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Summary: The goal of the DARPA-funded SyNAPSE project is to build a microprocessor-based machine
that mimics many of the characteristics of biological neural networks (i.e., high connectivity, synapse plastic-
ity, and scale). The proposed device is termed a neuromorphic machine, and recent simulations have indeed
approached biological scale [1]. However, while SyNAPSE has been demonstrated on a variety of tasks, from
optical character recognition and classification to control of quadrotor helicopters [2], it has done so at a cost
of $42 million [3]. In contrast, the BEACON-funded DvD (“Darwin vs. DARPA”) project has demonstrated
the evolution of logic circuits that outperform SyNAPSE on optical character recognition for 1/1000th of the
cost [4]. In this phase of the DvD project, we now turn our attention to a more complex task: Evolving logic
circuits that play the computer game “Tetris” (see Fig. 1).

Figure 1: Tetris game,
played on a 10 × 20 play-
ing field

Tetris as a model problem: Two of the central challenges to machine intel-
ligence are: the problem of planning, where sequences of actions are strung
together to realize some goal [5], as well as the problem of information integra-
tion, where signals from distinct modalities need to be fused in order to make
an informed decision. Tetris is a very different task than optical character recog-
nition. Rather than finding regularities in images (which is essentially a data-
compression problem) playing Tetris requires less input bandwidth, but much
more signal integration, planning, and temporal synchronization. A successful
Tetris player needs to recognize the shape as well as orientation of the falling
game pieces (called “tetrominos”), and in the context of the achieved line struc-
ture (which depends entirely on play history) make a decision to rotate and/or
move the game piece within just a few ticks of the clock. It represents the most
advanced of all Active Categorical Perception (ACP) [6] tasks of the Artificial
Intelligence literature. We have previously shown that Markov networks [7] can
solve ACP tasks, by using memory to predict the trajectory of different falling
game pieces (in that case, small or large blocks) [8].

With its well-understood game dynamics [9], Tetris provides an ideal frame-
work for evaluating the performance of planning algorithms as well as informa-
tion integration, and as such, has frequently been used as a competition plat-
form for machine learning algorithms. However, “solving” Tetris is known to
be quite challenging. Indeed, even when the sequence of tetrominos is known
in advance, discovering a solution is an NP-complete problem [10]. To date,
general purpose machine learning algorithms have not yet been able to compete

with algorithms built specifically for playing Tetris. Indeed, the current world record for automated Tetris
play is held by a two-piece placement algorithm written by Colin P. Fahey [9], which cleared 7.2M lines.
Note that all current AI approaches to Tetris (even evolutionary ones [11]) rely on an evaluation function
applied to features extracted from the game board (such as “pile height”, “well-depth”, “roughness”, etc.) to
select between possible moves. In our evolutionary approach, features and the evaluation function must be
discovered automatically.

Goals: In this second term of funding for the DvD project, we will focus on using evolution to discover logic
circuits that can successfully play Tetris. Under this broader goal, we will focus on three distinct milestones:
Evolution of single-piece placement algorithms, evolution of two-piece placement algorithms, and finally
evolution of head-to-head algorithms.

Single-piece placement algorithms are those that refer only to the current game state and the current piece
in order to determine placement. As a proof-of-concept, we will first focus on evolving a single-piece place-
ment algorithm with a fixed sequence of tetrominos. While it is known that sequences for which no solution is
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possible exist [12], a random piece sequence is unlikely to be unsolvable. Once we have demonstrated that a
fixed sequence can be placed, we will progress to evolving solutions for unknown (random) sequences, to be
followed by both fixed and random sequences for two-piece placement algorithms, where information about
the next piece in the sequence is made available.

Head-to-head placement algorithms are those in which players compete with each other by periodically
passing tetrominos to the opposing player. In this case, players attempt to pass pieces that are “maximally
difficult” for the opponent to place given the state of their own game. The opportunity exists for evolution
to discover remarkably effective strategies for this version of Tetris, and this also provides for a compelling
outreach opportunity. Specifically, a web-enabled version of Tetris in which an evolved solution can compete
against a human player.

Methods: As with our previous study of optical character recognition, here we will again focus on the use of
Markov Networks as well as more standard Artificial Neural Networks to evolve a Tetris-playing algorithm.
Markov Networks comprise a series of probabilistic “fuzzy logic” gates that communicate through binary
state variables. These networks can be of arbitrary size, though in practice tend to be limited to approximately
5,000 gates and 1,000 state variables. Because these networks encode decisions and have internal (hidden)
states, they can be thought of as discrete-time partially observable Markov decision processes (POMDP).
The networks we use have two novel properties: First, their interconnection matrix is evolved via a genetic
algorithm. Second, the discrete-time update function of each gate can change during the lifetime of an agent
via a novel decentralized learning algorithm. This approach, in contrast to others that are commonly used
for Bayesian inference learning, is computationally tractable. This enables us to study both evolution and
learning concurrently. Placed in the context of Tetris, this means that we will not simply be evolving Markov
Networks that are able to play Tetris, but rather, we will be evolving networks that learn to play Tetris.
In order to test whether Markov networks are unique in their ability to evolve complex predictive reasoning
algorithms, we will also evolve state-of-the-art Artificial Neutral Networks to perform the same task. ANNs
have been previously used to solve ACP [6], recently using a version of ANNs with variable topology [8].
Here, we will test whether augmented topologies (that is, the NEAT implementation [13]) can perform as
well (or better) than Markov networks on this task. Using NEAT here is especially interesting because it has
previously been used in a video game setting [14].

Team: The team to tackle this project is unchanged from the first year of funding. Besides the PIs Adami,
Knoester and Hintze, as well as graduate student Chapman, postdoc Joel Lehmann from PI Risto Miikku-
lainen’s lab will spend a summer at MSU in order to code a neural network implementation for this task. This
will allow us to compare the performance of Markov networks with sophisticated Artificial Neural Networks
on dynamical perception and action tasks.

Intellectual Merit: The discovery of an evolved solution to a complex planning task like Tetris is of great
interest to both the evolutionary computation (EC) and artificial intelligence (AI) communities. In EC, a
human-competitive Tetris playing algorithm would demonstrate yet another arena in which evolutionary meth-
ods trump human design. However, evolving a Tetris player presents an even more compelling case in AI:
While reinforcement learning methods have previously been applied to Tetris, the challenge using these tra-
ditional methods is that a payoff (utility) function must be determined in advance. The learning algorithm is
then updated with respect to this payoff function. In this case, however, evolution will have implicitly discov-
ered a payoff function that is tuned specifically for playing Tetris. Considering that high-level planning is one
of the barriers to the discovery of general-purpose machine intelligence, demonstrating that evolution is able
to discover planning algorithms for Tetris may grant insight into how we might produce intelligent machines.

Future Funding: We will submit a proposal to the National Science Foundation to fund this work after the
publication of our first major manuscript describing the performance of the evolved logic circuit to classify
the MNIST images. A manuscript describing preliminary results is being readied for submission to GECCO
2013 [4]. Ultimately, we plan to approach DARPA to fund this work.
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[11] N. Böhm, G. Kókai, and S. Mandl, “An evolutionary approach to Tetris,” in MIC2005: The Sixth Meta-
heuristics International Conference, 2005.

[12] H. Burgiel, “How to lose at tetris,” Mathematical Gazette, p. 194, 1997.

[13] K. O. Stanley and R. Miikkulainen, “Competitive coevolution through evolutionary complexification,”
Journal of Artificial Intelligence Research, vol. 21, pp. 63–100, 2004.

[14] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neuroevolution in the NERO video game,”
IEEE Transactions on Evolutionary Computation, vol. 9, pp. 653–668, 2005.

3


