OCT 2 1 2002

Journal of Organic Chemistry

The Photochemistry of Racemic and Resolved 2-Iodooctane.

The Effect of Solvent Polarity and Viscosity on the Chemistry.

by

Fang Gao, David Boyles, Rodney Sullivan,

Robert N. Compton, and Richard M. Pagni

Supporting Material

Analysis of Data from the Photolysis of R-2-Iodooctane. The disappearance of the reactant was followed by gc/ms and corresponds to [R] + [S]. Because $[R] + [S] = [R]_0$ at t = 0, one can then obtain $([R] + [S])/[R]_0$. For the changes in optical rotation the following equations are true.

$$f_R R_R + f_S R_S = R_{ob} \tag{1}$$

$$f_R + f_S = 1 \tag{2}$$

$$R_{R} = -R_{S} \tag{3}$$

$$R_{R} = R_{ob} \text{ at } t = 0 \tag{4}$$

where f_R and f_S are the mole fractions of the two enantiomers, R_R and R_S are the optical rotations of the two enantiomers, and R_{ob} is the measured rotation. Substituting equations 2 and 3 into 1 yields

$$f_R = \frac{R_{ob} + R_R}{2R_R} \tag{5}$$

From this and $f_S = 1-f_R$, one can easily calculate ([R] - [S])/[R]_O.

Derivation of the Theoretical Equations for [R] + [S] and [R] - [S]. You are given the system

$$\begin{array}{ccc}
R & \xrightarrow{k_1} & IN & \xrightarrow{k_{-1}} & S \\
\downarrow k_2 & & \downarrow k_2 & & P
\end{array}$$

where R and S are the enantiomers of the substrate, IN is the intermediate (RP or IP), and P the products(s). If $[R] = [R]_O$ and [S] = 0 at t = 0, and $F = k_2/(k_2 + 2k_1)$, one derives the following equations if the steady state approximation is applied to IN

$$\frac{d([R] - [S])}{dt} = -k_1([R] - [S]) \tag{6}$$

$$\frac{d([R] + [S])}{dt} = -k_1 F([R] + [S]) \tag{7}$$

Thus,

$$In\frac{[R] + [S]}{[R]_c} = -k_1 Ft \qquad \text{and} \qquad (8)$$

$$In\frac{[R] - [S]}{[R]_O} = -k_1 t \tag{9}$$

Suitable plots yield slopes whose ratio is F.

The Taylor series for e^x where $x = -k_1Ft$ and $-k_1t$, respectively, are

$$e^{-k_1Ft} = 1 - k_1Ft + \frac{(-k_1Ft)^2}{2} + \frac{(-k_1Ft)^3}{6} + \cdots$$
 (10)

© 2002 American Chemical Society, J. Org. Chem., Gao jo020472r Supporting Info Page 4

$$e^{-k_1 t} = 1 - k_1 t + \frac{(-k_1 t)^2}{2} + \frac{(-k_1 t)^3}{6} + \cdots$$
 (11)

Therefore,
$$\frac{[R] + [S]}{[R]_O} = 1 - k_1 Ft \qquad \text{and} \qquad (12)$$

$$\frac{[R] - [S]}{[R]_Q} = 1 - k_1 t \tag{13}$$

if one ignores the square and higher order terms. This is valid where k_1Ft and k_1t are small. One will observe zero-order behavior at "short" times even for a first-order reaction.

The disappearance of R and S is genuinely zero order, the reaction scheme above will yield the following results.

$$[R] = [R]_O - k_1 \left(\frac{1+F}{2}\right)t \tag{14}$$

$$[P] = Fk_1 t \tag{15}$$

$$[S] = k_1 \left(\frac{1 - F}{2}\right) t \tag{16}$$

Adding and substration equations 14 and 16 yields

© 2002 American Chemical Society, J. Org. Chem., Gao jo020472r Supporting Info Page 5

$$[R] + [S] = R_O - Fk_1 t \tag{17}$$

$$[R] - [S] = R_O - k_1 t \tag{18}$$

Therefore,

$$\frac{[R] - [S]}{[R]_O} = 1 - \frac{Fk_1}{R_O}t$$
 and (19)

$$\frac{[R] + [S]}{[R]_O} = 1 - \frac{Fk_1}{R_O}t \tag{20}$$

The ratio of the slopes of equations 16 and 17 yields F.

Table. Photolysis of (R)-2-iodooctane. Disappearance of reactant and optical activity.^a

		cycl	cyclopentane	e e			e me	methanol				2-metl	2-methyl-2-propanol	opanol	
Reaction Time (hr)	$\frac{R-S}{R_o}$	$\frac{R+S}{R_o}$	ᆈᇲ	S S	မ	$\frac{R-S}{R_o}$	R+S Ro	R &	S S	ee	$\frac{R-S}{R_o}$	$\frac{R+S}{R_o}$	R _o	R _o	ee
0	-	-	_	0	1	-		1	0	1	1	1	-1	0	1
.25	<.83	>.83	.83	8	66	75	.97	98.	.11	<i>TT.</i>	98:	96.	96:	9.	.91
.50	74	92.	.75	.01	76.	.63	.83	.73	.10	.76	.74	08.	77.	.03	.93
	.57	69:	.63	90.	.83	.35	.71	.53	.18	.49	.50	.63	.565	.065	.79
1.5	.39	.61	.50	.11	.64	.10	.50	.30	.20	.20	.31	.57	4.	.13	.54
2	.13	.55	34	.21	.24	.03	.31	.17	4.	.10	.15	.31	.23	8 0.	.48
3	0	.52	.26	.26	0	0	.20	.13	.13	0	.05	90.	.055	.00.	60:
4	0	.50	.25	.25	. 0	0	.12	90:	90:	0	0	.03	.015	.015	0
\$	0	.46	.23	.23	0	0	80.	9.	40	0	0	.01	.01	.01	0
9	0	.40	.20	.20	0										
6	0	.28	1.	.14	0										-
12	0	.22	.11	.11	0										
				i											

(a) R and S represent the concentrations of the R and S enantiomers. R_0 is the concentration of the R enantiomer at t = 0. ee = % enantiomeric

excess \div 100.