Synthesis of 17- -Substituted Estradiol-Pyridin-2-yl

Hydrazine Conjugates as Effective Ligands for Labeling with Alberto's Complex $f a c-\left[\operatorname{Re}\left(\mathrm{OH}_{2}\right)_{3}(\mathrm{CO})_{3}\right]^{+}$in Water

Jeffrey B. Arterburn \dagger^{*}, Cesear Corona, \dagger Kalla Venkateswara Rao, \dagger Kathryn E. Carlson, \ddagger John A. Katzenellenbogen \ddagger.

\dagger Department of Chemistry and Biochemistry MSC 3C, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003, and \ddagger Department of Chemistry, University of Illinois, 600 S. Mathews Avenue, Urbana, Illinois 61801

General experimental methods.S2

Experimental data compounds 7a, 9b, 12a-i, 15, 16, 21-26 S3
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{1 - 4 , 7 a} \mathbf{7 a}, \mathbf{9 b}, \mathbf{1 2} \mathbf{- i}, \mathbf{1 5}, \mathbf{1 6}$, and 21-26................S9

SUPPORTING INFORMATION:

General Considerations: All experiments were performed in an efficient fume hood. Solvents and reagents were used without further purification. All air sensitive reagents were transferred in a drybox, and the reactions were carried out under argon atmosphere. Silica gel 60, 70-230 mesh was used for column chromatography. Flash chromatography was performed using a medium pressure flash chromatography system utilizing prepacked silica gel columns. Deuterated solvents were used without further purification.

NMR spectra were acquired at ambient temperatures $\left(18 \pm 2{ }^{\circ} \mathrm{C}\right)$, unless otherwise noted. The ${ }^{1} \mathrm{H}$ NMR spectra in CDCl_{3} were referenced to TMS unless otherwise noted. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded at 50 or 100 MHz and referenced relative to the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ peaks of the solvent. Spectra are reported as ppm, (multiplicity, coupling constants (Hz), and number of protons). Melting points are uncorrected. Infrared spectra were recorded as KBr pellets or neat samples on NaCl plates and are reported in cm^{-1}

17 -[6-(chloro-pyridin-3-ylethynyl)]-estra-1,3,5(10)-triene-3,17 -diol (7a). A 2-neck flask was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(5.7 \mathrm{mg}, 0.026 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(13.4 \mathrm{mg}, 0.051 \mathrm{mmol})$ and was flushed with argon. Contents were suspended in diethylamine (1.5 mL) and the solution was allowed to stir under argon for 10 minutes. $6(121 \mathrm{mg}, 0.51 \mathrm{mmol})$ and $\mathrm{CuI}(9.7 \mathrm{mg}, 0.051 \mathrm{mmol})$ were added as solids. After an additional 10 minutes, $\mathbf{5 a}(150 \mathrm{mg}, 0.51 \mathrm{mmol})$ was added and the mixture was allowed to stir for 6 h . Volatiles were removed under vacuum and residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through celite. The filtrate was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent under vacuum, the brown residue was chromatographed ($2.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield 7 a (93\%) as a yellow solid. Mp: 132.8-133.9. IR (KBr): 3406, 2931, 2870, 2361,2343, 1611, 1499, 1456, 1385, $1359,1286 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \quad 8.45(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.42 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}) 4.57(\mathrm{~s}, 1 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.35(\mathrm{~m}, 2 \mathrm{H}) 2.250-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.60(\mathrm{~m}, 4 \mathrm{H})$, $1.60-1.25(\mathrm{~m}, 6 \mathrm{H}) 0.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3} 50 \mathrm{MHz}\right): 153.6,152.0,141.1,138.1,132.1,126.5,123.9$, $115.3,112.8,97.6,80.4,76.3,49.9,47.7,43.6,39.4,39.1,38.9,33.2,29.6,27.2,26.4,22.9,14.1$, 12.9.

17 -[6-(Chloro-pyridin-3-yl-(E)-ethenyl)]-estra-1,3,5(10)-triene-3,17 -diol (9b): A mixture of $\mathbf{8 b}(200 \mathrm{mg}, 0.58 \mathrm{mmol})$ and $\mathrm{CsF}(222 \mathrm{mg}, 1.46 \mathrm{mmol})$ were stirred under vacuum for 30 min . To the above material, 6 ($174 \mathrm{mg}, 0.72 \mathrm{mmol}$) and tetrakis(triphenylphosphine)palladium(0) ($68 \mathrm{mg}, 0.058$ mmol) were added and the contents were dissolved in DME (5 mL). The reaction mixture was heated at $90{ }^{\circ} \mathrm{C}$ for 18 h . The mixture was filtered, and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvents were removed in vacuo and the residue chromatographed ($50 \% \mathrm{EtOAc} / \mathrm{Hex}$) to yield 9b (195 mg, 84\%) as a white solid. Mp: 229-228 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3292, 2923, 1585, 1461, $1023 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ (DMSO, 200 MHz): 9.00 $(\mathrm{s}, 1 \mathrm{H}),, 8.45(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=2 \mathrm{~Hz}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85-6.35(\mathrm{~m}, 4 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 2.35-1.20(\mathrm{~m}, 11 \mathrm{H}), 2.69(\mathrm{~s}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}(\mathrm{DMSO}$, 50 MHz,): $\quad 154.8,154.7,148.1,147.8,140.8,137.1,136.2,132.5,130.5,125.8,123.9,121.0,114.9$,
$112.6,82.8,48.7,47.2,43.1,36.3,32.3,29.2,27.1,26.1,23.1,14.2$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClNO}_{2}: \mathrm{C}$, 73.28; H, 6.88; N, 3.42. Found: C, 72.94; H, 7.08; N, 3.34.

General Procedure (Table 1): A Schlenk tube was charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ 1, 1^{\prime}-bis(diphenylphosphanyl) ferrocene (dppf), di-tert-butyl hydrazodiformate $\mathbf{1 0}$ and aryl substrate 11a-11i in a dry box. The tube was purged with argon and toluene (2 mL) was added. The reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ with stirring until the hydrazine derivative had been consumed, as judged by TLC. The reaction mixture was cooled, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water and concentrated under vacuum. The crude residue was purified by silica gel chromatography.
$\mathbf{N}, \mathbf{N}^{\prime}$-Bis-tert-butoxycarbonyl-(pyridin-2-yl)-hydrazine (12a): The general procedure was followed with 2-bromopyridine $\mathbf{1 1 b}(474 \mathrm{mg}, 3 \mathrm{mmol}), 10(560 \mathrm{mg}, 2.4 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(109 \mathrm{mg}$, $0.12 \mathrm{mmol}) \mathrm{dppf}(200 \mathrm{mg}, 0.36 \mathrm{mmol}, 12 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1.05 \mathrm{~g}, 3 \mathrm{mmol})$. Column purification $(20 \% \mathrm{EtOAc} / \mathrm{Hex})$ gave $(630 \mathrm{mg}, 85 \%)$ of the coupled product 7 a as a white solid. $\mathrm{Mp}:: 80-82{ }^{\circ} \mathrm{C}$. IR (KBr): 3171, 2975, 1731, 1595, 855, 771, cm ${ }^{-1}$. H NMR ($\left.\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}$, $J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=8,4 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $50 \mathrm{MHz}): \quad 154.9,153.5,153.1,147.3,137.3,120.3,118.7,82.1,80.7,27.9,27.8$. FAB MS (M+1) calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}: .310 .1766$. Found: 310.1766 .

N,N'-Bis-tert-butoxycarbonyl-(pyrazin-2-yl)-hydrazine (12d): The general procedure was followed with iodopyrazine $11 \mathrm{~d}(206 \mathrm{mg}, 1 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(37 \mathrm{mg}, 0.04 \mathrm{mmol})$, dppf ($67 \mathrm{mg}, 0.12$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(352 \mathrm{mg}, 1 \mathrm{mmol})$, and $10(186 \mathrm{mg}, 0.8 \mathrm{mmol})$. Column purification ($20 \% \mathrm{EtOAc} /$ Hex) gave ($210 \mathrm{mg}, 85 \%$ yield) of the coupled product $\mathbf{1 2 c}$ as a white solid. $\mathrm{Mp}: 102{ }^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr})$ $3191,2998,1737,1347,1020 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}_{\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): \quad 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 7.82 .20}$ $(\mathrm{s}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right.$) : $\quad 154.7,152.6,150.4,141.5,140.1,139.9$, 83.4, 81.5, 28.0, 27.91 Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 54.18 ; \mathrm{H}, 7.15$; N, 18.05. Found: C, 54.20; H, 7.40; N, 18.03.

N,N'-Bis-tert-butoxycarbonyl-(pyridin-4-yl)-hydrazine (12e): The general procedure was followed with 4-bromopyridine hydrochloride $\mathbf{1 1 e}(195 \mathrm{mg}, 1 \mathrm{mmol}), \mathbf{1 0}(187 \mathrm{mg}, 0.8 \mathrm{mmol})$, $\operatorname{Pd}_{2}(\mathrm{dba})_{3}(37 \mathrm{mg}, 0.04 \mathrm{mmol}), \operatorname{DPPF}(67 \mathrm{mg}, 0.12 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(704 \mathrm{mg}, 2 \mathrm{mmol})$. Column purification ($50 \% \mathrm{EtOAc} / \mathrm{Hex}$) gave ($200 \mathrm{mg}, 80 \%$) the coupled product 12e as a white solid. IR (KBr) $3176,2977,1744,1595,839,765 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \quad 8.50(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.95(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left(\mathrm{CDCL}_{3}, 50 \mathrm{MHz}\right):$ $155.0,152.2,149.9,149.2,114.2,83.5,81.9,28.9 \mathrm{ppm}$.

N,N'-Bis-tert-butoxycarbonyl-(6-nitro-pyridin-3-yl)-hydrazine (12i). The general procedure was followed with 5-Bromo-2-nitro-pyridine $\mathbf{1 1 i}(406 \mathrm{mg}, 2 \mathrm{mmol}), 10(371 \mathrm{mg}, 1.6 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(73$ $\mathrm{mg}, 0.08 \mathrm{mmol})$, dppf ($133 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(650 \mathrm{mg}, 2.2 \mathrm{mmol})$. After 18 hrs . the reaction mixture was cool to r.t. diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through celite and washed with $\mathrm{H}_{2} \mathrm{O}$. Solvent was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and volatiles were removed in vacuo. Flash chromatography ($20 \% \mathrm{EtOAc} / \mathrm{Hex}$) was used to separate the most polar impurities from the resulting red solid. Column eluent was concentrated and the residual dissolved in a minimal volume of EtOAc. Hexanes were added until the solution began to cloud. Upon cooling to 0 C , a yellow solid crystallized from the solution that was collect by filtration and washed with cold hexanes. The solid was dried under vacuum yielding (188 $\mathrm{mg}, 33 \%$) 12i as a yellow solid. Mp: 121.0-122.3. IR (KBr) 3191, 2987, 1746, 1574, 1546, 1476, $1305,1168 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 2 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H})$, $1.52(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \quad 154.9,151.9,143.7,140.7,130.3,118.1,84.7,82.9,28.04$, 27.92.

N,N'-Bis-tert-butoxycarbonyl-(4-nitro-phenyl)-hydrazine (15): The general procedure was followed with 1-bromo-4-nitrobezene $14(150 \mathrm{mg}, 0.74 \mathrm{mmol}), 10(172 \mathrm{mg}, 0.74 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(27$ $\mathrm{mg}, 0.03 \mathrm{mmol})$, dppf ($49 \mathrm{mg}, 0.09 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(268 \mathrm{mg}, 0.82 \mathrm{mmol})$. Column chromatography (15% EtOAc / Hex) yielded ($166 \mathrm{mg}, 80 \%$) 15 as a white solid. Mp: 121-122 C. IR (KBr) 3325,

2982, 1736, 1595, $856 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.8$,

2H), $7.12(\mathrm{~s}, 1 \mathrm{H}) 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): 155.0,152.4,147.6,143.6$, 123.9, 121.1, 83.6, 82.2, 28.0, 27.9.

2-Chloro-5-hex-1-ynyl-pyridine (21). $\mathrm{Pd}(\mathrm{OAc})_{2}(22.4 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{PPh}_{3}(38 \mathrm{mg}, 0.2 \mathrm{mmol})$, and $\mathrm{Et}_{2} \mathrm{NH}(2 \mathrm{~mL})$ were charged into a two-neck flask and the suspension stirred for ten min. CuI ($38 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $5(479 \mathrm{mg}, 2 \mathrm{mmol})$ were added, then after ten min 1-hexyne ($0.23 \mathrm{~mL}, 2 \mathrm{mmol}$) was added and the reaction was stirred at rt overnight. Volatiles were removed under vacuum and the residue was dissolved in EtOAc, filtered through celite, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The product was chromatographed (5\%EtOAc / Hex) to yield (384mg, $90 \%) 21$ as a colorless oil. IR (neat): 2959, 2933, 2234, 1581, 1545, 1456, 1358, 1135, 1109, 1025, $833 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.39(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \quad 151.8,149.4,140.7,123.4,119.9,95.1,75.9,30.3,21.8,18.9,13.4$.

N,N'-Bis-tert-butoxycarbonyl-(5-Hex-1-ynyl-pyridin-2-yl)-hydrazine (22) A Schlenk tube was charged with 10 ($225 \mathrm{mg}, 0.97 \mathrm{mmol})$ and $21(235 \mathrm{mg}, 1.2 \mathrm{mmol}) . \mathrm{Pd}_{2}(\mathrm{dba})_{3}(44 \mathrm{mg}, 0.048 \mathrm{mmol})$, dppf $(80 \mathrm{mg}, 0.144 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(423 \mathrm{mg}, 1.3 \mathrm{mmol})$ were added in a dry box. The tube was purged with argon and toluene (2.5 mL) was added. The reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ with stirring for 19 h . The reaction mixture was cooled, diluted with EtOAc, filtered through celite, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude residue was purified by flash chromatography (20% EtOAc / Hex) to give ($252 \mathrm{mg} 67 \%$) 22 as a colorless oil. IR (neat): 3331, 3191, 2979, 2361, 2254, 1724, 1716, 1482, $1176 \mathrm{~cm}^{-1} .1 \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): 8.57(s, 1H), $8.42(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d} J=8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.45(\mathrm{~m}, 22 \mathrm{H})$, $0.95(\mathrm{t} J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \quad 154.9,152.9,151.9150,139.8,117.6,93.2,82.5$, 80.9, 76.9, 30.5, 28.1, 27.9, 21.8, 19.0, 13.5.

2-Chloro-5-styryl-pyridine (23). Trans-vinylphenyl boronic acid (326 mg, 2.2 mmol), $\mathbf{5}$ (479 mg , $2.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(45 \mathrm{mg}, .0 .2 \mathrm{mmol})$ tetrabutyl ammonium bromide ($645 \mathrm{mg}, 2 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($529 \mathrm{mg}, 5 \mathrm{mmol}$) were suspended in degassed $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ under argon. The mixture was heated to reflux for 16 hrs. Water (10 mL) was added, and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined extracts were concentrated under vacuum and purified by silica gel column chromatography (5\% EtOAc / Hex) to give (220mg, 51\%) 23 as a white solid. Mp: 84-85 C. IR (KBr): 3434, 3029, 2362, 1553, 1459, 1372, 1146, 1099, $962 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): 8.38(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67(\mathrm{dd}, J=2.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}) 7.33(\mathrm{~m}, 2 \mathrm{H}) 7.28(\mathrm{~m}, 1 \mathrm{H}) 7.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}$, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \quad 149.5,147.8,135.9,134.9,131.7$, 130.1, 128.5, 128.16, 126.4, 123.9, 123.0.

N,N'-Bis-tert-butoxycarbonyl-(5-styryl-pyridin-2-yl) hydrazine (24). A Schlenk tube was charged with $10(129 \mathrm{mg}, 0.56 \mathrm{mmol}), 23(150 \mathrm{mg}, 0.7 \mathrm{mmol}) . \mathrm{Pd}_{2}(\mathrm{dba})_{3}(26 \mathrm{mg}, 0.028 \mathrm{mmol})$, dppf $(47 \mathrm{mg}$, $0.084 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(247 \mathrm{mg}, 0 . .76 \mathrm{mmol})$, and toluene $(1.5 \mathrm{~mL})$. The reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ with stirring for 29 hrs . The reaction mixture was cooled, diluted with EtOAc , filtered through celite ,washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under vacuum. The crude residue was purified by flash chromatography (30% EtOAc / Hex) to yield (130 mg, 57\%) 24 as a white solid. IR (KBr): 3347, 2978, 2935, 1728, 1481, 1369, 1343, 1296, 1248, $1156 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \quad 8.47(\mathrm{~d} J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{dd}, J=8.6,2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H})$, $7.29(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \quad 155.0,153.1,152.6,146.2,136.6,134.1,130.0,128.7,127.5,126.5,124.2$, 118.4, 82.6, 81.1, 28.

17 -[6-(Hydrazino-pyridin-3-ylethynyl)]-estra-1,3,5(10)-triene-3,17 -diol hydrochloride (25). Compound $1(125 \mathrm{mg}, 0.2 \mathrm{mmol})$ was dissolved in absolute ethanol $(4 \mathrm{~mL})$ and cooled to 0 C . To the stirred solution was added con. $\mathrm{HCl}(1 \mathrm{~mL})$ dropwise over 2 min , then stirred at room temperature for

6 h . The volume of the solvent was decreased under vacuum to 1.0 mL and cold $\mathrm{H}_{2} 0(45 \mathrm{~mL})$ was added to precipitate a yellow solid that was collected by vacuum filtration. The solid was dried and residual water was removed under high vacuum affording (84 mg , 95%) of 25. IR (KBr): 3300-2200 (br), $1658 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($10 \% \mathrm{DMSO} / \mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $7.96(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=2,9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=2.4,8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}) 4.55(\mathrm{~s}, 4 \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~m}, 2 \mathrm{H}) 2.21-2.03(\mathrm{~m}, 2 \mathrm{H}) 1.83(\mathrm{~m}, 2 \mathrm{H}) 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.5-$ $1.25(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}(\mathrm{DMSO}, 100 \mathrm{MHz}): \quad 154.96,154.95,148.3,140.7,137.1,130.2,126.1$, $114.9,112.8,111.8,109.3,96.29,80.9,78.7,49.4,47.2,43.3,34.2,32.9,29.2,27.0,26.3,22.6,12.9$.

17 -[6-(Hydrazino-pyridin-3-yl-(E)-ethenyl)]-estra-1,3,5,16(8)-tetraene-3-ol hydrochloride
(26). Compound 2 ($100 \mathrm{mg}, 0.165 \mathrm{mmol}$) was dissolved in EtOAc $(1.5 \mathrm{~mL})$. To the stirred solution was added con. $\mathrm{HCl}(0.5 \mathrm{~mL})$ dropwise over 1 min , then stirred for 2 h in which time the product precipitated out of solution. The solid was dried under high vacuum and triturated with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. Drying under high vacuum yielded 26 (67.6 mg , 97%) as a yellow solid. IR (KBr): 3300-2200 (br) $1658 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.10 \% \mathrm{DMSO} / \mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \quad 7.89(\mathrm{dd}, J=9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~m}, 4 \mathrm{H}), 5.94(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}$, $2 \mathrm{H}), 2.32(\mathrm{~m} 4 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 4 \mathrm{H}) 1.43(\mathrm{~m}, 2 \mathrm{H}) 1.25(\mathrm{~m}, 1 \mathrm{H}) 0.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (DMSO, 100 MHz): $155.0,154.1,152.5,146.4,140.3,137.0,136.0,130.3,125.7,125.2$, $124.1,122.3,115.0,112.8,110.5,56.1,46.1,43.7,36.9,34.8,30.8,29.1,27.3,26.3,16.0$.

9b

12 d

-2

\because
\because

$\underset{\sim}{n}$

$\stackrel{i}{n}$

$\stackrel{1}{2}$

