '

To understand Adelman’s algorithm one must first grasp the’ intricacies of the Hamiltonian circuit or
Hamiltonian path problem (HC). Given a directed graph G=(V,E) (illustrated on the following page) consisting
of 7 vertices vq-vg including the designated vertices v;, and vy, and 14 paths, the graph is said to have a
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Hamiltonian path if and only if there exists a sequence of compatible one-way edges (a continuous path) that
begins at vi, and ends at v. Intultlvely, it is not difficult to see that what makes this problem intractable i is the
branching of paths at each vertex. While the number of vertices and paths is small the number of combinations of
vertices and paths through the graph is high and rises exponentially with the number of vertices and paths.
Adelman’s nondeterministic algorithm for solving this instance of HC is as follows: '

O

- a) Adelman's directed Hamiltonian graph G with v;;=0 and VOI.R=6 ‘
b) The graph G's unique Hamiltonian path, 0-1, 1-2, 2-3, 3-4, 4-5, 5-6.

o Stepl: Generate random paths through the graph

e Step2:  Keep only those paths that begln with vin and end with v,

e Step3:  If the graph hasn vertices, then keep only those paths that enter exactly n vertices.
e Step4:  Keep only those paths that ‘enterall of the vertices of the graph at least once.

e Step5:  If any paths remain say “yes”; otherwise say no. '

To implement step I of the algorithm, each vertex is represented by a discrete random 20mer oligenucleotide
denoted O;. Each edge O;-O;of the graph is created such that it is the 3'-10mer of its lower-order vertex and the
5'-10mer of its higher-order vertex. In the case of i=0 the edge is all O; and i=6 it is all O;. The Watson-Crick
complement to O, is denoted 0. All poss1ble paths through the- graph are created ina smgle combmatonal

ligation step. An example of one of the ligations is 1llustrated below:

S ligation

o. | 0.,
3-GTATAT CCGAGC TATTCG AGC TTA AAG CTA GGC TAG GTA C- 5'
: 5'-CG ATA AGC TCG AATTTC GAT-3' '

0,
To implement step 2-of the algorithm, the product of step 1 is amplified by PCR using 0, and O, as primers,

!

such that only strands beginnjng at vertex-0 and ending at vertex-6 are amplified.

S\
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To implement step 3 of the algorlthm the product of step 2 is Tun on an agarose gel and the 140 bp band excised.
In this way only strands that encode 7 vertices are obtained.

To implement step 4 of the algorithm, the product of step 3 is pur1ﬁed usmg a b10t1n-streptav1d1n magnetic bead
separation kit. First, beads bearmg O, are incubated with the step 3 pool. After melting annealed DNA from the
beads, the resulting pool contains sequences that encode vertex-1 at least once. This procedure is repeated with
beads containing O,, O,, O, and O;, using the DNA melted off the beads-from the prev1ous separation as the
DNA-pool for a current separation.

To implement step 5 of the algorithm, the DNA from step 4 is ampliﬁedt by graduated PCR. In this procedure,
PCR is conducted using O, and Oy as primers, then O, and O;, O, and O,, O, and 0, O, and O,, and finally

0, and 51 In this way, oligonucleotides of 140, ‘120, 100, 80, 60, and 40 bp are created that reveal the
Hamiltonian path. d ,

Concerning the generahty of the algorithm, the number of operations increases linearly (not combmatonally)
with the number of vertices and the number ‘of oligonucleotides grows linearly with the number of edges (as
expected for a polynomlal time algorithm). Concerning the power of this algorithm, current supercomputers
execute 10" operations per second. If one cons1ders the ligation of two DNA strands in step 'l an operatlon

then at the picomole scale approximately 10" operatlons are executed. Celtalnly, much hlgher operation
densities are possible at higher DNA concentrations.

4] Lipton’s algorithm: '

Adelman was the first researcher to actually construct a molecular computer, but further accomplishments in
experimental DNA computing have come from other worker's laboratories, including Ouyang and Bancroft.
Lipton modified Adelman’s approach, devising an algorithm that uses the massive parallelism of combinatorial
DNA ligation to solve satisfaction problems (SAT)6. His contribution was to convert the SAT into a graph
problem to which Adelman’s algorithm could be applied. This process is analogous to the mechanism by which
new problems are proven to be NP-complete, that is, polynomlal transformation of the new problem, about
which little is known, into the old one, which i is well-characterized. _

The SAT is a variant of 3SAT that asks, given a set of clauses C={c, ¢,,...cy} 0N @ finite set U of variables such
that | ¢; | =2 for 1<i<m, is there a truth assignment for U that satlsﬁes all the clauses in C? The' SAT Lipton

examined was of the form: -
F=(xvy)AEVY)

In this equation there are two clauses, (x v y) and (X v ¥). The variables x and y are Boolean and can assume
values of 0 (false) and 1 (true). v is the loglcal OR operation, which dictates that (x v ¥)=0 only if x=y=0. A is
the logical AND operation, which dictates that (x A y)=1 only if x=y=1. ¥ is the negation of x, which dictates
that X =0if x=1, and; X=11if x=0. The SAT problem is to assign values to x,y such that F=1 (F is true).
Lipton’s algorithm employs the same. combinatorial DNA ligation step, conceived by Adelman, to
simultaneously create all possible solutions to the SAT. The possible values of x and y are translated into a
directed graph, illustrated on the following page, in which each vertex and path is encoded by DNA strands as in
Adelman’s algorithm. The ligation step creates all possible paths through the graph, encoding

S
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{x,y}={00,01,10,11}, all possible combinations of xandy, whrch are contained i in test tube- 0 Next, a series of
magnetic bead-based-extractions and combinations are conducted for F (xVY)A (X V¥) as follows:

o Stepl: Extract x=1 from test tube-0.

o Step 2:  Extract y=1 from test tube-0.

e Step 3: Combine extracts from steps 1 and 2 into test tube-1 -
o Step 4: Extract x=0 from test tube-1

e Step5:  Extract y=0 from test tube-1 . ,
o Step 6: Combine extracts from steps 4 and 5 into test tube-2

Any DNA that remains in test tube-2 encodes the solution to the SAT.

In the general case, given an equatron F={C/ACyA...C,}, begin with C, and conduct an extractlon step for each
literal [X] (X;VXV...Xn) in C;. For each x, extract x=1 and for each ¥, extract x=0. When the extractions for
clause C; are complete, combine the extracts in an empty test tube and repeat the extraction sequence for C, on
the contents of the test tube. » , _

Although not supported by experimental datta Lipton’s algorithm is noteworthy because it solves SAT, the
hardest problem in- NP. Moreover, the SAT is the only problem in NP that has been rigorously proven to be
NP-complete. '

5] The Condon-Smith algorithm: . v

Condon, Smith and ‘coworkers’ recently proposed an algorithm that uses ca. 10" unique oligonucleotides (not

spatially arrayed) immobilized on a 1cm? glass surface to solve NP-complete problems. Using operations based

on hybridization, polymerase extension, exonuclease degradation and ligation, all oligonucleotides that do not

encode solutions to a problem instance are destroyed; any DNA that remains encodes the solution. This is

analogous to burning the haystack to find the needle.

The Condon-Smith algorithm proceeds as follows: -

e Step-1:  Parallel synthesis is used to prepare a comBinatorial library of 10'? discrete oligonucleotides,
which is immobilized onto a lem” activated glass surface via 5'- linkers.

e Step-2: A set of complementary DNA strands that satisfies some constramt of the problern is

synthesized and hybridized to its complements arrayed on the glass surface. This i is referred to as the Mark
operatron
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e Step-3:  If indexed, multiple words are contained on each immobilized oligo, a sét of complementary
primers is annealed to the complementary, immobilized primers and polymerase extension is used to extend
the primers to the 3'-ends of the immobilized templates. At the end of steps 2 and 3 all strands that partially
or fully satisfy the constraints of the problem are Marked as double stranded. _

o Step-4:  All unmarked, single-stranded, immobilized oligonucleotides are destroyed via exonuclease
degradation using exonuclease-1. This is referred to as the Destroy-Unmarked operation.

e Step-5:  Any immobilized DNA that remains encodes the solution to the problem.

The advantages of the Condon-Smith algorithm include:
¢ Manipulation of DNA on surfaces is more efficient (minimal losses) and amenable to automation. ’
* A means is provided to develop the techniques of molecular computation on a small scale to pave the way

for future iterations to be conducted on a larger scale, in solution.

The disadvantages of the Condon-Smith algorithm include:
e The scale of computation (1012 strands) is small.
e Spatial addressability is lost.

e A read-out operation to determine the solution, once found, is absent.

6] Comparison of the Adelman, Lipton and Condon-Smith algorithms: Putting things in perspective:
Combinatorial chemists are intuitively aware of the relationship between the size or diversity of a library and the
chances of isolating a lead compound from the library. Thus, the power of a library is often judged to be a
function of the number of discrete molecules it contains. Similarly, the power of a nondeterministic polynomial- -
time algorithm is a function of the extent to which it surveys the solution space of a problem instance. Lipton
has pointed out that cracking the DES may be the first real-world application of molecular computationg.
However, combinatorial chemistry, which is a form of exhaustive search that may be rightly described as applied
molecular computation, should be recognized as the first real-world application of molecular computation.
Considering the manifest similarity between molecular computation and combinatorial chemistry, it is reasonable
to surmise that they will follow similar evolutionary paths. For instance, key issues in the evolution of
combinatorial chemistry have included the development of efficient encoding and deconvolution strategies, the
creation of more effective surface and solution chemistries and the expansion of library size. Correspondingly,
key concerns in molecular computation development will likely focus on efficient methods of encoding
oligonucleotides, solid-phase versus solution-phase implementations, and expanding the limits of solution-space.
In a recent review, Gordon® et al. organized the objectives of discovery chemistry into three general categories,
fine tuning, chemical analoguing, and lead identification, and presented combinatorial approaches to dealing with
each category: serial medicinal chemistry, spatially addressable libraries, and encoded/noncoded synthetic
libraries, respectively. In progressing from lead identification to fine tuning, the requirement for diversity
decreases, hence, in moving from recombinant peptide libraries to encoded/noncoded synthetic libraries to
spatially addressable libraries, and finally, to serial medicinal chemistry, the library size decreases from =10'? to

10°. While the encoding/deconvolution strategies and the chemistries of the various combinatorial approaches

N
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differ, the crucial issue of library size is common to all. Thus, library size limitations have dictated the objective
(fine tuning, chemical analoguing, or lead identification) to which each method is commonly applied. Library size
will unquestionably play a central role in molecular computation as well.

The Hamiltonian Path graph solved using Adelman’s algorithm® contains 7 vertices and 14 paths. The time
complexity function of the Hamiltonian path problem is n!, where » is the number of vertices in the graph.
Therefore, Adelman’s HP-graph requires at most 7! or 5040 discrete DNA strands to compute a solution.
Adelman’s algorithm is conducted in solution and therefore is limited by the physical size of an aqueous
solution containing the DNA. Lipton’s proposed DES attack®, for example, requires 2°° or ca. 10" strands.-
This amount of DNA could fit into 1L of water and translates to an HP- -graph containing 19 vertices. How far
could the Hamiltonian path problem be taken with existing combinatorial chem1stry technology?

First, consider VLSIPS technology Currently, with 10um synthesis sites, 10 different oligonucleotides can
be spatially arrayed on a 4 x 4 cm glass slide. Future versions of the technology may incorporate smaller
synthesis sites. If a means of generating 0.5 um synthesis sites becomes available, then 6.4 x 10° distinct
oligonucleotides could be spatially arrayed in the same area. A spatially arrayed library of 6.4 x 10° discrete
oligonucleotides could solve an HP-graph containing <13 vertices (131=6.2x 10 )

The Lipton algorithm® is conducted in solution. Though unsupported by experimental data, Lipton’s algorithm
is limited by the physical size of the DNA pool required. Therefore, the size of the DNA pool requlred to crack
the DES - 10"7 strands in 1L of water - which translates to a 19-vertex HP- graph gives a good indication of the
inherent limitations.

The Condon-Smith algorithm’ proposes using ca. 10" unique ohgonucleotldes (not spatially arrayed) on a
glass slide to solve NP-complete problems. Using operations based on hybridization, polymerase extension,

exonuclease degradation and ligation, all oligonucleotides that do not encode solutions to a problem instance are
destroyed; any DNA that remains encodes the solution. Condon and. Smith’s library of 10' oligonucleotides
could solve an HP-graph containing <15 vertices (15!=1.3 x 1012)

Next, consider libraries immobilized on Polymeric Beads. Typically 10pm-diameter polystyrene beads, Wthh
give rise to 5 x 10° beads/g with a maximum ligand loading of ~20 fmol/bead, are used to create libraries. If a
hbrary 1s created on 1g of polystyrene beads, it w111 contain (5 x 109) X (20 x 107 15) X (6 x 1023) or 6 x 10"
unmoblhzed oligonucleotides. A library of 6 x 10 discrete oligonucleotides could solve an HP-graph containing
<21 vertices (21'=5.1 x 10"). To place this number in perspective, bear in mind that the DES contains 2°¢
possible solutions, which could be searched with ~10' ohgonucleotldes.

Considering that a plot of variable number versus time complexity function for an exponential-time problem is
open ended, one can easily focus on the limits of molecular computation by setting the variable number so high
that an unreasonable amount of DNA is required to compute a solution. For instance, Hartmanis'! recently
asserted that if Adelman’s HP-graph is scaled to 200 Verticés, the amount of DNA required to compute the
Hamiltonian path would exceed the mass-of the earth. One who engages in such an exercise misses the point.
The discoveries of DNA-based computing research will not likely solve all exponential-time problems, but
instead, will continually redefine the limits of demonstrable computation and lead to the development of new

paradigms of computation.
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7] The Lipton-Connors algorithm: | »
As Condon and Smith pointed out’, while the use of immobilized oligonucleotide libraries imposes limitations
on the size of NP-complete problem that may be solved, the ease of working on the solid-phase will enable
researchers to refine techniques that will be applied to solution-based libraries in future implementations.
Cunously, however, Condon and Smith have chosen to work with libraries randomly immobilized on glass slides
(10" maximum library size) instead of polystyrene beads (10 maximum library size). They reason that
working on the solid phase carries significant advantages in terms of ease of manipulation and automation and
that droppmg spatial addressability increases the scale at which they can work. This strategy is questionable
because it is unreasonable to sacrifice spatial addressability for a small gain in scale (1 €. a 13-vertex HP-graph
versus a 135-vertex HP-graph), especially considering that Condon and Smith have not incorporated a read-out
strategy into their algorithm. Furthermore, the use of a spatially-addressed library with Condon and Smith’s
algorithm would give instant access to the solution strand after all others are destroyed. It is possible that they
based their choice on the fact that a DNA-computer-on—a-chip would be better received by the computer science
community, who are accustomed to the idea of photolithographic chip manufacture than a test tube full of
beads. |
The Lipton-Connors algorithm is a variant of the Lipton algorithm® in which the DNA stfands formerly in
solution are spatially arrayed on a two-dimensional glass surface. Lipton proposes usiilg"hybridization to
complementary oligonucleotides immobilized on magnetic beads to extract oligonucleotides encoding potential
solutions from the pool containing all possible DNA sequences. This approach is limited by hybridiZation
fidelity, which may introduce error in the last step of the algorithm. Furthermore, using hybridization requires
oligonucleotides of at least 15 bases in length for each variable state of the SAT in order to minimize the errors
introduced by hybridization infidelity.
The Lipton-Connors algorithm uses a polymerase-mediated single-base extension (APEX) to discﬁminate
between the myriad DNA strands in the pool. Using APEX offers two advantages over hybridization:

* The DNA sequence encoding a variable can be reduced from 15 bases to a minimum of a single base.
* The process of discrimination is enhanced by the fidelity of the polymerase during single-base extension.

The Lipton-Connors algorithm is best understood by describing how it solves a 2-variable SAT of the form:

(xvy)A(XVY)=F

In this equation there are two clauses, (x v y) and (X v ¥). The variables x and y are Boolean and therefore can

only assume values of 0 (false) and 1 (true). v is the logical OR operation, which dictates that (x v ¥)=0 only if
x=y=0. A is the logical AND operation, which dictates that (x A y)=1 only if x=y=1. X is the negation of x,
which dictates that x=0 if x=1, and, x =1 if x=0. The SAT problem is to assign values to x,y such that
F=1 (F is true).
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* Step-1:  Each possible value {0,1} of x and y is represented by a discrete oligonucleotide. The value of the

variable (x or y) is encoded by the location of its representative oligonucleotide on a two-dimensional glass

surface using a binary masking scheme. Possible DNA strands representing x=0, x=1, y=0, y=1 follow:
5'-modifier-C6-Sp-CGC GAG GTC GCA CGG CTCAGA AAAA x=0
5'-modifier-C6-Sp-CGC GAG GTC GCA CGG CTC AGA AAAT x=1
5'-modifier-C6-Sp-CGC GAG GTC GCA CGG CTC AGA AAA G y=0 -

5'—modiﬁer—C6-Sp—CGC GAG GTC GCA CGG CTC AGA AAAC  y=1

Step-1 Prepare a spatially addressable array of DNA
X= y=0| y=1 00 ] o1 primers (c) encoding all possible solutions to the SAT.
+ =l = = .
x=1 1011 Step-2 For each bracketed expression in the SAT

conduct a primer extension reaction with a dye-labeled
nucleotide terminator and DNA complements encoding

01 1 for normal variables (ie:x) and O for negations (ie:x).
+ 10 Step-3 Dye-free surfaces contain DNA sequences that
/ do not satisfy the SAT and are eliminated. The
(xwy) FxuUP solution remaining strands encode the solution to the SAT.

As depicted schematically above, the oligo solution encoding x=0 is spotted on the upper half of the slide
while a solution of the x=1 oligo is immobilized on the lower half in the nonnal binary-mask fashlon The
slide is then rotated 90° and the process is repeated with the y=0 and y=1 oligo solutions. Since spotting will
be used instead of photolithographic synthesis, oligo solutions of x=0 and ¥=0 can be mixed together and
immobilized in the NW quadrant. Similarly, mixtures of oligonucleotideé x=0ty=1, x=1+y=0 and x=I+y=1]
are spotted in the NE, SW and SE quadrants respectively.

e Step-2:  For each bracketed expression (clause) in the SAT equation, a primer extension reaction is
conducted with fluorescein-labeled ddATP using DNA complements encoding 1 for normal variables (i.e. the
complement of x=1 for x) and 0 for negations (i.. the complement of x=0 for x). Thus, for the first clause
of the equation, the following two primer extension reactions would be concurrently executed:

*

x=1 I | e JATP |
link-Sp-CGC GAG GTC GCA CGG CTC AGA AAAT (xvy)A(EvyY)=F
GCG CTC CAG CGT GCC GAG TCT TTT ATTTT

x=1 complement A

*
% =t ,. " ddATP ‘+
link-Sp-CGC GAG GTC GCA CGG CTC AGA AAA C (xvY)IA(XVY)=F
GCG CTC CAG CGT GCC GAG TCT TTT GTT TT

y=1 complement J :
This procedure will produce a slide in which all regions that satisfy clause-1 (xvy) are colored (see diagram).
Both primer and template oligonucleotides depicted above have two distinct regions, a 20-base constant

region and a 5-base variable region. Taking the primers as an example, the 20-base region extending from the

's«‘s
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spacer (Sp) to the five As is constant for all the immobilized primers and serves to insure that efficient
hybridization occurs between the templates and primers under the conditions of the extension. The 5-base
region appended to the constant sequence is a variable segment that partially encodes the value of its
variable. The variable region only partiaﬂy encodes the variable value because the balance of this information
is encoded in the primer’s location on the slide. The variable region is located at the 3'-end because this is
where the polymerase is most sensitive to mismatches. For the second clause of the equation, the following

two primer extensions would be concurrently executed:

GCG CTC CAG CGT GCC GAG TCT TTT TTTTT

x=0 Y ¢ ddATP '
link-Sp-CGC GAG GTC GCA CGG CTC AGA AAA A - (xvy)a(xvy)=F
x=0 complement J

GCG CTC CAG CGT GCC GAG TCT TTT CTTTT

_0 *
R { doatp /
link-Sp-CGC GAG GTC GCA CGG CTC AGA AAA G (xvAKXVY)=F
y=0 complement A
This procedure will produce a slide in which all regions that satisfy clause-2 (% v y) are colored.
e Step-3:  The dye-free regions from each round of primer extension are eliminated, leaving the solution(s)

to the SAT.

The Lipton-Connors algorithm shares some of the same advantages and disadvantages that apply to the
Condon-Smith algorithm, namely:
Advantages: .
® Both algorithms: Manipulation of DNA on surfaces is more efficient (minimizing losses) and amenable to
automation. | :
® Both algorithms: Provide a means to develop the techniques of molecular computation on a small scale to
pave the way for future iterations to be conducted on a larger scale, in solution.
*. The Lipton-Connors algorithm: Spatial addressability offers instant access to the solution.
Disadvantages:
* Both algorithms: The maximum scale of computation is small:
Condon-Smith=10"2 strands (<15 vertex-HP-graph).
Lipton-Connors=10’ strands (=13 vertex-HP-graph). v
® The Condon-Smith algorithm: Spatial addressability is lost. There is no read-out operation to determine the
solution, once found. :
Clearly, neither algorithm threatens the world’s cryptographic systems. However, they do offer insight into
novel paradigms for computation that might evolve into more powerful approaches in future iterations.
The following diagram illustrates how the Lipton-Connors algorithm can be applied to solve larger SAT
problems:

s\4




Problem: (wux)N(WuX)N(@uUx)NEUy)IN(yuz)=1
Solution:

1) Let the possible values (0,1) for each of w,x,y and z be represented by a discrete
oligonucleotide. Attach the oligonucleotides to a glass slide as depicted below. Five identical
matrices (e), which could be arrayed on the same slide, will be required to solve the equation.
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2) Each matrix (e ;) will solve one of the bracketed clauses. For each variable
(ie:w) in a bracketed expression, treat the appropriate matrix with the DNA -
complement encoding 1 (ie: w=1 complement). For each negation (ie:w),
treat with the complement encoding 0 (ie: w=0 complement).The expected
results of each of the five primer extension reactions are illustrated below: '

Step 1:

=0
w=0 y_l z| z} 2|z 0000]ooor 0100|0101
+ Ix=0lx=11 + y:0 + ufufu]n] =
w=l §;1 , of11011 0010-00110110'0111
a b c d ‘

1000

1001 1100|1io1

1010

1011 1110|1111

€

Surfaces of the slide which are
dye-free contain DNA sequences
which do not satisfy the equation.
These "null" sequences are
removed from contention.

For example, the results of steps
one and two indicate that the four
DNA sequences in the upper left
quadrant and the four sequences
in the lower right quadrant do not
satisfy the equation.

Similarly, steps three to five

eliminate the DNA sequences in the

lower left quadrant and three of the
. four squares in the upper right
quadrant. Striking all the null
sequences yields the solution to the
equation (w,x,y,2)=(0,1,0,0) as
depicted below:
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The 4-bit SAT depicted above contains four binary variables: w, x, y, and z. Therefore, eight 5-modified
oligonucleotides similar in structure to those used in the 2-bit computation are required:

5'- modifier-C6-S18-CG CGA GGT CGC ACG GCT CAG AAA AA
5'- modifier-C6-S18-CG CGA GGT CGC ACG GCT CAG AAA AT
5'- modifier-C6-S18-CG CGA GGT CGC ACG GCT CAG AAA AG
5'- modifier-C6-S18-CG CGA GGT CGC ACG GCT CAG AAA AC
5'- modifier-C6-S18-CG CGA GGT CGC ACG GCT CAG AAA TA
5'- modifier-C6-S18-CG CGA GGT CGC ACG GCT CAG AAA TT
5'- modifier-C6-S18-CG CGA GGT CGC ACG GCT CAG AAA TG
5'- modifier-C6-S18-CG CGA GGT CGC ACG GCT CAG AAA TC

T =3
[ |
[l e ]

NN e e R =
1]
-0 = O = O

These oligonucleotides will act as immobilized primers. Eight template oligos complementary to the oligos listed

above will also be required:

- 5"“TTT TTT TTT CTG AGC CGT GCG ACC TCG CG-3'
S'TTT TAT TTT CTG AGC CGT GCG ACC TCG CG-3'
5'TTT TCT TTT CTG AGC CGT GCG ACC TCG CG-3'
S-TTT TGT TTT CTG AGC CGT GCG ACC TCG CG-3'
5“TTT TTA TTT CTG AGC CGT GCG ACC TCG CG-3'
5'TTT TAA TTT CTG AGC CGT GCG ACC TCG CG-3'
5'-TTT TCA TTT CTG AGC CGT GCG ACC TCG CG-3'
5-TTT TGA TTT CTG AGC CGT GCG ACC TCG CG-3'

| =
oy o
- o

B I I I TR ST ST
Il
-0 = o = o

While sixteen oligos may seem like a large number to solve such a problem, what is important is how the number
grows as the problem size increases. To state the relationships explicitly, as the number of variables (n) in the
SAT increases, the number of oligos needed increases by 4n while the number of possible solutions to the SAT

increases by 2".
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