DNA Cleavage Potency, Cytotoxicity, and Mechanism of Action of a Novel Class of Enediyne Prodrugs

Wei-Min Dai, ${ }^{*}{ }^{\dagger}$ Kwong Wah Lai, ${ }^{\dagger}$ Anxin Wu, ${ }^{\dagger}$ Wataru Hamaguchi, ${ }^{\dagger}$ Mavis Yuk Ha Lee, ${ }^{\dagger}$ Ling Zhou, ${ }^{*}$ Atsushi Ishii, ${ }^{*}$ Sei-ichi Nishimoto ${ }^{\star}$
${ }^{\dagger}$ Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
${ }^{*}$ Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

*E-mail: chdai@ust.hk

Supporting Information:

DNA binding constants K^{\prime} of selected compounds, and spectral, analytical, and LC-MS data

Supporting Information

DNA Binding Constants. The DNA binding constants K^{\prime} of selected compounds were measured in the buffer solution containing 5\% DMSO using Φ X174 RFI DNA according to the reported procedure (Strothkamp, K. G.; Strothkamp, R. E. J. Che. Edu. 1994, 71, 77).

DNA binding constants K^{\prime} (in units of $10^{4} \mathrm{M}^{-1}$):

Ar	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Ph (a)	3.5	6.4	0.8	3.4
1-Naph (b)	5.0	3.6	4.5	5.8
2-Naph (c)	n.d.	1.8	2.3	1.8

General Procedure for Synthesis of Acetates 6.

(E)-3-Acetoxy-4-(1'-naphtylmethylidene)cyclodeca-1,5-diyne (6b).

To a solution of the alcohol $\mathbf{5 b}\left(11.4 \mathrm{mg}, 3.99 \times 10^{-2} \mathrm{mmol}\right)$ and DMAP $(48.7 \mathrm{mg}, 0.40 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added acetic anhydride $(20.3 \mathrm{mg}, 0.20 \mathrm{mmol})$ followed by stirring at room temperature for 2.5 h . The reaction was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 14% EtOAc-hexane) to give 6b ($9.4 \mathrm{mg}, 67 \%$): pale yellow oil; $R_{f}=0.34$ ($14 \% \mathrm{EtOAc}$-hexane); IR (neat) 2934, 2239, 2229, 1740, 1226, $1012 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~d}, J=7.17$ $\mathrm{Hz}, 1 \mathrm{H}$), $8.02(\mathrm{~d}, J=7.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, J=7.74 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H})$, $6.22(\mathrm{~s}, 1 \mathrm{H}), 2.55-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.67(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $171.0,134.2,132.9$ (x 2), 132.2, 129.7, 129.3, 127.0 (x 2), 126.5, 125.9, 124.1, 123.6, 103.3, 93.8, 80.9, 79.4, 69.7, 28.2, 28.1, 22.5, 22.0, 21.4; MS $(+\mathrm{CI}) \mathrm{m} / \mathrm{z}$ (relative intensity) $329\left(\mathrm{M}+\mathrm{H}^{+}, 20\right)$, 269 (100); HRMS (+EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 328.1463$, found 328.1461 .

(E)-3-Acetoxy-4-(phenylmethylidene)cyclodeca-1,5-diyne (6a).

Prepared from 5a in 81% yield. 6a: pale yellow oil; $R_{f}=0.29$ (10% EtOAc-hexane); IR (neat) 2934, 2234, 2210, 1736, 1448, $1226 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.38-$ $7.27(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{t}, \mathrm{J}=1.05 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.71$ (m, 4 H); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,135.4,135.3,128.7,128.7,128.2,120.4,104.0$, 93.0, 80.4, 78.6, 69.2, 27.6, 27.5, 22.0, 21.4, 20.8; MS (+CI) m/z (relative intensity) $279\left(\mathrm{M}+\mathrm{H}^{+}\right.$, 15), 219 (100); HRMS (+EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 278.1307$, found 278.1298.

(E)-3-Acetoxy-4-(2'-naphtylmethylidene)cyclodeca-1,5-diyne (6c).

Prepared from $\mathbf{5 c}$ in 68% yield. $\mathbf{6 c}$: pale yellow oil; $R_{f}=0.52$ (25% EtOAc-hexane); IR (neat) 2934, 2239, 2229, 1740, 1224, $1012 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23-8.19(\mathrm{~m}, 2 \mathrm{H}), 7.85-$ 7.79 (m, 3 H), 7.53-7.43 (m, 2 H), $6.86(\mathrm{~s}, 1 \mathrm{H}), 6.11$ (s, 1 H$), 2.65-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.25(\mathrm{~m}, 2$ $\mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.67(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0$, 136.2, 134.1, 133.9, $133.8,129.6,129.1,128.5,128.3,127.2,126.8,126.4,121.5,104.8,93.7,81.2,79.3,70.0,28.2$, 28.1, 22.6, 22.0, 21.4; MS (+CI) m/z (relative intensity) $329\left(\mathrm{M}+\mathrm{H}^{+}, 23\right), 269$ (100); HRMS (+EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 328.1463$, found 328.1468 .

(()-3-Acetoxy-4-[(4'-methoxyphenyl)methylidene]cyclodeca-1,5-diyne (6d).

Prepared from 5d in 44\% yield. 6d: pale yellow oil; $R_{f}=0.44$ (20% EtOAc-hexane); IR (neat) 2934, 2198, 1738, 1606, 1512, 1232, 1176, $1030 \mathrm{~cm}^{-1} ;{ }^{1}{ }^{H}$ NMR (300 MHz , acetone- d_{6}) $\delta 8.10-8.06$ (AA'BB', 2 H), 7.12-7.07 (AABB', 2 H), 6.86 (s, 1 H), 6.12 ($\mathrm{s}, 1 \mathrm{H}$), 3.98 ($\mathrm{s}, 3 \mathrm{H}$), 2.68-2.36 (m, 4 H), $2.21(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.75(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , acetone- d_{6}) $\delta 169.2,160.0,134.3,130.0$, $128.4,118.4,113.5,103.3,92.2,80.4,78.8,68.6,54.6,27.4,27.3,21.1,20.9,19.9 ;$ MS (+CI) m/z
(relative intensity) $309\left(\mathrm{M}+\mathrm{H}^{+}, 8\right), 249(100)$; $\mathrm{HRMS}(+\mathrm{EI})$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$308.1412, found 308.1405 .

General Procedure for Synthesis of Methoxyacetates 7.

(\boldsymbol{E})-3-Methoxyacetoxy-4-(phenylmethylidene)cyclodeca-1,5-diyne (7a).

To a solution of compound 5a ($50.0 \mathrm{mg}, 0.212 \mathrm{mmol}$), DCC ($87.3 \mathrm{mg}, 0.432 \mathrm{mmol}$) and DMAP ($259.0 \mathrm{mg}, 2.12 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ cooled in an ice-water bath was added methoxyacetic acid ($30.6 \mathrm{mg}, 0.339 \mathrm{mmol}$) followed by stirring at room temperature for 12 h . The reaction mixture was filtered through a short plug of Celite with rinsing by EtOAc. The filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 20\% EtOAc-hexane) to give 7a ($51.6 \mathrm{mg}, 79 \%$): pale yellow oil; $\mathrm{R}_{f}=0.40(20 \% \mathrm{EtOAc}-$ hexane); IR (neat) 2932, 2234, 2210, 1754, 1182, $1124 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89$ (d, $J=7.08 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=0.93 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H})$, $3.45(\mathrm{~s}, 3 \mathrm{H}), 2.60-2.25(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.66(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,136.5$, $136.0,129.5,129.4,129.0,120.9,104.8,94.3,80.9,78.8,70.4,70.3,60.1,28.1,28.0,22.5,21.3$; MS (+CI) m/z (relative intensity) $309\left(\mathrm{M}+\mathrm{H}^{+}, 20\right)$; HRMS (+EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$ 308.1412, found 308.1403.

(E)-3-Methoxyacetoxy-4-(1'-naphtylmethylidene)cyclodeca-1,5-diyne (7b).

Prepared from 5b in 65% yield. 7b: pale yellow oil; $R_{f}=0.38$ (20% EtOAc-hexane); IR (neat) 2932, 2239, 2229, 1756, 1182, $1126 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~d}, J=7.29 \mathrm{~Hz}, 1$ H), $8.14-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{t}, J=1.05 \mathrm{~Hz}, 1$ H), 4.15 and 4.13 (AB q, $J=16.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.48$ (s, 3 H), 2.55-2.20 (m, 4 H), 2.00-1.60 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,134.2,133.4,132.8,132.2,129.8,129.3,127.1,127.0,126.5$, $125.9,124.1,123.3,103.5,94.4,80.8,79.0,70.6,70.2,60.1,28.2,28.1,22.5,21.4 ; \mathrm{MS}(+\mathrm{CI}) \mathrm{m} / \mathrm{z}$ (relative intensity) $359\left(\mathrm{M}+\mathrm{H}^{+}, 4\right), 269(100)$; HRMS (+EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right) 358.1569$, found 358.1574.
(\boldsymbol{E})-3-Methoxyacetoxy-4-(2'-naphtylmethylidene)cyclodeca-1,5-diyne (7c).

Prepared from $5 \mathbf{c}$ in 65% yield. $7 \mathbf{c}$: pale yellow oil; $R_{f}=0.50$ (25% EtOAc-hexane); IR (neat) 2932, 2222, 2212, 1754, 1182, $1124 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25-8.19(\mathrm{~m}, 2 \mathrm{H}), 7.95-$ 7.77 (m, 3 H), 7.57-7.45 (m, 2 H), 6.90 (s, 1 H), 6.23 (s, 1 H), 4.13 (s, 2 H), 3.47 (s, 3 H), 2.68-2.20 (m, 4 H), 2.03-1.67 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3$, 136.7, 134.2, 133.8, 133.7, 129.7, 129.1, 128.5, 128.3, 127.2, 126.9, 126.4, 121.2, 104.9, 94.4, 81.1, 78.9, 76.2, 70.5, 60.1, 28.2, 28.1, 22.6, 21.4; MS (+CI) m/z (relative intensity) $359\left(\mathrm{M}+\mathrm{H}^{+}, 18\right), 269$ (100); HRMS (+EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right) 358.1569$, found 358.1594 .

Formation of Methoxyacetate 7d and Rearrangement to 9d.

3-[1'-Hydroxy-1'-(4"-methoxyphenyl)methyl]cyclodeca-3-en-1,5-diyne (9d).

To a solution of compound $\mathbf{5 d}\left(20.4 \mathrm{mg}, 7.67 \times 10^{-2} \mathrm{mmol}\right)$, DCC ($31.6 \mathrm{mg}, 0.15 \mathrm{mmol}$), and DMAP ($93.6 \mathrm{mg}, 0.77 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ cooled in an ice-water bath was added methoxyacetic acid ($11.1 \mathrm{mg}, 0.12 \mathrm{mmol}$) followed by stirring at room temperature for 6 h . The reaction mixture was filtered through a short plug of Celite with rinsing by EtOAc. The filtrate was concentrated under reduced pressure to give the crude product of $\mathbf{7 d}$, which was converted, during flash column chromatographic purification over silica gel, into 9d (8.8 mg) in 43% yield calculated from 5d. 9d: pale yellow oil; $R_{f}=0.37$ (20\% EtOAc-hexane); IR (neat) 3426 (br), 2934, 2194, 1610, 1512, 1248, 1174, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.32$ (AA'BB', 2 H), 6.926.87 (AA'BB', 2 H), $5.88(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~d}, \mathrm{~J}=$ $3.66 \mathrm{~Hz}, 1 \mathrm{H}$), 1.94-1.85 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,142.4,134.2,128.7,118.5$, $114.6,106.5,103.4,83.5,81.9,75.1,56.0,29.5,29.3,22.5,22.4 ;$ MS (+CI) m / z (relative intensity) $267\left(\mathrm{M}+\mathrm{H}^{+}, 58\right), 249(100) ;$ HRMS (+EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$266.1307, found 266.1300.

General Procedure for $\mathbf{E u}(\mathbf{f o d})_{3}$-Catalyzed Allylic Rearrangement. 3-[(1'-Methoxyacetoxy-1'-phenyl)methyl]cyclodeca-3-en-1,5-diyne (8a).

To a solution of $\mathbf{7 a}\left(64.0 \mathrm{mg}, 2.08 \times 10^{-1} \mathrm{mmol}\right)$ in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ was added $\mathrm{Eu}(\mathrm{fod})_{3}(21.5$ $\mathrm{mg}, 2.08 \times 10^{-2} \mathrm{mmol}$) followed by stirring at room temperature for 48 h . The reaction mixture was then concentrated under reduced pressure and the residue was purified by flash column chromatography (silica gel, 20\% EtOAc-hexane) to give $\mathbf{8 a}$ ($50.6 \mathrm{mg}, 79 \%$): colorless oil; $\mathrm{R}_{f}=0.43$ (20% EtOAc-hexane); IR (neat) 2932, 2194, 1758, 1182, $1126 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.42-7.29 (m, 5 H), $6.39(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.15$ and $4.07(\mathrm{AB} \mathrm{q}, J=16.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3$ H), 2.40-2.32 (m, 4 H), 1.93-1.83 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,138.0$, 137.8, 129.2, 128.0, 120.7, 106.4, 104.5, 83.1, 81.6, 77.9, 76.1, 70.5, 60.1, 29.4, 29.2, 22.4, 22.3; MS $(+\mathrm{CI}) m / z$ (relative intensity) $326\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 10\right), 219(100) ;$ HRMS (+EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$ 308.1412 , found 308.1428 .

3-[(1'-Methoxyacetoxy-1'-(1"-naphthyl))methyl]cyclodeca-3-en-1,5-diyne (8b).

Prepared from 7b in 59% yield. 8b: pale yellow oil; $R_{f}=0.35$ (14% EtOAc-hexane); IR (neat) 2932, 2194, 1758, 1182, $1126 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07$ (d, $J=8.01 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88$7.81(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 4.19$ and $4.09(\mathrm{AB} \mathrm{q}, J=16.47 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 2.343-2.30(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,137.7,134.5,133.5,131.3,130.1,129.5,127.3,126.6,126.5,125.9$, $124.2,121.3,106.4,104.8,83.2,81.9,73.2,70.5,60.1,29.4,29.2,22.4,22.4 ; \mathrm{MS}(+\mathrm{CI}) \mathrm{m} / \mathrm{z}$ (relative intensity) $359\left(\mathrm{M}+\mathrm{H}^{+}, 7\right), 271(100)$; HRMS (+EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right) 358.1569$, found 358.1614.

3-[(1'-Methoxyacetoxy-1'-(2'-naphthyl))methyl]cyclodeca-3-en-1,5-diyne (8c).

Prepared from 7c in 79% yield. 8c: pale yellow oil; $R_{f}=0.33$ (20% EtOAc-hexane); IR (neat) 2932, 2194, 1760, 1184, $1124 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.80(\mathrm{~m}, 4 \mathrm{H}$), 7.53-7.46 $(\mathrm{m}, 3 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 4.19$ and $4.10(\mathrm{AB} \mathrm{q}, J=16.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 2.42-$ $2.38(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.83(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,137.8,135.4,134.0,133.8$, 129.1, 128.9, 128.4, 127.4, 127.1, 127.0, 125.5, 120.8, 106.6, 104.6, 83.1, 81.6, 76.3, 70.5, 60.2, 29.4, 29.2, 22.5, 22.4; MS (+CI) m/z (relative intensity) 359 ($\mathrm{M}+\mathrm{H}^{+}, 36$), 269 (100); HRMS (+EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right) 358.1569$, found 358.1591 .

Hydrolysis of Ester 8a.

3-[(1'-Hydroxy-1'-phenyl)methyl]cyclodeca-3-en-1,5-diyne (9a).

To a solution of $\mathbf{8 a}(387.8 \mathrm{mg}, 1.26 \mathrm{mmol})$ in $\mathrm{MeOH}(60 \mathrm{~mL})$ cooled in an ice-water bath (ca. 0 $\left.{ }^{\circ} \mathrm{C}\right)$ was added a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(350.0 \mathrm{mg}, 2.53 \mathrm{mmol})$ in water $(60 \mathrm{~mL})$ followed by stirring at the same temperature for 30 min . The reaction was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(50 \mathrm{~mL})$ and extracted with EtOAc ($100 \times 3 \mathrm{~mL}$). The combined organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, 20\% EtOAc-hexane) to give 9a ($250.0 \mathrm{mg}, 84 \%$): pale yellow oil; $\mathrm{R}_{f}=0.20$ (10% EtOAc-hexane); IR (neat) 3412, 2931, 2859, 2195, 1045; ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.44-7.27 (m, 5 H), $5.89(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 4 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 1.92-$ $1.88(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.5,141.2,128.5,128.1,126.6,118.0,106.0,102.8$, 82.7, 81.1, 74.7, 28.8, 28.6, 21.8, 21.7; MS (+CI) m / z (relative intensity) $237\left(\mathrm{M}+\mathrm{H}^{+}, 10\right), 219\left(\mathrm{M}^{+}\right.$ -OH, 12), 154 (100).

Cycloaromatization of 9a.

2-[(1'-Hydroxy-1'-phenyl)methyl]-5,6,7,8-tetrahydronaphthalene (10).

A solution of $9 \mathrm{a}(27.7 \mathrm{mg}, 0.117 \mathrm{mmol})$ in degassed 1,4-cyclohexadiene and toluene ($1: 5,3.0 \mathrm{~mL}$) was heated at $90{ }^{\circ} \mathrm{C}$ for 3 h under nitrogen atmosphere. After cooling to room temperature, the
solvent was removed in vacuo. The residue was then purified by preparative TLC (silica gel, 10% EtOAc-hexane) to give $\mathbf{1 0}$ ($23.8 \mathrm{mg}, 85 \%$): pale yellow oil; $\mathrm{R}_{f}=0.33$ (10% EtOAc-hexane); IR (neat) $3369,2928,1035,1022 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.09-7.02$ (m, 3 H), $5.78(\mathrm{~s}, 1 \mathrm{H}), 2.77-2.73(\mathrm{~m}, 4 \mathrm{H}), 2.19(\mathrm{~s}, 1 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 143.9,141.0,137.3,136.6,129.3,128.4,127.4,127.2,126.4,123.7,76.2,29.4,29.1$, 23.1, 23.1; MS (+CI) m/z (relative intensity) $238\left(\mathrm{M}^{+}, 26\right), 221\left(\mathrm{M}^{+}-\mathrm{OH}, 100\right)$.

Reaction of 9a with TEMPO.

2-[(1'-Hydroxy-1'-phenyl)methyl]-5,6,7,8-tetrahydro-1,4-naphthoquinone (11).

11
A solution of enediyne $\mathbf{9 a}(79.4 \mathrm{mg}, 0.336 \mathrm{mmol})$ and $2,2,6,6$-tetramethylpiperidinooxy [TEMPO] $(262.6 \mathrm{mg}, 1.68 \mathrm{mmol})$ in benzene (7 mL) was heated under reflux for 6 h . After cooling to room temperature the solvent was removed in vacuo and the residue was purified by flash column chromatography (silica gel, 20\% EtOAc-hexane) to give 11 ($37.9 \mathrm{mg}, 42 \%$): brown oil; $\mathrm{R}_{f}=0.26$ (20\% EtOAc-hexane); IR (neat) 3501, 3063, 3033, 2938, 2863, 1645, 1632, 1455, 1428, 1337, 1299 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{~d}, J=1.20 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H})$, 3.06 (s, 1 H), 2.38-2.32 (m, 4 H), 1.66-1.64 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 187.8$, 187.3, $148.4,142.4,142.4,140.3,130.9,128.6,128.2,126.8,70.5,22.3,22.3,20.9,20.8 ; \mathrm{MS}(+\mathrm{CI}) \mathrm{m} / \mathrm{z}$ (relative intensity) $269\left(\mathrm{M}+\mathrm{H}^{+}, 21\right), 251\left(\mathrm{M}^{+}-\mathrm{OH}, 100\right)$.

LC-MS Analysis Conditions. A reverse-phase LiChrospher RP-select B column was used in all LC-MS analyses eluted with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (50:50 containing 0.1% acetic acid) at $1 \mathrm{~mL} / \mathrm{min}$. UV detection at 230 nm was used.

LC-MS Data for Authentic Compounds 5a, 6a, 9a, 10, and 11.

Compound 5a:

Compound 6a:

Compound 9a:

Compound 10:

Compound 11:

Note: The mass spectrum of quinone $\mathbf{1 1}$ obtained using + CI condition clearly shows the $\mathrm{M}^{+}+1(\mathrm{~m} / \mathrm{z}$ 269) and $\mathrm{M}^{+}-\mathrm{OH}$ (251) peaks (see next page). The HPLC chromatogram of $\mathbf{1 1}$ illustrated above confirms it in good purity. However, we could not obtain satisfactory result in the LC-MS analysis. We have tried LC-MS analyses of $\mathbf{1 1}$ under different conditions and always observed the base peak having m / z of 422 . The source of this ion is not clear.

Formation of Enediyne 9a from 6a in Buffer Solution Monitored by LC-MS Analysis.

Acetate $\mathbf{6 a}\left(21.4 \mathrm{mg}, 76.9 \times 10^{-3} \mathrm{mmol}\right.$) was incubated in pH 8.5 TEA buffer (5 mL) containing 20% DMSO at $37^{\circ} \mathrm{C}$. Aliquot of the reaction mixture $(1 \mathrm{~mL})$ was drawn at 48 h and extracted with EtOAc ($1 \times 3 \mathrm{~mL}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to give the crude reaction mixture. The latter was dissolved in acetonitrile (1 mL) and analyzed by LC-MS using a reverse-phase LiChrospher RPselect B column. The sample was eluted with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ ($50: 50$ containing 0.1% acetic acid) at 1 $\mathrm{mL} / \mathrm{min}$ and detected by UV at 230 nm . The LC-MS data are presented as follows. The peaks corresponding to compounds $\mathbf{5 a}, \mathbf{6 a}, \mathbf{9 a}$, and $\mathbf{1 0}$ are identified according to the retention times and mass spectra in comparison with those of the authentic samples given above. [Note: Because the UV absorption profiles are different, the peak areas for compounds 5a, 6a, 9a, and $\mathbf{1 0}$ are not directly proportional to their actual concentrations in the sample. TEA $=$ Tris(hydroxymethyl)-aminomethane-EDTA-Acetic acid]

LC-MS Data of the Crude Reaction Mixture of $\mathbf{6 a}$.

Compound 14 from the Reaction Mixture:

Compound 9a from the Reaction Mixture:

Compound 5a from the Reaction Mixture:

ch00056\#1102-1130 RT: 11.91-12.21 AV: $29 \mathrm{NL}:$ 6.98E6
$\mathrm{T}:+\mathrm{c}$ ESI Full ms [$100.00-600.00$]

1001150

8.92

Exact Mass: 219.12

Exact Mass: 236.12

539.14

Compound 10 from the Reaction Mixture:

Compound 6a from the Reaction Mixture:

