J. Med. Chem., 1998, 41(23), 4587-4598, DOI:10.1021/jm980330i

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

Physical Data of 9b-d, 10b,d, 11b-c, 12b-d, 13c-e, 14b-e, 19, 22a,b, 23a,b, 27-29a, 31-33, 36-38, 42, 43, 45, 48-51a, and 53a-55a.

8-[(2,6-Dimethoxy-3-nitrobenzyl)oxy]-2-methylquinoline (9b). Using a similar procedure to that used for $\mathbf{9 a}$, the title compound was obtained in 90.3% yield from 7b and 8 as yellow crystals after crystallization from MeOH : mp $194-196{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.68(3 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}, \mathrm{s}), 4.08(3 \mathrm{H}, \mathrm{s}), 5.40(2 \mathrm{H}, \mathrm{s}), 6.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8 \mathrm{~Hz}), 7.22-7.31(2 \mathrm{H}, \mathrm{m}), 7.37-7.46(2 \mathrm{H}, \mathrm{m}), 8.00(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.09(1 \mathrm{H}, \mathrm{d}, J$ $=8 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[(2-Chloro-5-nitrobenzyl)oxy]-2-methylquinoline (9c). Using a similar procedure to that used for $\mathbf{9 a}$, the title compound was obtained in 83.9% yield from $\mathbf{7 c}$ and 8 as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}$) $\delta 2.69(3 \mathrm{H}, \mathrm{s}), 5.48(2 \mathrm{H}$, s), $7.32(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.43(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}), 7.83(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.22(2 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}), 8.77(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Methyl-8-[(2-methyl-3-nitrobenzyl)oxy]quinoline (9d). Using a similar procedure to that used for $\mathbf{9 a}$, the title compound was obtained in 91.7% yield from $\mathbf{7 d}$ and $\mathbf{8}$ as pale yellow crystals after crystallization from $\mathrm{MeOH}: m p 186-188^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.56(3 \mathrm{H}, \mathrm{s}), 2.80(3 \mathrm{H}, \mathrm{s}), 5.48(2 \mathrm{H}, \mathrm{s}), 7.00(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.28-7.44$ $(4 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.82(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}$ (ESI) $m / z 309(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[(3-Amino-2,6-dimethoxybenzyl)oxy]-2-methylquinoline (10b). Using a similar procedure to that used for 10a, the title compound was obtained in 63.6% yield from 9b as pale brown crystals after crystallization from $\mathrm{MeOH}: \mathrm{mp} 208-210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 2.27(3 \mathrm{H}, \mathrm{s}), 2.37(3 \mathrm{H}, \mathrm{s}), 2.72(3 \mathrm{H}, \mathrm{s}), 3.57(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.32(2 \mathrm{H}$, s), $6.67(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.18-7.31(2 \mathrm{H}, \mathrm{m}), 7.36-7.42(2 \mathrm{H}$, m), $8.00(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 325(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[(3-Amino-2-methylbenzyl)oxy]-2-methylquinoline (10d). Using a similar procedure to that used for $\mathbf{1 0} \mathbf{c}$, the title compound was obtained in 62.1% yield
from $9 \mathbf{d}$ as pale brown crystals after crystallization from $\mathrm{MeCN}: \operatorname{mp} 223-227^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.23(3 \mathrm{H}, \mathrm{s}), 2.79(3 \mathrm{H}, \mathrm{s}), 3.66(2 \mathrm{H}, \mathrm{br} s), 5.41(2 \mathrm{H}, \mathrm{s}), 6.68(1 \mathrm{H}, \mathrm{br}$ $\mathrm{d}, J=8 \mathrm{~Hz}), 6.92-7.05(3 \mathrm{H}, \mathrm{m}), 7.24-7.38(3 \mathrm{H}, \mathrm{m}), 8.00(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ;$ MS (ESI) $m / z 279(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2,6-Dimethoxy-3-(N-phthalimidoacetyl)aminobenzyl]oxy]-2-

 methylquinoline (11b). Using a similar procedure to that used for 11a, the title compound was obtained in 93.4% yield from $\mathbf{1 0 b}$ and N-phthaloylglycyl chloride as pale pink crystals after crystallization from acetone: mp $229-231{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.70$ $(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.94(3 \mathrm{H}, \mathrm{s}), 4.55(2 \mathrm{H}, \mathrm{s}), 5.36(2 \mathrm{H}, \mathrm{s}), 6.66(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$, 7.22-7.30 (2H, m), 7.32-7.42 (2H, m), 7.71-7.79 (2H, m), 7.86-7.92 (2H, m), 7.99 $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.19(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) m / z 512(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.8-[[2-Chloro-5-(N-phthalimidoacetyl)aminobenzyl]oxy]-2methylquinoline (11c). Using a similar procedure to that used for 11a, the title compound was obtained from 10 c and N -phthaloylglycyl chloride as colorless solid, which was directly used to the next step without further purification.

2-Methyl-8-[[2-methyl-3-(N -
phthalimidoacetyl)aminobenzyl]oxy]quinoline (11d). Using a similar procedure to that used for $\mathbf{1 1 a}$, the title compound was obtained in 80.6% yield from 10 d and N -phthaloylglycyl chloride as pale yellow crystals after crystallization from acetone: mp 283-285 ${ }^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right) \delta 2.27(3 \mathrm{H}, \mathrm{s}), 2.65(3 \mathrm{H}, \mathrm{s}), 4.48(2 \mathrm{H}$, s), $5.30(2 \mathrm{H}, \mathrm{s}), 7.20(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 7.26-7.34(4 \mathrm{H}, \mathrm{m}), 7.85-7.98(4 \mathrm{H}, \mathrm{m}), 8.20$ $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 9.85(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; MS (ESI) $\mathrm{m} / \mathrm{z} 466(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{C}$, H, N.

8-[[2,6-Dimethoxy-3-(N-methyl- N -

phthalimidoacetyl)aminobenzyl]oxy]-2-methylquinoline (12b). Following a similar procedure to method A , the title compound was obtained in 93.4% yield from $\mathbf{1 1 b}$ and methyl iodide as colorless crystals after crystallization from MeCN: mp 184-185 ${ }^{\circ} \mathrm{C}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.70(3 \mathrm{H}, \mathrm{s}), 3.29(3 \mathrm{H}, \mathrm{s}), 3.90(3 \mathrm{H}, \mathrm{s}), 4.01(3 \mathrm{H}, \mathrm{s}), 4.22(1 \mathrm{H}$, $\mathrm{d}, J=17 \mathrm{~Hz}), 4.32(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 5.44(2 \mathrm{H}, \mathrm{s}), 6.79(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.24-7.44$ $(5 \mathrm{H}, \mathrm{m}), 7.69-7.75(2 \mathrm{H}, \mathrm{m}), 7.81-7.89(2 \mathrm{H}, \mathrm{m}), 8.00(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ $526(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2-Chloro-5-(N-methyl- N-phthalimidoacetyl)aminobenzyl]oxy]-2methylquinoline (12c). Following a similar procedure to method A, the title compound was obtained in 14.8% yield from 11c and methyl iodide as colorless crystals after crystallization from diethyl ether: $m p 120-124^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- $\left.d_{6}\right) \delta 2.67$ $(3 \mathrm{H}, \mathrm{s}), 3.18(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.06(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.42(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.29(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$, 7.414-7.96 (10H, m), $8.19(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Methyl-8-[[2-methyl-3-(N-methyl- N phthalimidoacetyl)aminobenzyl]oxy]quinoline (12d). Following a similar procedure to method A , the title compound was obtained in 62.3% yield from 11 d and methyl iodide as pale brown crystals after crystallization from AcOEt: mp $158-161^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.47(3 \mathrm{H}, \mathrm{s}), 2.80(3 \mathrm{H}, \mathrm{s}), 3.26(3 \mathrm{H}, \mathrm{s}), 3.92(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz})$, $4.19(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 5.46(2 \mathrm{H}, \mathrm{s}), 7.06(1 \mathrm{H}, \mathrm{brd}, J=8 \mathrm{~Hz}), 7.23-7.42(5 \mathrm{H}, \mathrm{m})$, 7.65-7.75 (3H, m), 7.81-7.89(2H, m), $8.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 480(\mathrm{M}+$ 1). Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[5-(N-Aminoacetyl- N-methylamino)-2-chlorobenzyl]oxy]-2-

 methylquinoline (13c). Using a similar procedure to that used for $\mathbf{1 3 b}$, the title compound was obtained in 90.7% yield from 12 c as colorless crystals after crystallization from diethyl ether: $\mathrm{mp} 82-87^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.83(3 \mathrm{H}, \mathrm{s}), 2.94$ $(2 \mathrm{H}, \mathrm{s}), 3.19(3 \mathrm{H}, \mathrm{s}), 5.53(2 \mathrm{H}, \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{brd}, J=8 \mathrm{~Hz})$, $7.30-7.44(3 \mathrm{H}, \mathrm{m}), 7.46(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz}), 8.05(1 \mathrm{H}, \mathrm{d}, J=8$ Hz). Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
8-[[3-(N-Aminoacetyl- N-methylamino)-2-methylbenzyl]oxy]-2-

 methylquinoline (13d). Using a similar procedure to that used for 13b, the title compound was obtained in 88.4% yield from $\mathbf{1 2 d}$ as a colorless amorphous solid: ${ }^{1} \mathrm{H}$NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.29(3 \mathrm{H}, \mathrm{s}), 2.80(3 \mathrm{H}, \mathrm{s}), 2.90(1 \mathrm{H}, \mathrm{d}, J=17 \mathrm{~Hz}), 3.13(1 \mathrm{H}, \mathrm{d}, J=$ $17 \mathrm{~Hz}), 3.24(3 \mathrm{H}, \mathrm{s}), 5.40(2 \mathrm{H}, \mathrm{s}), 7.01(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8 \mathrm{~Hz}), 7.09(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8 \mathrm{~Hz})$, $7.21-7.43(4 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8 \mathrm{~Hz}), 8.03(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ $350(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[3-(N-Aminoacetyl)amino-2,6-dichlorobenzyl]oxy]-2-

methylquinoline (13e). Using a similar procedure to that used for $\mathbf{1 3 b}$, the title compound was obtained in 87.7% yield from 11 a as a pale brown amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.73(3 \mathrm{H}, \mathrm{s}), 3.52(2 \mathrm{H}, \mathrm{s}), 5.62(2 \mathrm{H}, \mathrm{s}), 7.20-7.45(5 \mathrm{H}, \mathrm{m}), 8.01$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.51(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2,6-Dimethoxy-3-[N-methyl- N-[(E)-4-(N -methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2methylquinoline (14b). Following a similar procedure to method B, the title compound was obtained in 85.7% yield from 13b and $(E)-4-(N-$ methylcarbamoyl)cinnamic acid ${ }^{22}$ as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $2.26(3 \mathrm{H}, \mathrm{s}), 2.99(3 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 3.32(3 \mathrm{H}, \mathrm{s}), 3.82-3.92(7 \mathrm{H}, \mathrm{m}), 3.98(1 \mathrm{H}, \mathrm{dd}, J$ $=17,5 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 5.47(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 6.28(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5$ $\mathrm{Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 6.70(1 \mathrm{H}$, br $\mathrm{t}, J=5 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.19$ $(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.22-7.59(7 \mathrm{H}, \mathrm{m}), 7.74(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$; MS (ESI) $m / z 583(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2-Chloro-5-[N-methyl- N - [(E)-4-(N -methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-
methylquinoline (14c). Following a similar procedure to method B, the title compound was obtained in 79.7% yield from 13 c and $(E)-4-(N-$ methylcarbamoyl)cinnamic acid ${ }^{22}$ as colorless crystals after crystallization from AcOEt: mp 223-227 ${ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.79(3 \mathrm{H}, \mathrm{s}), 3.00(3 \mathrm{H}, \mathrm{s}), 3.24(3 \mathrm{H}, \mathrm{s})$, $3.76(2 \mathrm{H}, \mathrm{s}), 5.52(2 \mathrm{H}, \mathrm{s}), 6.52(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 7.03(1 \mathrm{H}, \mathrm{dd}, J=8,1 . \mathrm{Hz}), 7.19$ $(1 \mathrm{H}, \mathrm{dd}, J=8,1 \mathrm{~Hz}), 7.33-7.44(3 \mathrm{H}, \mathrm{m}), 7.49-7.60(4 \mathrm{H}, \mathrm{m}), 7.68(1 \mathrm{H}, \mathrm{d}, J=1 \mathrm{~Hz})$,
$7.76(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 557(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{ClN}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Methyl-8-[[2-methyl-3-[N-methyl- N - [(E)-4-(N -

 methylcarbamoyl)cinnamidoacetyl]amino]benzyl]oxy]quinoline (14d).Following a similar procedure to method B, the title compound was obtained in 93.0% yield from 13 d and (E)-4-(N-methylcarbamoyl)cinnamic acid ${ }^{22}$ as a colorless amorphous solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.32(3 \mathrm{H}, \mathrm{s}), 2.79(3 \mathrm{H}, \mathrm{s}), 3.02(3 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 3.28(3 \mathrm{H}$, s), $3.67(1 \mathrm{H}, \mathrm{dd}, J=17,5 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{dd}, J=17,4 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz})$, $5.46(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 6.18(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 6.70(1 \mathrm{H}$, br s), $7.06(1 \mathrm{H}, \mathrm{dd}, J=8,3 \mathrm{~Hz}), 7.12(1 \mathrm{H}$, br d, $J=8 \mathrm{~Hz}), 7.24-7.43(4 \mathrm{H}, \mathrm{m}), 7.50-$ $7.66(4 \mathrm{H}, \mathrm{m}), 7.75(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 537(\mathrm{M}+$ 1). Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[3-[N-[(E)-3-(6-Acetamidopyridin-3-yl)acryloylglycyl]amino]-2,6-dichloro-benzyl]oxy]-2-methylquinoline (14e). Following a similar procedure to method B , the title compound was obtained in 15.8% yield from 13 e and (E)-3-(6-acetamidopyridin-3-yl)acrylic acid ${ }^{22}$ as colorless crystals after crystallization from AcOEt: mp 274-279 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 2.11(3 \mathrm{H}, \mathrm{s}), 2.60(3 \mathrm{H}, \mathrm{s}), 4.14(2 \mathrm{H}, \mathrm{d}, J=5.5$ $\mathrm{Hz}), 5.47(2 \mathrm{H}, \mathrm{s}), 6.76(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.34-7.57(5 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz})$, $7.92(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 8.00(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 8.11(1 \mathrm{H}, \mathrm{d}, J=9 \mathrm{~Hz}), 8.20(1 \mathrm{H}, \mathrm{d}, J=$ $9 \mathrm{~Hz}), 8.45-8.60(2 \mathrm{H}, \mathrm{m}), 9.80(1 \mathrm{H}, \mathrm{s}), 10.67(1 \mathrm{H}, \mathrm{s}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 578(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2,6-Dichloro-3-(2,5-dioxolanyl)benzyl]oxy]-2-methylquinoline

 (19). Using a similar procedure to that used for $9 \mathbf{a}$, the title compound was obtained in 73.0% yield from 8 and $\mathbf{1 8}$ as colorless crystals after crystallization from AcOEt: mp $156-158{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.74(3 \mathrm{H}, \mathrm{s}), 4.02-4.18(4 \mathrm{H}, \mathrm{m}), 5.64(2 \mathrm{H}, \mathrm{s}), 6.17$ $(1 \mathrm{H}, \mathrm{s}), 7.21-7.45(5 \mathrm{H}, \mathrm{m}), 7.59(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.00(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI})$ $m / z 390(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
8-[[3-[(Z)-3-Aminopropenyl]-2,6-dichlorobenzyl]oxy]-2-

 methylquinoline (22a). Using a similar procedure to that used for 13b, the title compound was obtained in 89.1% yield from 21a as a pale yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.73(3 \mathrm{H}, \mathrm{s}), 3.46(2 \mathrm{H}, \mathrm{d}, J=7 \mathrm{~Hz}), 5.61(2 \mathrm{H}, \mathrm{s}), 5.92(1 \mathrm{H}, \mathrm{dt}, J=$ $10,7 \mathrm{~Hz}), 6.57(1 \mathrm{H}$, br d, $J=10 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.24-7.47(5 \mathrm{H}, \mathrm{m}), 8.02$ ($1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}$); MS (ESI) $m / z 373(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.8-[[3-[(E)-3-Aminopropenyl]-2,6-dichlorobenzyl]oxy]-2methylquinoline (22b). Using a similar procedure to that used for $\mathbf{1 3 b}$, the title compound was obtained in 82.6% yield from 21 b as a pale yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.74(3 \mathrm{H}, \mathrm{s}), 3.53(2 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 5.63(2 \mathrm{H}, \mathrm{s}), 6.29(1 \mathrm{H}, \mathrm{dt}, J=$ $15,5 \mathrm{~Hz}), 6.90(1 \mathrm{H}$, br d, $J=15 \mathrm{~Hz}), 7.23-7.48(6 \mathrm{H}, \mathrm{m}), 8.00(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}$ (ESI) $m / z 373(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2,6-Dichloro-3-[(Z)-3-[(E)-4-(N-methylcarbamoyl)cinnamido]propenyl]benzyl]oxy]-2-methylquinoline (23a). Following a similar procedure to method B, the title compound was obtained in 91.5% yield from 22a and (E)-4-(N-methylcarbamoyl)cinnamic acid ${ }^{22}$ as colorless crystals after crystallization from MeCN : mp 194-196 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $2.62(3 \mathrm{H}, \mathrm{s}), 2.95(3 \mathrm{H}, \mathrm{brd}, J=5 \mathrm{~Hz}), 4.05(2 \mathrm{H}$, br d, $J=7 \mathrm{~Hz}), 5.53(2 \mathrm{H}, \mathrm{s}), 5.96$ $(1 \mathrm{H}, \mathrm{dt}, J=10,7 \mathrm{~Hz}), 6.52(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10 \mathrm{~Hz}), 6.96(1 \mathrm{H}$, br s), $7.19-7.32(4 \mathrm{H}, \mathrm{m}), 7.41-7.50(3 \mathrm{H}, \mathrm{m}), 7.54(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 7.68(2 \mathrm{H}, \mathrm{d}, J$ $=8 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) m / z 560(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}\right) \mathrm{C}$, H, N.

8-[[2,6-Dichloro-3-[(E)-3-[(E)-4-(N-
methylcarbamoyl)cinnamido]propenyl]benzyl]oxy]-2-methylquinoline (23b). Following a similar procedure to method B, the title compound was obtained in 52.4% yield from 22b and (E)-4-(N-methylcarbamoyl)cinnamic acid ${ }^{22}$ as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.65(3 \mathrm{H}$, br s), $2.94(3 \mathrm{H}$, br d, $J=5$ $\mathrm{Hz}), 4.15(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J=6 \mathrm{~Hz}), 5.52(2 \mathrm{H}, \mathrm{s}), 6.20(1 \mathrm{H}, \mathrm{m}), 6.61(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz})$,
$6.90(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=15 \mathrm{~Hz}), 7.21-7.38(2 \mathrm{H}, \mathrm{m}), 7.40-7.49(3 \mathrm{H}, \mathrm{m}), 7.51-7.66(4 \mathrm{H}$, m), $7.79(2 \mathrm{H}, \mathrm{brd}, J=8 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) m / z 560(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[3-(2-Cyanophenyl)-2,6-dimethylbenzyl]oxy]-2-methylquinoline (27). Following a similar procedure to that used for $9 \mathbf{a}$, the title compound was obtained in 89.9% yield from 8 and 26 as a colorless amorphous solid: ${ }^{1} H$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.33(3 \mathrm{H}, \mathrm{s}), 2.55(3 \mathrm{H}, \mathrm{s}), 2.73(3 \mathrm{H}, \mathrm{s}), 5.40(1 \mathrm{H}, \mathrm{d}, J=12 \mathrm{~Hz}), 5.46(1 \mathrm{H}$, d, $J=12 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.23-7.48(6 \mathrm{H}, \mathrm{m}), 7.63$ $(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.02(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 379(\mathrm{M}$ $+1)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[3-(2-Aminomethylphenyl)-2,6-dimethylbenzyl]oxy]-2-

methylquinoline (28). Following a similar procedure to that used for $\mathbf{4 0}$, the title compound was obtained in 50.4% yield from 27 as a brown oil, , which was used for the next step without further purification.

8-[[2,6-Dimethyl-3-[2-[(E)-4-(N-
methylcarbamoyl)cinnamamide]phenyl]benzyl]oxy]-2-methylquinoline (29a). Following a similar procedure to method B, the title compound was obtained in 15.3\% yield from 28 and (E)-4-(N-methylcarbamoyl)cinnamic acid ${ }^{22}$ as a pale yellow amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.10(3 \mathrm{H}, \mathrm{s}), 2.20(3 \mathrm{H}, \mathrm{s}), 2.55(3 \mathrm{H}, \mathrm{s}), 3.00$ $(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 4.29(1 \mathrm{H}, \mathrm{dd}, J=16,6 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{dd}, J=16,6 \mathrm{~Hz}), 5.30(2 \mathrm{H}$, s), $6.45(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.55(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.88-7.78(6 \mathrm{H}, \mathrm{m}), 8.23(1 \mathrm{H}, \mathrm{d}, J=8$ $\mathrm{Hz})$; MS (ESI) $m / z 570(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1-(tert-Butyldiphenylsiloxymethyl)-2,6-dimethyl-3-[3-[(E)-4-(Nmethylcarbamoyl)cinnamamido]phenyl]benzene (31). Following a similar procedure to method B , the title compound was obtained in 81.6% yield from 30 and (E) -4-(N-methylcarbamoyl)cinnamic acid ${ }^{22}$ as pale yellow crystals after crystallization from MeCN: mp $245-247{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}\right) \delta 1.01(9 \mathrm{H}, \mathrm{s}), 2.12(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}$, s), $2.79(3 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.79(2 \mathrm{H}, \mathrm{s}), 6.88-6.98(2 \mathrm{H}, \mathrm{m}), 7.01-7.11(2 \mathrm{H}, \mathrm{m}), 7.30-$
$7.52(7 \mathrm{H}, \mathrm{m}), 7.59-7.75(11 \mathrm{H}, \mathrm{m}), 7.90(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.51(1 \mathrm{H}$, br d, $J=5 \mathrm{~Hz})$; MS (ESI) $m / z 653(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2,6-Dimethyl-1-hydroxymethyl-3-[3-[(E)-4-(Nmethylcarbamoyl)cinnamamido]phenyl]benzene (32). Following a similar procedure to the preparation of 26 , the title compound was obtained in 86.3% yield from 31 as colorless crystals after crystallization from AcOEt: mp $272-277{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-d_{6}\right) \delta 2.28(3 \mathrm{H}, \mathrm{s}), 2.40(3 \mathrm{H}, \mathrm{s}), 2.80(3 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.57(2 \mathrm{H}, \mathrm{d}, J=6$ $\mathrm{Hz}), 4.78(1 \mathrm{H}, \mathrm{t}, J=6 \mathrm{~Hz}), 6.87-7.10(4 \mathrm{H}, \mathrm{m}), 7.38(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 7.57-7.74(5 \mathrm{H}$, m), $7.89(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.50(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 415(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1-(tert-Butyldiphenylsiloxymethyl)-2,6-dimethyl-3-(2-cyanothiophen-3yl)benzene (34). Following a similar procedure to the preparation of 25 , the title compound was obtained in 29.0% yield from 24 and 3-bromo-2-cyanothiophene as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.04(9 \mathrm{H}, \mathrm{s}), 2.13(3 \mathrm{H}, \mathrm{s}), 2.25(3 \mathrm{H}, \mathrm{s}), 4.76(2 \mathrm{H}$, s), $7.00-7.08(2 H, m), 7.13(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.32-7.48(6 \mathrm{H}, \mathrm{m}), 7.56(1 \mathrm{H}, \mathrm{d}, J=6$ $\mathrm{Hz}), 7.69(4 \mathrm{H}, \mathrm{brd}$, $J=8 \mathrm{~Hz})$; MS (ESI) $m / z 482(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NOSSi}\right) \mathrm{C}$, H, N.

1-(tert-Butyldiphenylsiloxymethyl)-2,6-dimethyl-3-[2-[(E)-4-(N-methylcarbamoyl)cinnamamidomethyl]thiophen-3-yl]benzene (36).

Following a similar procedure to method B , the title compound was obtained in 82.0% yield from 35 and (E)-4-(N-methylcarbamoyl)cinnamic acid ${ }^{22}$ as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.05(9 \mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}), 3.02(3 \mathrm{H}, \mathrm{d}, J=6$ $\mathrm{Hz}), 4.49(2 \mathrm{H}, \mathrm{br}$ s $), 4.77(2 \mathrm{H}, \mathrm{s}), 6.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.35(1 \mathrm{H}, \mathrm{d}, J=16$ $\mathrm{Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 7.02(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.25(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.33-7.90(15 \mathrm{H}$, m); MS (ESI) $m / z 673(M+1)$. Anal. $\left(\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2,6-Dimethyl-1-hydroxymethyl-3-[2-[(E)-4-(N-
methylcarbamoyl)cinnamamidomethyl]thiophen-3-yl]benzene (37).
Following a similar procedure to the preparation of 26, the title compound was obtained
in 90.3% yield from 36 as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $1.94(1 \mathrm{H}, \mathrm{s}), 2.23(3 \mathrm{H}, \mathrm{s}), 2.44(3 \mathrm{H}, \mathrm{s}), 3.00(3 \mathrm{H}, \mathrm{s}), 4.50(2 \mathrm{H}, \mathrm{s}), 4.80(2 \mathrm{H}, \mathrm{s}), 6.31$ $(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.4181 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.88(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$, $7.08(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{m}), 7.50(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz})$, $7.74(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$; MS (ESI) $m / z 435(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. 8-[[2,6-Dimethyl-3-[2-[(E)-4-(N-methylcarbamoyl)cinnamamidomethyl]thiophen-3-yl]benzyl]oxy]-2 methylquinoline (38). Following a similar procedure to the preparation of 9a, the title compound was obtained in 74.5% yield from 8 and 37 as a colorless amorphous solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.22(3 \mathrm{H}, \mathrm{s}), 2.50(3 \mathrm{H}, \mathrm{s}), 2.62(3 \mathrm{H}, \mathrm{s}), 2.99(3 \mathrm{H}, \mathrm{d}, J=6$ $\mathrm{Hz}), 5.35(2 \mathrm{H}, \mathrm{s}), 6.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.37(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz})$, $7.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.17(2 \mathrm{H}, \mathrm{br}$ s), $7.20-7.34(4 \mathrm{H}, \mathrm{m}), 7.42-7.60(6 \mathrm{H}, \mathrm{m}), 8.07(1 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) m / z 578(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2,6-Dichloro-3-[2-[(E)-4-(N-methylcarbamoyl)cinnamamidomethyl]pyrrol-1-yl]benzyl]oxy]-2methylquinoline (42). Following a similar procedure to method B, the title compound was obtained in 87.4% yield from 41 and $(E)-4-(N-$ methylcarbamoyl)cinnamic acid 22 as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $2.59(3 \mathrm{H}, \mathrm{s}), 2.95(3 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=16,4 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J$ $=16,4 \mathrm{~Hz}), 5.48(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10 \mathrm{~Hz}), 5.54(1 \mathrm{H}, \mathrm{brd}, J=10 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{dd}, J=$ $3,2 \mathrm{~Hz}), 6.32(1 \mathrm{H}, \mathrm{br} s), 6.37(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.56(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $6.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.16(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.21-7.49(8 \mathrm{H}, \mathrm{m}), 7.56(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$, $8.02(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$; MS (ESI) $m / z 599(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. 8-[[2,6-Dichloro-3-[2-[(E)-4-(N, N -dimethylcarbamoyl)cinnamamidomethyl]pyrrol-1-yl]benzyl]oxy]-2methylquinoline (43). Following a similar procedure to method B, the title compound was obtained in 82.0% yield from 41 and $(E)-4-(N, N$ dimethylcarbamoyl)cinnamic acid ${ }^{22}$ as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$
$2.63(3 \mathrm{H}, \mathrm{s}), 2.92(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.09(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.30(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=16,4 \mathrm{~Hz}), 4.47$ $(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=16,4 \mathrm{~Hz}), 5.52(1 \mathrm{H}, \mathrm{brd}, J=10 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10 \mathrm{~Hz})$, $6.24-6.37(4 \mathrm{H}, \mathrm{m}), 6.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.13-7.30(6 \mathrm{H}, \mathrm{m}), 7.30-7.51(5 \mathrm{H}, \mathrm{m}), 8.02(1 \mathrm{H}$, d, $J=8 \mathrm{~Hz}$); MS (ESI) $m / z 613(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2,6-Dichloro-3-[2-[(E)-3-(6-ethoxycarbonylpyridin-3-yl)acryloylaminomethyl]pyrrol-1-yl]benzyl]oxy]-2-methylquinoline (45). Following a similar procedure to method B, the title compound was obtained in 85.7% yield from 41 and (E)-3-(6-ethoxycarbonylpyridin-3-yl)acrylic acid ${ }^{22}$ as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.43(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 2.61(3 \mathrm{H}, \mathrm{s}), 4.41-4.53$ $(4 \mathrm{H}, \mathrm{m}), 5.54(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 6.28(1 \mathrm{H}, \mathrm{m}), 6.33(1 \mathrm{H}$, $\mathrm{m}), 6.45(1 \mathrm{H}, \mathrm{brt}, J=3 \mathrm{~Hz}), 6.59(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{m}), 7.25(1 \mathrm{H}, \mathrm{m})$, $7.39(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.42-7.54(4 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{dd}, J=8,2 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{d}, J$ $=8 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.67(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 615(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2,6-Dichloro-3-[2-[(E)-4-(2-oxo-pyrrolidin-1-yl)cinnamamidomethyl]pyrrol-1-yl]benzyl]oxy]-2-methylquinoline (48). Following a similar procedure to method B , the title compound was obtained in 59.3% yield from 41 and (E)-4-(2-oxo-pyrrolidin-1-yl)cinnamic acid ${ }^{22}$ as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.10-2.24(2 \mathrm{H}, \mathrm{m}), 2.63(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.67(3 \mathrm{H}, \mathrm{s})$, $3.83(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=17 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{brd}, J=17 \mathrm{~Hz}), 5.51$ $(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{brd}, J=10 \mathrm{~Hz}), 6.16-6.31(3 \mathrm{H}, \mathrm{m}), 6.35(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $6.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.17(1 \mathrm{H}$, br d, $J=8 \mathrm{~Hz}), 7.20-7.30(3 \mathrm{H}, \mathrm{m}), 7.33-7.55(7 \mathrm{H}, \mathrm{m})$, $8.05(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$; MS (ESI) $m / z 625(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. 8-[[2,6-Dichloro-3-[2-[(E)-3-[6-[(E)-2-(pyridin-4-yl)vinyl]pyridin-3-yl]acryloylaminomethyl]pyrrol-1-yl]benzyl]oxy]-2-methylquinoline (49). Following a similar procedure to method B , the title compound was obtained in 58.0% yield from 41 and 3-[6-[(E)-2-(4-pyridinyl)ethenyl]pyridin-3-yl]acrylic acid ${ }^{24}$ as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.63(3 \mathrm{H}, \mathrm{s}), 4.32(1 \mathrm{H}, \mathrm{br}$ dd, $J=17,4$
$\mathrm{Hz}), 4.50(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=17,4 \mathrm{~Hz}), 5.54(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz})$, $6.28(1 \mathrm{H}, \mathrm{m}), 6.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.45(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{brt}, J=4 \mathrm{~Hz}), 6.68$ $(1 \mathrm{H}, \mathrm{brd}, J=2 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.17-7.27(3 \mathrm{H}, \mathrm{m}), 7.35-7.57(9 \mathrm{H}, \mathrm{m})$, $8.03(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.53(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 8.60(2 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}) ; \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ $646(\mathrm{M}+1)$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2,6-Dichloro-3-[2-[(E)-4-(N-methylcarbamoyl)cinnamamidomethyl]pyrrol-1-yl]benzyl]oxy]-2methylquinoline Hydrochloride (50a). Following a similar procedure to method C, the title compound was obtained in 89.1% yield from 42 as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 2.79(3 \mathrm{H}, \mathrm{d}, J=5 \mathrm{~Hz}), 2.85(3 \mathrm{H}, \mathrm{s}), 4.25(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=$ $15,3 \mathrm{~Hz}), 4.46(1 \mathrm{H}$, br d, $J=15 \mathrm{~Hz}), 5.51(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{brd}, J=$ $10 \mathrm{~Hz}), 6.20-6.28(2 \mathrm{H}, \mathrm{m}), 6.60(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.32(1 \mathrm{H}, \mathrm{d}, J=$ $16 \mathrm{~Hz}), 7.53-7.62(3 \mathrm{H}, \mathrm{m}), 7.62-7.97(7 \mathrm{H}, \mathrm{m}), 8.40-8.53(2 \mathrm{H}, \mathrm{m})$. Anal. $\left(\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2,6-Dichloro-3-[2-[(E)-4-(N,N-dimethylcarbamoyl)cinnamamidomethyl]pyrrol-1-yl]benzyl]oxy]-2 methylquinoline Hydrochloride (51a). Following a similar procedure to method C, the title compound was obtained in 79.5% yield from 43 as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 2.89(3 \mathrm{H}, \mathrm{s}), 2.91(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.98(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.22(1 \mathrm{H}$, br dd, $J=16,3 \mathrm{~Hz}), 4.49(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=16,4 \mathrm{~Hz}), 5.53(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 5.62(1 \mathrm{H}$, $\mathrm{d}, J=10 \mathrm{~Hz}), 6.20-6.29(2 \mathrm{H}, \mathrm{m}), 6.58(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, J=3 \mathrm{~Hz})$, $7.31(1 \mathrm{H}, \mathrm{d}, J=15 \mathrm{~Hz}), 7.43(2 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.50-7.62(3 \mathrm{H}, \mathrm{m}), 7.68(1 \mathrm{H}, \mathrm{d}, J=8$ $\mathrm{Hz}), 7.73-8.02(4 \mathrm{H}, \mathrm{m}), 8.49(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 8.99(1 \mathrm{H}, \mathrm{br} \mathrm{s})$;. Anal. $\left(\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2,6-Dichloro-3-[[(E)-3-[6-(N-methylcarbamoyl)pyridin-3-yl]acryloylaminomethyl]pyrrol-1-yl]benzyl]oxy]-2-methylquinoline Hydrochloride (53a). Following a similar procedure to method C , the title compound was obtained in 85.8% yield from 48 as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR (DMSO-
$\left.d_{6}\right) \delta 2.81(3 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 2.90(3 \mathrm{H}, \mathrm{s}), 4.21(1 \mathrm{H}, \mathrm{m}), 4.50(1 \mathrm{H}, \mathrm{m}), 5.56(1 \mathrm{H}, \mathrm{d}, J$ $=10 \mathrm{~Hz}), 5.65(1 \mathrm{H}, \mathrm{d}, J=10 \mathrm{~Hz}), 6.23(1 \mathrm{H}, \mathrm{m}), 6.27(1 \mathrm{H}, \mathrm{m}), 6.73(1 \mathrm{H}, \mathrm{d}, J=16$ $\mathrm{Hz}), 6.85(1 \mathrm{H}, \mathrm{m}), 7.41(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{d}, J=8$ $\mathrm{Hz}), 7.79-7.93(3 \mathrm{H}, \mathrm{m}), 7.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.03(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{dd}, J=8,2$ $\mathrm{Hz}), 8.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 9.01(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. Anal. $\left(\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{3} \cdot 2 \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2,6-Dichloro-3-[2-[(E)-4-(2-oxo-pyrrolidin-1-
yl)cinnamamidomethyl]pyrrol-1-yl]benzyl]oxy]-2-methylquinoline
Hydrochloride (54a). Following a similar procedure to method B, the title compound was obtained in 59.3% yield from 41 and (E)-4-(2-oxo-pyrrolidin-1-yl)cinnamic acid ${ }^{22}$ as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.00-2.14(2 \mathrm{H}, \mathrm{m}), 2.48-2.58$ $(2 \mathrm{H}, \mathrm{m}), 2.85(3 \mathrm{H}, \mathrm{s}), 3.83(1 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=17,3 \mathrm{~Hz}), 4.44$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.51(1 \mathrm{H}, \mathrm{brd}, J=10 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{brd}, J=10 \mathrm{~Hz}), 6.19-6.27(2 \mathrm{H}, \mathrm{m})$, $6.45(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.50(2 \mathrm{H}, \mathrm{d}$, $J=8 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz}), 7.62-7.95(7 \mathrm{H}, \mathrm{m}), 8.37(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 8.93(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. Anal. $\left(\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

8-[[2,6-Dichloro-3-[2-[(E)-3-[6-[(E)-2-(pyridin-4-yl)vinyl]pyridin-3-yl]acryloylaminomethyl]pyrrol-1-yl]benzyl]oxy]-2-methylquinoline Trihydrochloride (55a). Following a similar procedure to method C, the title compound was obtained in 91.6% yield from 49 as a colorless amorphous solid: ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 2.81(3 \mathrm{H}, \mathrm{s}), 4.22(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=17,4 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.52$ $(1 \mathrm{H}$, br d, $J=10 \mathrm{~Hz}), 5.60(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=10 \mathrm{~Hz}), 6.19-6.30(2 \mathrm{H}, \mathrm{m}), 6.72(1 \mathrm{H}, \mathrm{d}, J=$ $16 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{brd}, J=2 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{d}, J=8 \mathrm{~Hz})$, $7.64-7.83(7 \mathrm{H}, \mathrm{m}), 7.87(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 8.00(1 \mathrm{H}, \mathrm{d}, J=16 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{br} \mathrm{dd}$, $J=8,2 \mathrm{~Hz}), 8.23(2 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}), 8.51(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=4 \mathrm{~Hz}), 8.79-8.89(3 \mathrm{H}, \mathrm{m}) ; \mathrm{MS}$ (ESI) $m / z 646(M+1)$. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 3 \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

