Journal of Medicinal Chemistry

J. Med. Chem., 1998, 41(23), 4587-4598, DOI:10.1021/jm980330i

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permission.html

Copyright © 1998 American Chemical Society

Physical Data of 9b-d, 10b,d, 11b-c, 12b-d, 13c-e, 14b-e, 19, 22a,b, 23a,b, 27-29a, 31-33, 36-38, 42, 43, 45, 48-51a, and 53a-55a.

8-[(2,6-Dimethoxy-3-nitrobenzyl)oxy]-2-methylquinoline (9b). Using a similar procedure to that used for 9a, the title compound was obtained in 90.3% yield from 7b and 8 as yellow crystals after crystallization from MeOH: mp 194–196 °C; ¹H NMR (CDCl₃) δ 2.68 (3H, s), 3.91 (3H, s), 4.08 (3H, s), 5.40 (2H, s), 6.78 (1H, d, J = 8 Hz), 7.22–7.31 (2H, m), 7.37–7.46 (2H, m), 8.00 (1H, d, J = 8 Hz), 8.09 (1H, d, J = 8 Hz). Anal. (C₁₉H₁₈N₂O₅) C, H, N.

8-[(2-Chloro-5-nitrobenzyl)oxy]-2-methylquinoline (9c). Using a similar procedure to that used for 9a, the title compound was obtained in 83.9% yield from 7 c and 8 as a colorless amorphous solid: ¹H NMR (DMSO- d_6) δ 2.69 (3H, s), 5.48 (2H, s), 7.32 (1H, d, J = 8 Hz), 7.43 (1H, d, J = 8 Hz), 7.46 (1H, d, J = 8 Hz), 7.53 (1H, d, J = 8 Hz), 7.83 (1H, d, J = 8 Hz), 8.22 (2H, dd, J = 8, 2 Hz), 8.77 (1H, d, J = 2 Hz). Anal. (C₁₇H₁₃ClN₂O₃) C, H, N.

2-Methyl-8-[(2-methyl-3-nitrobenzyl)oxy]quinoline (9d). Using a similar procedure to that used for 9a, the title compound was obtained in 91.7% yield from 7d and 8 as pale yellow crystals after crystallization from MeOH: mp 186–188 °C; ¹H NMR (CDCl₃) δ 2.56 (3H, s), 2.80 (3H, s), 5.48 (2H, s), 7.00 (1H, d, J = 8 Hz), 7.28–7.44 (4H, m), 7.74 (1H, d, J = 8 Hz), 7.82 (1H, d, J = 8 Hz), 8.04 (1H, d, J = 8 Hz); MS (ESI) m/z 309 (M + 1). Anal. (C₁₈H₁₆N₂O₃) C, H, N.

8-[(3-Amino-2,6-dimethoxybenzyl)oxy]-2-methylquinoline (10b). Using a similar procedure to that used for 10a, the title compound was obtained in 63.6% yield from 9b as pale brown crystals after crystallization from MeOH: mp 208–210 °C; ¹H NMR (CDCl₃) δ 2.27 (3H, s), 2.37 (3H, s), 2.72 (3H, s), 3.57 (2H, br s), 5.32 (2H, s), 6.67 (1H, d, J = 8 Hz), 6.91 (1H, d, J = 8 Hz), 7.18–7.31 (2H, m), 7.36–7.42 (2H, m), 8.00 (1H, d, J = 8 Hz); MS (ESI) *m/z* 325 (M + 1). Anal. (C₁₉H₂₀N₂O₃) C, H, N.

8-[(3-Amino-2-methylbenzyl)oxy]-2-methylquinoline (10d). Using a similar procedure to that used for 10c, the title compound was obtained in 62.1% yield

© 1998 American Chemical Society, J. Med. Chem., Abe jm980330i Supporting Info Page 2

from **9d** as pale brown crystals after crystallization from MeCN: mp 223–227 °C; ¹H NMR (CDCl₃) δ 2.23 (3H, s), 2.79 (3H, s), 3.66 (2H, br s), 5.41 (2H, s), 6.68 (1H, br d, *J* = 8 Hz), 6.92–7.05 (3H, m), 7.24–7.38 (3H, m), 8.00 (1H, d, *J* = 8 Hz); MS (ESI) *m/z* 279 (M + 1). Anal. (C₁₈H₁₈N₂O) C, H, N.

8-[[2,6-Dimethoxy-3-(*N*-phthalimidoacetyl)aminobenzyl]oxy]-2methylquinoline (11b). Using a similar procedure to that used for 11a, the title compound was obtained in 93.4% yield from 10b and *N*-phthaloylglycyl chloride as pale pink crystals after crystallization from acetone: mp 229–231 °C; ¹H NMR (CDCl₃) δ 2.70 (3H, s), 3.79 (3H, s), 3.94 (3H, s), 4.55 (2H, s), 5.36 (2H, s), 6.66 (1H, d, *J* = 8 Hz), 7.22–7.30 (2H, m), 7.32–7.42 (2H, m), 7.71–7.79 (2H, m), 7.86–7.92 (2H, m), 7.99 (1H, d, *J* = 8 Hz), 8.08 (1H, br s), 8.19 (1H, d, *J* = 8 Hz); MS (ESI) *m*/z 512 (M + 1). Anal. (C₂₉H₂₅N₃O₆) C, H, N.

8-[[2-Chloro-5-(N-phthalimidoacetyl)aminobenzyl]oxy]-2-

methylquinoline (11c). Using a similar procedure to that used for 11a, the title compound was obtained from 10c and *N*-phthaloylglycyl chloride as colorless solid, which was directly used to the next step without further purification.

2-Methyl-8-[[2-methyl-3-(N-

phthalimidoacetyl)aminobenzyl]oxy]quinoline (11d). Using a similar procedure to that used for 11a, the title compound was obtained in 80.6% yield from 10d and *N*-phthaloylglycyl chloride as pale yellow crystals after crystallization from acetone: mp 283–285 °C; ¹H NMR (DMSO- d_6) δ 2.27 (3H, s), 2.65 (3H, s), 4.48 (2H, s), 5.30 (2H, s), 7.20 (1H, t, *J* = 8 Hz), 7.26–7.34 (4H, m), 7.85–7.98 (4H, m), 8.20 (1H, d, *J* = 8 Hz), 9.85 (1H, br s); MS (ESI) *m/z* 466 (M + 1). Anal. (C₂₈H₂₃N₃O₄) C, H, N.

8-[[2,6-Dimethoxy-3-(N-methyl-N-

phthalimidoacetyl)aminobenzyl]oxy]-2-methylquinoline (12b). Following a similar procedure to method A, the title compound was obtained in 93.4% yield from 11b and methyl iodide as colorless crystals after crystallization from MeCN: mp 184–185 °C;

¹H NMR (CDCl₃) δ 2.70 (3H, s), 3.29 (3H, s), 3.90 (3H, s), 4.01 (3H, s), 4.22 (1H, d, J = 17 Hz), 4.32 (1H, d, J = 17 Hz), 5.44 (2H, s), 6.79 (1H, d, J = 8 Hz), 7.24–7.44 (5H, m), 7.69–7.75 (2H, m), 7.81–7.89 (2H, m), 8.00 (1H, d, J = 8 Hz); MS (ESI) *m/z* 526 (M + 1). Anal. (C₃₀H₂₇N₃O₆) C, H, N.

8-[[2-Chloro-5-(*N*-methyl-*N*-phthalimidoacetyl)aminobenzyl]oxy]-2methylquinoline (12c). Following a similar procedure to method A, the title compound was obtained in 14.8% yield from 11c and methyl iodide as colorless crystals after crystallization from diethyl ether: mp 120–124 °C; ¹H NMR (DMSO- d_6) δ 2.67 (3H, s), 3.18(3H, br s), 4.06 (2H, br s), 5.42 (2H, br s), 7.29 (1H, d, J = 8 Hz), 7.414–7.96 (10H, m), 8.19 (1H, d, J = 8 Hz). Anal. (C₂₈H₂₂ClN₃O₄) C, H, N.

2-Methyl-8-[[2-methyl-3-(N-methyl-N-

phthalimidoacetyl)aminobenzyl]oxy]quinoline (12d). Following a similar procedure to method A, the title compound was obtained in 62.3% yield from 11d and methyl iodide as pale brown crystals after crystallization from AcOEt: mp 158–161 °C; ¹H NMR (CDCl₃) δ 2.47 (3H, s), 2.80 (3H, s), 3.26 (3H, s), 3.92 (1H, d, *J* = 17 Hz), 4.19 (1H, d, *J* = 17 Hz), 5.46 (2H, s), 7.06 (1H, br d, *J* = 8 Hz), 7.23–7.42 (5H, m), 7.65–7.75 (3H, m), 7.81–7.89 (2H, m), 8.03 (1H, d, *J* = 8 Hz); MS (ESI) *m/z* 480 (M + 1). Anal. (C₂₉H₂₅N₃O₄) C, H, N.

8-[[5-(*N*-Aminoacetyl-*N*-methylamino)-2-chlorobenzyl]oxy]-2methylquinoline (13c). Using a similar procedure to that used for 13b, the title compound was obtained in 90.7% yield from 12c as colorless crystals after crystallization from diethyl ether: mp 82–87 °C; ¹H NMR (CDCl₃) δ 2.83 (3H, s), 2.94 (2H, s), 3.19 (3H, s), 5.53 (2H, s), 6.95 (1H, d, J = 8 Hz), 7.07 (1H, br d, J = 8 Hz), 7.30–7.44 (3H, m), 7.46 (1H, d, J = 8 Hz), 7.56 (1H, d, J = 1 Hz), 8.05 (1H, d, J = 8Hz). Anal. (C₂₀H₂₀ClN₃O₂) C, H, N.

8-[[3-(N-Aminoacetyl-N-methylamino)-2-methylbenzyl]oxy]-2methylquinoline (13d). Using a similar procedure to that used for 13b, the title compound was obtained in 88.4% yield from 12d as a colorless amorphous solid: ¹H

3

NMR (CDCl₃) δ 2.29 (3H, s), 2.80 (3H, s), 2.90 (1H, d, J = 17 Hz), 3.13 (1H, d, J = 17 Hz), 3.24 (3H, s), 5.40 (2H, s), 7.01 (1H, br d, J = 8 Hz), 7.09 (1H, br d, J = 8 Hz), 7.21–7.43 (4H, m), 7.60 (1H, br d, J = 8 Hz), 8.03 (1H, d, J = 8 Hz); MS (ESI) *m/z* 350 (M + 1). Anal. (C₂₁H₂₃N₃O₂) C, H, N.

8-[[3-(N-Aminoacetyl)amino-2,6-dichlorobenzyl]oxy]-2methylquinoline (13e). Using a similar procedure to that used for 13b, the title compound was obtained in 87.7% yield from 11a as a pale brown amorphous solid: ¹H NMR (CDCl₃) δ 2.73 (3H, s), 3.52 (2H, s), 5.62 (2H, s), 7.20–7.45 (5H, m), 8.01

(1H, d, J = 8.5 Hz), 8.51 (1H, d, J = 8.5 Hz). Anal. (C₁₉H₁₇Cl₂N₃O₂) C, H, N.

8-[[2,6-Dimethoxy-3-[N-methyl-N-[(E)-4-(N-

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2-

methylquinoline (14b). Following a similar procedure to method B, the title compound was obtained in 85.7% yield from 13b and (E)-4-(N-

methylcarbamoyl)cinnamic acid²² as a colorless amorphous solid: ¹H NMR (CDCl₃) δ

2.26 (3H, s), 2.99 (3H, d, J = 5 Hz), 3.32 (3H, s), 3.82–3.92 (7H, m), 3.98 (1H, dd, J = 17, 5 Hz), 5.31 (1H, d, J = 10 Hz), 5.47 (1H, d, J = 10 Hz), 6.28 (1H, br d, J = 5 Hz), 6.51 (1H, d, J = 15 Hz), 6.70 (1H, br t, J = 5 Hz), 6.75 (1H, d, J = 8 Hz), 7.19 (1H, d, J = 8 Hz), 7.22–7.59 (7H, m), 7.74 (2H, d, J = 8 Hz), 7.99 (1H, d, J = 8 Hz); MS (ESI) m/z 583 (M + 1). Anal. (C₃₃H₃₄N₄O₆) C, H, N.

8-[[2-Chloro-5-[N-methyl-N-[(E)-4-(N-

methylcarbamoyl)cinnamamidoacetyl]amino]benzyl]oxy]-2methylquinoline (14c). Following a similar procedure to method B, the title compound was obtained in 79.7% yield from 13c and (*E*)-4-(*N*methylcarbamoyl)cinnamic acid²² as colorless crystals after crystallization from AcOEt: mp 223–227 °C; ¹H NMR (CDCl₃–CD₃OD) δ 2.79 (3H, s), 3.00 (3H, s), 3.24 (3H, s), 3.76 (2H, s), 5.52 (2H, s), 6.52 (1H, d, *J* = 15 Hz), 7.03 (1H, dd, *J* = 8, 1 Hz), 7.19 (1H, dd, *J* = 8, 1 Hz), 7.33–7.44 (3H, m), 7.49–7.60 (4H, m), 7.68 (1H, d, *J* = 1 Hz), 7.76 (2H, d, J = 8 Hz), 8.07 (1H, d, J = 8 Hz); MS (FAB) m/z 557 (M + 1). Anal. (C₁₁H₂₉ClN₄O₄) C, H, N.

2-Methyl-8-[[2-methyl-3-[N-methyl-N-[(E)-4-(N-

methylcarbamoyl)cinnamidoacetyl]amino]benzyl]oxy]quinoline (14d). Following a similar procedure to method B, the title compound was obtained in 93.0% yield from 13d and (*E*)-4-(*N*-methylcarbamoyl)cinnamic acid²² as a colorless amorphous solid: ¹H NMR (CDCl₃) δ 2.32 (3H, s), 2.79 (3H, s), 3.02 (3H, d, *J*=5 Hz), 3.28 (3H, s), 3.67 (1H, dd, *J*=17, 5 Hz), 3.88 (1H, dd, *J*=17, 4 Hz), 5.38 (1H, d, *J*=10 Hz), 5.46 (1H, d, *J*=10 Hz), 6.18 (1H, br d, *J*=5 Hz), 6.52 (1H, d, *J*=15 Hz), 6.70 (1H, br s), 7.06 (1H, dd, *J*=8, 3 Hz), 7.12 (1H, br d, *J*=8 Hz), 7.24–7.43 (4H, m), 7.50–7.66 (4H, m), 7.75 (2H, d, *J*=8 Hz), 8.04 (1H, d, *J*=8 Hz); MS (FAB) *m/z* 537 (M + 1). Anal. (C₃₂H₃₂N₄O₄) C, H, N.

8-[[3-[N-[(*E*)-3-(6-Acetamidopyridin-3-yl)acryloylglycyl]amino]-2,6dichloro-benzyl]oxy]-2-methylquinoline (14e). Following a similar procedure to method B, the title compound was obtained in 15.8% yield from 13e and (*E*)-3-(6acetamidopyridin-3-yl)acrylic acid²² as colorless crystals after crystallization from AcOEt: mp 274–279 °C; ¹H NMR (DMSO- d_6) δ 2.11 (3H, s), 2.60 (3H, s), 4.14 (2H, d, *J* = 5.5 Hz), 5.47 (2H, s), 6.76 (1H, d, *J* = 16 Hz), 7.34–7.57 (5H, m), 7.60 (1H, d, *J* = 9 Hz), 7.92 (1H, d, *J* = 9 Hz), 8.00 (1H, d, *J* = 9 Hz), 8.11 (1H, d, *J* = 9 Hz), 8.20 (1H, d, *J* = 9 Hz), 8.45–8.60 (2H, m), 9.80 (1H, s), 10.67 (1H, s); MS (FAB) *m/z* 578 (M + 1). Anal. (C₂₉H₂₅Cl₂N₅O₄) C, H, N.

8-[[2,6-Dichloro-3-(2,5-dioxolanyl)benzyl]oxy]-2-methylquinoline (19). Using a similar procedure to that used for 9a, the title compound was obtained in 73.0% yield from 8 and 18 as colorless crystals after crystallization from AcOEt: mp 156–158 °C; ¹H NMR (CDCl₃) δ 2.74 (3H, s), 4.02–4.18 (4H, m), 5.64 (2H, s), 6.17 (1H, s), 7.21–7.45 (5H, m), 7.59 (1H, d, J = 8 Hz), 8.00 (1H, d, J = 8 Hz); MS (ESI) m/z 390 (M + 1). Anal. (C₂₀H₁₇Cl₂NO₃) C, H, N.

8-[[3-[(Z)-3-Aminopropenyl]-2,6-dichlorobenzyl]oxy]-2-

methylquinoline (22a). Using a similar procedure to that used for 13b, the title compound was obtained in 89.1% yield from 21a as a pale yellow amorphous solid: ¹H NMR (CDCl₃) δ 2.73 (3H, s), 3.46 (2H, d, J = 7 Hz), 5.61 (2H, s), 5.92 (1H, dt, J =10, 7 Hz), 6.57 (1H, br d, J = 10 Hz), 7.18 (1H, d, J = 8 Hz), 7.24–7.47 (5H, m), 8.02 (1H, d, J = 8 Hz); MS (ESI) *m/z* 373 (M + 1). Anal. (C₂₀H₁₈Cl₂N₂O) C, H, N.

8-[[3-[(E)-3-Aminopropenyl]-2,6-dichlorobenzyl]oxy]-2-

methylquinoline (22b). Using a similar procedure to that used for 13b, the title compound was obtained in 82.6% yield from 21b as a pale yellow amorphous solid: ¹H NMR (CDCl₃) δ 2.74 (3H, s), 3.53 (2H, d, J = 5 Hz), 5.63 (2H, s), 6.29 (1H, dt, J =15, 5 Hz), 6.90 (1H, br d, J = 15 Hz), 7.23–7.48 (6H, m), 8.00 (1H, d, J = 8 Hz); MS (ESI) m/z 373 (M + 1). Anal. (C₂₀H₁₈Cl₂N₂O) C, H, N.

8-[[2,6-Dichloro-3-[(Z)-3-[(E)-4-(N-

methylcarbamoyl)cinnamido]propenyl]benzyl]oxy]-2-methylquinoline

(23a). Following a similar procedure to method B, the title compound was obtained in 91.5% yield from 22a and (*E*)-4-(*N*-methylcarbamoyl)cinnamic acid²² as colorless crystals after crystallization from MeCN: mp 194–196 °C; ¹H NMR (CDCl₃–CD₃OD) δ 2.62 (3H, s), 2.95 (3H, br d, *J* = 5 Hz), 4.05 (2H, br d, *J* = 7 Hz), 5.53 (2H, s), 5.96 (1H, dt, *J* = 10, 7 Hz), 6.52 (1H, d, *J* = 15 Hz), 6.61 (1H, br d, *J* = 10 Hz), 6.96 (1H, br s), 7.19–7.32 (4H, m), 7.41–7.50 (3H, m), 7.54 (1H, d, *J* = 15 Hz), 7.68 (2H, d, *J* = 8 Hz), 8.08 (1H, d, *J* = 8 Hz); MS (ESI) *m*/*z* 560 (M + 1). Anal. (C₃₁H₂₇Cl₂N₃O₃) C, H, N.

8-[[2,6-Dichloro-3-[(*E*)-3-[(*E*)-4-(*N*-

methylcarbamoyl)cinnamido]propenyl]benzyl]oxy]-2-methylquinoline (23b). Following a similar procedure to method B, the title compound was obtained in 52.4% yield from 22b and (*E*)-4-(*N*-methylcarbamoyl)cinnamic acid²² as a colorless amorphous solid: ¹H NMR (CDCl₃-CD₃OD) δ 2.65 (3H, br s), 2.94 (3H, br d, *J* = 5 Hz), 4.15 (2H, br d, *J* = 6 Hz), 5.52 (2H, s), 6.20 (1H, m), 6.61 (1H, d, *J* = 15 Hz),

6.90 (1H, br d, J = 15 Hz), 7.21–7.38 (2H, m), 7.40–7.49 (3H, m), 7.51–7.66 (4H, m), 7.79 (2H, br d, J = 8 Hz), 8.07 (1H, d, J = 8 Hz); MS (ESI) m/z 560 (M + 1). Anal. (C₃₁H₂₇Cl₂N₃O₃) C, H, N.

8-[[3-(2-Cyanophenyl)-2,6-dimethylbenzyl]oxy]-2-methylquinoline (27). Following a similar procedure to that used for 9a, the title compound was obtained in 89.9% yield from 8 and 26 as a colorless amorphous solid: ¹H NMR (CDCl₃) δ 2.33 (3H, s), 2.55 (3H, s), 2.73 (3H, s), 5.40 (1H, d, J = 12 Hz), 5.46 (1H, d, J = 12 Hz), 7.13 (1H, d, J = 8 Hz), 7.18 (1H, d, J = 8 Hz), 7.23–7.48 (6H, m), 7.63 (1H, t, J = 8 Hz), 7.74 (1H, d, J = 8 Hz), 8.02 (1H, d, J = 8 Hz); MS (ESI) *m/z* 379 (M + 1). Anal. (C₂₆H₂₂N₂O) C, H, N.

8-[[3-(2-Aminomethylphenyl)-2,6-dimethylbenzyl]oxy]-2-

methylquinoline (28). Following a similar procedure to that used for 40, the title compound was obtained in 50.4% yield from 27 as a brown oil, , which was used for the next step without further purification.

8-[[2,6-Dimethyl-3-[2-[(E)-4-(N-

methylcarbamoyl)cinnamamide]phenyl]benzyl]oxy]-2-methylquinoline (29a). Following a similar procedure to method B, the title compound was obtained in 15.3% yield from 28 and (*E*)-4-(*N*-methylcarbamoyl)cinnamic acid²² as a pale yellow amorphous solid: ¹H NMR (CDCl₃) δ 2.10 (3H, s), 2.20 (3H, s), 2.55 (3H, s), 3.00 (3H, d, *J* = 6 Hz), 4.29 (1H, dd, *J* = 16, 6 Hz), 4.48 (1H, dd, *J* = 16, 6 Hz), 5.30 (2H, s), 6.45 (1H, d, *J* = 16 Hz), 6.55 (1H, br s), 6.88–7.78 (6H, m), 8.23 (1H, d, *J* = 8 Hz); MS (ESI) *m/z* 570 (M + 1). Anal. (C₃₇H₃₅N₃O₃) C, H, N.

1-(*tert*-Butyldiphenylsiloxymethyl)-2,6-dimethyl-3-[3-[(*E*)-4-(*N*-methylcarbamoyl)cinnamamido]phenyl]benzene (31). Following a similar procedure to method B, the title compound was obtained in 81.6% yield from 30 and (*E*)-4-(*N*-methylcarbamoyl)cinnamic acid²² as pale yellow crystals after crystallization from MeCN: mp 245–247 °C; ¹H NMR (DMSO- d_6) δ 1.01 (9H, s), 2.12 (3H, s), 2.21 (3H, s), 2.79 (3H, d, *J* = 5 Hz), 4.79 (2H, s), 6.88–6.98 (2H, m), 7.01–7.11 (2H, m), 7.30–

7.52 (7H, m), 7.59–7.75 (11H, m), 7.90 (2H, d, J = 8 Hz), 8.51 (1H, br d, J = 5 Hz); MS (ESI) m/z 653 (M + 1). Anal. (C₄₂H₄₄N₂O₃Si) C, H, N.

2,6-Dimethyl-1-hydroxymethyl-3-[3-[(E)-4-(N-

methylcarbamoyl)cinnamamido]phenyl]benzene (32). Following a similar procedure to the preparation of 26, the title compound was obtained in 86.3% yield from 31 as colorless crystals after crystallization from AcOEt: mp 272–277 °C; ¹H NMR (DMSO- d_6) δ 2.28 (3H, s), 2.40 (3H, s), 2.80 (3H, d, J = 5 Hz), 4.57 (2H, d, J = 6Hz), 4.78 (1H, t, J = 6 Hz), 6.87–7.10 (4H, m), 7.38 (1H, t, J = 8 Hz), 7.57–7.74 (5H, m), 7.89 (2H, d, J = 8 Hz), 8.50 (1H, br d, J = 5 Hz); MS (ESI) *m/z* 415 (M + 1). Anal. (C₂₆H₂₆N₂O₃) C, H, N.

1-(*tert*-Butyldiphenylsiloxymethyl)-2,6-dimethyl-3-(2-cyanothiophen-3-yl)benzene (34). Following a similar procedure to the preparation of 25, the title compound was obtained in 29.0% yield from 24 and 3-bromo-2-cyanothiophene as a colorless oil: ¹H NMR (CDCl₃) δ 1.04 (9H, s), 2.13 (3H, s), 2.25 (3H, s), 4.76 (2H, s), 7.00–7.08 (2H, m), 7.13 (1H, d, J = 8 Hz), 7.32–7.48 (6H, m), 7.56 (1H, d, J = 6 Hz), 7.69 (4H, br d, J = 8 Hz); MS (ESI) *m*/*z* 482 (M + 1). Anal. (C₃₀H₃₁NOSSi) C, H, N.

1-(*tert*-Butyldiphenylsiloxymethyl)-2,6-dimethyl-3-[2-[(*E*)-4-(*N*-methylcarbamoyl)cinnamamidomethyl]thiophen-3-yl]benzene (36). Following a similar procedure to method B, the title compound was obtained in 82.0% yield from 35 and (*E*)-4-(*N*-methylcarbamoyl)cinnamic acid²² as a colorless amorphous solid: ¹H NMR (CDCl₃) δ 1.05 (9H, s), 2.05 (3H, s), 2.28 (3H, s), 3.02 (3H, d, J = 6 Hz), 4.49 (2H, br s), 4.77 (2H, s), 6.00 (1H, br s), 6.29 (1H, br s), 6.35 (1H, d, J = 16 Hz), 6.85 (1H, d, J = 6 Hz), 7.02 (2H, br s), 7.25 (1H, d, J = 8 Hz), 7.33–7.90 (15H, m); MS (ESI) *m/z* 673 (M + 1). Anal. (C₄₁H₄₄N₂O₃SSi) C, H, N.

2,6-Dimethyl-1-hydroxymethyl-3-[2-[(E)-4-(N-

methylcarbamoyl)cinnamamidomethyl]thiophen-3-yl]benzene (37).

Following a similar procedure to the preparation of 26, the title compound was obtained

© 1998 American Chemical Society, J. Med. Chem., Abe jm980330i Supporting Info Page 9

in 90.3% yield from **36** as a colorless amorphous solid: ¹H NMR (CDCl₃-CD₃OD) δ 1.94 (1H, s), 2.23 (3H, s), 2.44 (3H, s), 3.00 (3H, s), 4.50 (2H, s), 4.80 (2H, s), 6.31 (1H, d, *J* = 16 Hz), 6.41 81H, br s), 6.88 (1H, d, *J* = 6 Hz), 7.02 (1H, d, *J* = 8 Hz), 7.08 (1H, d, *J* = 8 Hz), 7.26 (1H, m), 7.50 (2H, d, *J* = 8 Hz), 7.55 (1H, d, *J* = 16 Hz), 7.74 (2H, d, *J* = 8 Hz); MS (ESI) *m/z* 435 (M + 1). Anal. (C₂₅H₂₆N₂O₃S) C, H, N.

8-[[2,6-Dimethyl-3-[2-[(E)-4-(N-

methylcarbamoyl)cinnamamidomethyl]thiophen-3-yl]benzyl]oxy]-2methylquinoline (38). Following a similar procedure to the preparation of 9a, the title compound was obtained in 74.5% yield from 8 and 37 as a colorless amorphous solid: ¹H NMR (CDCl₃) δ 2.22 (3H, s), 2.50 (3H, s), 2.62 (3H, s), 2.99 (3H, d, J = 6Hz), 5.35 (2H, s), 6.08 (1H, br s), 6.37 (1H, d, J = 16 Hz), 6.87 (1H, d, J = 6 Hz), 7.04 (1H, br s), 7.17 (2H, br s), 7.20–7.34 (4H, m), 7.42–7.60 (6H, m), 8.07 (1H, d, J = 8 Hz); MS (ESI) m/z 578 (M + 1). Anal. (C₃₅H₃₃N₃O₃S) C, H, N.

8-[[2,6-Dichloro-3-[2-[(*E*)-4-(*N*-

methylcarbamoyl)cinnamamidomethyl]pyrrol-1-yl]benzyl]oxy]-2methylquinoline (42). Following a similar procedure to method B, the title compound was obtained in 87.4% yield from 41 and (*E*)-4-(*N*-

methylcarbamoyl)cinnamic acid²² as a colorless amorphous solid: ¹H NMR (CDCl₃) δ

2.59 (3H, s), 2.95 (3H, d, J = 5 Hz), 4.27 (1H, br dd, J = 16, 4 Hz), 4.47 (1H, br dd, J = 16, 4 Hz), 5.48 (1H, br d, J = 10 Hz), 5.54 (1H, br d, J = 10 Hz), 6.26 (1H, dd, J = 3, 2 Hz), 6.32 (1H, br s), 6.37 (1H, d, J = 16 Hz), 6.48 (1H, br s), 6.56 (1H, br s), 6.39 (1H, br s), 7.16 (1H, d, J = 8 Hz), 7.21–7.49 (8H, m), 7.56 (2H, d, J = 8 Hz), 8.02 (1H, d, J = 8 Hz); MS (ESI) *m*/*z* 599 (M + 1). Anal. (C₃₃H₂₈Cl₂N₄O₃) C, H, N.

8-[[2,6-Dichloro-3-[2-[(E)-4-(N, N-

dimethylcarbamoyl)cinnamamidomethyl]pyrrol-1-yl]benzyl]oxy]-2-

methylquinoline (43). Following a similar procedure to method B, the title compound was obtained in 82.0% yield from 41 and (*E*)-4-(*N*, *N*-

dimethylcarbamoyl)cinnamic acid²² as a colorless amorphous solid: ¹H NMR (CDCl₃) δ

2.63 (3H, s), 2.92 (3H, br s), 3.09 (3H, br s), 4.30 (1H, br dd, J = 16, 4 Hz), 4.47 (1H, br dd, J = 16, 4 Hz), 5.52 (1H, br d, J = 10 Hz), 5.60 (1H, br d, J = 10 Hz), 6.24–6.37 (4H, m), 6.67 (1H, br s), 7.13–7.30 (6H, m), 7.30–7.51 (5H, m), 8.02 (1H, d, J = 8 Hz); MS (ESI) *m/z* 613 (M + 1). Anal. (C₃₄H₃₀Cl₂N₄O₃) C, H, N.

8-[[2,6-Dichloro-3-[2-[(E)-3-(6-ethoxycarbonylpyridin-3-

yl)acryloylaminomethyl]pyrrol-1-yl]benzyl]oxy]-2-methylquinoline (45). Following a similar procedure to method B, the title compound was obtained in 85.7% yield from 41 and (*E*)-3-(6-ethoxycarbonylpyridin-3-yl)acrylic acid²² as a colorless amorphous solid: ¹H NMR (CDCl₃) δ 1.43 (3H, t, *J* = 7 Hz), 2.61 (3H, s), 4.41–4.53 (4H, m), 5.54 (1H, d, *J* = 10 Hz), 5.62 (1H, d, *J* = 10 Hz), 6.28 (1H, m), 6.33 (1H, m), 6.45 (1H, br t, *J* = 3 Hz), 6.59 (1H, d, *J* = 16 Hz), 6.68 (1H, m), 7.25 (1H, m), 7.39 (1H, d, *J* = 8 Hz), 7.42–7.54 (4H, m), 7.60 (1H, dd, *J* = 8, 2 Hz), 7.76 (1H, d, *J* = 8 Hz), 8.04 (1H, d, *J* = 8 Hz), 8.67 (1H, d, *J* = 2 Hz); MS (ESI) *m/z* 615 (M + 1). Anal. (C₃₃H₂₈Cl₂N₄O₄) C, H, N.

8-[[2,6-Dichloro-3-[2-[(E)-4-(2-oxo-pyrrolidin-1-

yl)cinnamamidomethyl]pyrrol-1-yl]benzyl]oxy]-2-methylquinoline (48). Following a similar procedure to method B, the title compound was obtained in 59.3% yield from 41 and (*E*)-4-(2-oxo-pyrrolidin-1-yl)cinnamic acid²² as a colorless amorphous solid: ¹H NMR (CDCl₃) δ 2.10–2.24 (2H, m), 2.63 (2H, t, *J* = 7.5 Hz), 2.67 (3H, s), 3.83 (1H, t, *J* = 7.5 Hz), 4.28 (1H, br d, *J* = 17 Hz), 4.47 (1H, br d, *J* = 17 Hz), 5.51 (1H, br d, *J* = 10 Hz), 5.60 (1H, br d, *J* = 10 Hz), 6.16–6.31 (3H, m), 6.35 (1H, br s), 6.68 (1H, br s), 7.17 (1H, br d, *J* = 8 Hz), 7.20–7.30 (3H, m), 7.33–7.55 (7H, m), 8.05 (1H, d, *J* = 8 Hz); MS (ESI) *m*/*z* 625 (M + 1). Anal. (C₃₅H₃₀Cl₂N₄O₃) C, H, N.

8-[[2,6-Dichloro-3-[2-[(*E*)-3-[6-[(*E*)-2-(pyridin-4-yl)vinyl]pyridin-3yl]acryloylaminomethyl]pyrrol-1-yl]benzyl]oxy]-2-methylquinoline (49). Following a similar procedure to method B, the title compound was obtained in 58.0% yield from 41 and 3-[6-[(*E*)-2-(4-pyridinyl)ethenyl]pyridin-3-yl]acrylic acid²⁴ as a colorless amorphous solid: ¹H NMR (CDCl₃) δ 2.63 (3H, s), 4.32 (1H, br dd, *J* = 17, 4 Hz), 4.50 (1H, br dd, J = 17, 4 Hz), 5.54 (1H, d, J = 10 Hz), 5.60 (1H, d, J = 10 Hz), 6.28 (1H, m), 6.35 (1H, br s), 6.45 (1H, d, J = 16 Hz), 6.58 (1H, br t, J = 4 Hz), 6.68 (1H, br d, J = 2 Hz), 7.02 (1H, d, J = 8 Hz), 7.17–7.27 (3H, m), 7.35–7.57 (9H, m), 8.03 (1H, d, J = 8 Hz), 8.53 (1H, d, J = 2 Hz), 8.60 (2H, d, J = 6 Hz); MS (ESI) *m/z* 646 (M + 1). Anal. (C₃₇H₂₉Cl₂N₅O₂) C, H, N.

8-[[2,6-Dichloro-3-[2-[(E)-4-(N-

methylcarbamoyl)cinnamamidomethyl]pyrrol-1-yl]benzyl]oxy]-2methylquinoline Hydrochloride (50a). Following a similar procedure to method C, the title compound was obtained in 89.1% yield from 42 as a colorless amorphous solid: ¹H NMR (DMSO- d_6) δ 2.79 (3H, d, J = 5 Hz), 2.85 (3H, s), 4.25 (1H, br dd, J =15, 3 Hz), 4.46 (1H, br d, J = 15 Hz), 5.51 (1H, br d, J = 10 Hz), 5.60 (1H, br d, J =10 Hz), 6.20–6.28 (2H, m), 6.60 (1H, d, J = 16 Hz), 6.85 (1H, br s), 7.32 (1H, d, J =16 Hz), 7.53–7.62 (3H, m), 7.62–7.97 (7H, m), 8.40–8.53 (2H, m). Anal. (C₃₃H₂₈Cl₂N₄O₃•HCl) C, H, N.

8-[[2,6-Dichloro-3-[2-[(E)-4-(N, N-

dimethylcarbamoyl)cinnamamidomethyl]pyrrol-1-yl]benzyl]oxy]-2methylquinoline Hydrochloride (51a). Following a similar procedure to method C, the title compound was obtained in 79.5% yield from 43 as a colorless amorphous solid: ¹H NMR (DMSO- d_6) δ 2.89 (3H, s), 2.91 (3H, br s), 2.98 (3H, br s), 4.22 (1H, br dd, J = 16, 3 Hz), 4.49 (1H, br dd, J = 16, 4 Hz), 5.53 (1H, d, J = 10 Hz), 5.62 (1H, d, J = 10 Hz), 6.20–6.29 (2H, m), 6.58 (1H, d, J = 15 Hz), 6.85 (1H, d, J = 3 Hz), 7.31 (1H, d, J = 15 Hz), 7.43 (2H, d, J = 8 Hz), 7.50–7.62 (3H, m), 7.68 (1H, d, J = 8Hz), 7.73–8.02 (4H, m), 8.49 (1H, t, J = 7 Hz), 8.99 (1H, br s);. Anal. (C₃₄H₃₀Cl₂N₄O₃•HCl) C, H, N.

8-[[2,6-Dichloro-3-[[(E)-3-[6-(N-methylcarbamoyl)pyridin-3yl]acryloylaminomethyl]pyrrol-1-yl]benzyl]oxy]-2-methylquinoline
Hydrochloride (53a). Following a similar procedure to method C, the title compound was obtained in 85.8% yield from 48 as a colorless amorphous solid: ¹H NMR (DMSO- © 1998 American Chemical Society, J. Med. Chem., Abe jm980330i Supporting Info Page 12

 d_6) δ 2.81 (3H, d, J = 6 Hz), 2.90 (3H, s), 4.21 (1H, m), 4.50 (1H, m), 5.56 (1H, d, J = 10 Hz), 5.65 (1H, d, J = 10 Hz), 6.23 (1H, m), 6.27 (1H, m), 6.73 (1H, d, J = 16 Hz), 6.85 (1H, m), 7.41 (1H, d, J = 16 Hz), 7.60 (1H, d, J = 8 Hz), 7.69 (1H, d, J = 8 Hz), 7.79–7.93 (3H, m), 7.96 (1H, br s), 8.03 (1H, d, J = 8 Hz), 8.08 (1H, dd, J = 8, 2 Hz), 8.58 (1H, br s), 8.73 (1H, br s), 8.77 (1H, br s), 8.77 (1H, br s), 9.01 (1H, br s). Anal. ($C_{32}H_{27}Cl_2N_5O_3$ •2HCl) C, H, N.

8-[[2,6-Dichloro-3-[2-[(E)-4-(2-oxo-pyrrolidin-1-

yl)cinnamamidomethyl]pyrrol-1-yl]benzyl]oxy]-2-methylquinoline

Hydrochloride (54a). Following a similar procedure to method B, the title compound was obtained in 59.3% yield from 41 and (*E*)-4-(2-oxo-pyrrolidin-1-yl)cinnamic acid²² as a colorless amorphous solid: ¹H NMR (DMSO- d_6) δ 2.00–2.14 (2H, m), 2.48–2.58

(2H, m), 2.85 (3H, s), 3.83 (1H, t, J = 7 Hz), 4.20 (1H, br dd, J = 17, 3 Hz), 4.44 (1H, br s), 5.51 (1H, br d, J = 10 Hz), 5.62 (1H, br d, J = 10 Hz), 6.19–6.27 (2H, m), 6.45 (1H, d, J = 16 Hz), 6.85 (1H, d, J = 2 Hz), 7.24 (1H, d, J = 16 Hz), 7.50 (2H, d, J = 8 Hz), 7.58 (1H, d, J = 8 Hz), 7.62–7.95 (7H, m), 8.37 (1H, br s), 8.93 (1H, br s). Anal. ($C_{35}H_{30}Cl_2N_4O_3$ •HCl) C, H, N.

8-[[2,6-Dichloro-3-[2-[(*E*)-3-[6-[(*E*)-2-(pyridin-4-yl)vinyl]pyridin-3yl]acryloylaminomethyl]pyrrol-1-yl]benzyl]oxy]-2-methylquinoline Trihydrochloride (55a). Following a similar procedure to method C, the title compound was obtained in 91.6% yield from 49 as a colorless amorphous solid: ¹H NMR (DMSO- d_6) δ 2.81 (3H, s), 4.22 (1H, br dd, J = 17, 4 Hz), 4.39 (1H, br s), 5.52 (1H, br d, J = 10 Hz), 5.60 (1H, br d, J = 10 Hz), 6.19–6.30 (2H, m), 6.72 (1H, d, J =16 Hz), 6.85 (1H, br d, J = 2 Hz), 7.40 (1H, d, J = 16 Hz), 7.60 (1H, d, J = 8 Hz), 7.64–7.83 (7H, m), 7.87 (1H, d, J = 16 Hz), 8.00 (1H, d, J = 16 Hz), 8.04 (1H, br dd, J = 8, 2 Hz), 8.23 (2H, d, J = 6 Hz), 8.51 (1H, br t, J = 4 Hz), 8.79–8.89 (3H, m); MS (ESI) m/z 646 (M + 1). Anal. (C₃₇H₂₉Cl₂N₅O₂•3HCl) C, H, N.