J. Org. Chem., 1998, 63(14), 4732-4740, DOI:10.1021/jo9804700

Terms \& Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machinereadable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

ACS Publications

REVISED

The Synthesis of (\pm)-Allocyathin \mathbf{B}_{2} and (+)-Erinacine A
Barry B. Snider*, Nha Huu Vo, and Steven V. O'Neil
Department of Chemistry, Brandeis University, Waltham, MA 02254-9110

Supplementary Material

Methyl 2,4,5,6,7,7a-Hexahydro-7a α-methyl-4 α-(3-methyl-3-butenyl)-3-(1-
 methyl-2-butene $(11 \mathrm{~mL})$ in tert- $\mathrm{BuOH}(14 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added a solution of $\mathrm{NaClO}_{2}(1.24 \mathrm{~g}, 13.7$ $\mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(13.7 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The resulting mixture was stirred at rt for 15 min , and quenched by addition of $\mathrm{HOAc}(1.2 \mathrm{~mL})$. The solution was saturated with NaCl and extracted with EtOAc. The combined extracts were concentrated and excess HOAc was azeotropically removed under reduced pressure with heptane.

The crude acid was dissolved in ether (3 mL) and treated with a solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in ether. Excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was quenched with HOAc. Crude ester 15 was taken up in ether (50 mL) which was washed with saturated NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was purified by flash chromatography ($49: 1$ hexane/EtOAc) to provide 396 mg (95%) of 15 as a $1: 1$ mixture of stereoisomers: ${ }^{1} \mathrm{H}$ NMR (both) 4.69 (br s, 0.5×1), 4.66 (br s, 0.5×1), 4.65 (br s, $0.5 \times$ 1), $4.62(\mathrm{br} \mathrm{s}, 0.5 \times 1), 3.69(\mathrm{~s}, 0.5 \times 3), 3.63(\mathrm{~s}, 0.5 \times 3), 3.10(\mathrm{br} \mathrm{dd}, 0.5 \times 1, J=8.3,8.3), 3.03$ (ddd, $0.5 \times 1, J=4.8,4.8,11.2$), $2.71(\mathrm{~h}, 1, J=6.8), 2.58-2.52(\mathrm{~m}, 0.5 \times 1), 2.42(\mathrm{ddd}, 0.5 \times 1, J$ $=3.4,4.8,12.7$), $2.35-2.04(\mathrm{~m}, 2), 2.00-1.35(\mathrm{~m}, 9), 1.71(\mathrm{br} \mathrm{s}, 0.5 \times 3), 1.67(\mathrm{br} \mathrm{s}, 0.5 \times 3)$, $1.25-1.10(\mathrm{~m}, 1), 1.08(\mathrm{~s}, 0.5 \times 3), 1.06(\mathrm{~s}, 0.5 \times 3), 0.97(\mathrm{~d}, 3, J=6.8), 0.96(\mathrm{~d}, 0.5 \times 3, J=$ $6.8), 0.95(\mathrm{~d}, 0.5 \times 3, J=6.8) ;{ }^{13} \mathrm{C}$ NMR (both) $175.3,175.1,146.2,146.1,142.4$ (2 C), 137.1, $136.2,109.6,109.3,51.4,51.3,48.0,46.4,46.1,45.3,41.9,41.8,41.1,38.0,36.6,36.3,36.0$, $35.7,33.4,27.8,27.5,27.2,26.44,26.42,25.1,25.0,22.60,22.57,21.7,21.3,20.9,20.8,20.5$, 20.4; IR (neat) 3072, 1738, 1733, 1651.

Methyl 5β-Benzyloxymethyl-2,4,5,6,7,7a-hexahydro-7a α-methyl-4 α-(3-methyl-3-butenyl)-3-(1-methylethyl)-1H-indene-5 α-carboxylate (16). A solution of diisopropylamine ($499 \mathrm{mg}, 4.93 \mathrm{mmol}$) in THF (20 mL) and $n-\mathrm{BuLi}(1.97 \mathrm{~mL}$ of 2.5 M in hexane,
4.93 mmol) was stirred at $0^{\circ} \mathrm{C}$ for 30 min and cooled to $-78^{\circ} \mathrm{C}$. To the resulting solution was added a solution of $15(1.00 \mathrm{~g}, 3.28 \mathrm{mmol})$ in THF at $-78^{\circ} \mathrm{C}$. The solution was warmed to $0^{\circ} \mathrm{C}$ over 2 h and recooled to $-78^{\circ} \mathrm{C}$. A solution of $\mathrm{BOMCl}^{19}(1.14 \mathrm{~g}$ of 90% pure, 6.56 mmol) in THF (5 mL) was added via a cannula. The reaction mixture was stirred 30 min at $-78^{\circ} \mathrm{C}$, warmed to rt , and quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting solution was taken up in ether, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent followed by flash chromatography on silica gel (49:1 hexane/EtOAc) gave $1.27 \mathrm{~g}(91 \%)$ of pure 16: ${ }^{1} \mathrm{H}$ NMR 7.35-7.17 (m, 5), $4.64(\mathrm{br} \mathrm{s}, 1), 4.60$ (br s, 1), $4.47(\mathrm{~d}, 1, J=12.2), 4.39(\mathrm{~d}, 1, J=12.2), 3.69(\mathrm{~s}, 3), 3.52(\mathrm{~d}, 1, J=9.1), 3.49(\mathrm{~d}, 1, J=$ 9.1), $2.62(\mathrm{~h}, 1, J=6.8), 2.51(\mathrm{dd}, 1, J=4.2,11.7), 2.26(\mathrm{ddd}, 1, J=7.5,10.4,15.5), 2.15-1.97$ ($\mathrm{m}, 3$), 1.89-1.55 (m, 4), 1.65 (br s, 3), 1.41-1.10 (m, 4), $1.08(\mathrm{~s}, 3), 0.93(\mathrm{~d}, 3, J=6.8), 0.90(\mathrm{~d}$, $3, J=6.8) ;{ }^{13} \mathrm{C}$ NMR $176.6,146.0,144.3,138.2,135.1,128.1,127.7,127.5,109.4,73.1,72.2$, $51.9,51.5,46.0,42.4,39.7,36.3,35.5,28.4,27.6,26.2,25.5,22.6,21.4,20.6,20.5$; IR (neat) 1741, 1730, 1651. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{3}$: C, 79.20; H, 9.49. Found: C, 78.98; H, 9.15. 5β-Benzyloxymethyl-2,4,5,6,7,7a-hexahydro-7a α-methyl-4 α-(3-methyl-3-butenyl)-3-(1-methylethyl)-1 H-indene-5 α-methanol (17). To a solution of 16 ($1.00 \mathrm{~g}, 2.35$ mmol $)$ in THF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{LiAlH}_{4}(100 \mathrm{mg}, 2.64 \mathrm{mmol})$. After 30 min at $0^{\circ} \mathrm{C}$, the reaction mixture was quenched by sequential addition of $\mathrm{H}_{2} \mathrm{O}(0.10 \mathrm{~mL}), 15 \% \mathrm{NaOH}(0.10 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(0.30 \mathrm{~mL})$. The precipitated salt was removed by filtering through a thin layer of silica, which was then rinsed with ether. The solvent was removed to afford 0.92 g (99\%) of 17 : ${ }^{1} \mathrm{H}$ NMR 7.39$7.22(\mathrm{~m}, 5), 4.66(\mathrm{br} \mathrm{s}, 1), 4.65(\mathrm{br} \mathrm{s}, 1), 4.50(\mathrm{~d}, 1, J=11.7), 4.36(\mathrm{~d}, 1, J=11.7), 3.63(\mathrm{dd}, 1, J$ $=3.7,11.0), 3.56(\mathrm{~d}, 1, J=8.7), 3.55(\mathrm{dd}, 1, J=7.8,11.0), 3.33(\mathrm{~d}, 1, J=8.7), 3.09-3.03(\mathrm{~m}, 1)$, $2.77(\mathrm{dd}, 1, J=4.4,12.3), 2.72(\mathrm{~h}, 1, J=6.8), 2.31(\mathrm{ddd}, 1, J=7.5,10.3,15.6), 2.16(\mathrm{dd}, 1, J=$ $8.2,10.3$), $2.00-1.66(\mathrm{~m}, 3), 1.70(\mathrm{br} \mathrm{s}, 3), 1.64-1.38(\mathrm{~m}, 4), 1.30-1.17(\mathrm{~m}, 3), 1.09(\mathrm{~s}, 3), 0.95(\mathrm{~d}$, $3, J=6.8), 0.92(\mathrm{~d}, 3, J=6.8) ;{ }^{13} \mathrm{C}$ NMR $146.8,143.6,137.8,136.0,128.4,127.7,127.6,109.1$, $76.5,73.7,69.3,46.6,42.4,41.8,36.8,36.2,36.1,27.6,26.8,26.3,25.2,24.0,22.7,21.3,20.5$; IR (neat) 3453,1649 . Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{2}: \mathrm{C}, 81.77 ; \mathrm{H}, 10.17$. Found: $\mathrm{C}, 81.54 ; \mathrm{H}, 10.21$. 2,4,5,6,7,7a-Hexahydro-5b $\alpha, 7 \mathrm{a} \alpha-$ methyl-4 α-(3-methyl-3-butenyl)-3-(1-
methylethyl)- $\mathbf{1 H}$-indene-5 β-methanol (19). To a solution of $17(0.92 \mathrm{~g}, 2.32 \mathrm{mmol})$ and HMPA $(1.25 \mathrm{~g}, 6.96 \mathrm{mmol})$ in DME $(23 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.86 \mathrm{~mL}$ of 2.5 M in hexane, 4.64 mmol). The solution was stirred for 15 min at $0^{\circ} \mathrm{C}$. Bis(dimethylamino)phosphorochloridate $\left(0.76 \mathrm{~mL}\right.$ of 90% pure, 4.64 mmol) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at It for 4 h . The reaction was quenched by addition of a saturated NaHCO_{3} solution. The aqueous solution was extracted with EtOAc. The combined EtOAc extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to yield 1.49 g of crude 18.

Crude $18(1.49 \mathrm{~g})$ was dissolved in ether $(5 \mathrm{~mL})$ and $\mathrm{EtNH}_{2}(20 \mathrm{~mL})$ and the solution was cooled to $-78^{\circ} \mathrm{C}$. $\mathrm{Li}(161 \mathrm{mg}, 23.2 \mathrm{mmol})$ was added in small pieces. The solution was stirred at $-78^{\circ} \mathrm{C}$ until the blue color of the reaction solution faded. Additional Li was added into the reaction mixture at $0^{\circ} \mathrm{C}$ as needed to maintain a faint blue color until the reaction was complete as judged by TLC analysis. The mixture was diluted with ether, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash chromatography on silica gel ($19: 1$ hexane/EtOAc) provided 495 mg (73% for two steps) of pure 19: ${ }^{1} \mathrm{H}$ NMR 4.67 (br s, 1), 4.65 (br s, 1), 3.48 ($\mathrm{d}, 1, J=10.8$), 3.24 ($\mathrm{d}, 1, J=10.8$), $2.66(\mathrm{~h}, 1, J=6.8), 2.31$ (ddd, $1, J=7.6,10.4,15.5$), 2.22 (dd, $1, J=4.5,10.3$), 2.15 (ddd, $1, J=$ $1.2,9.4,15.5$), $2.01(\mathrm{~m}, 2), 1.71$ (br s, 3), 1.70-1.32 (m, 6), 1.22 (br s, 1), 1.08 (s, 3), 1.06-0.84 $(\mathrm{m}, 2), 0.95(\mathrm{~s}, 3), 0.95(\mathrm{~d}, 3, J=6.8), 0.93(\mathrm{~d}, 3, J=6.8) ;{ }^{13} \mathrm{C}$ NMR 146.9, 142.9, 137.1, 109.1, $69.0,46.2,42.4,40.2,38.7,37.4,36.4,27.7,27.6,27.3,26.3,25.3,23.3,22.7,21.3,20.6$; \mathbb{R} (neat) 3361,1649 . Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}: \mathrm{C}, 82.69 ; \mathrm{H}, 11.80$. Found: C, $82.31 ; \mathrm{H}, 11.82$.

2,4,5,6,7,7a-Hexahydro-5 $\alpha, 7 \mathrm{a} \alpha$-dimethyl-4 α-(3-methyl-3-butenyl)-3-(1-

 methylethyl)- $\mathbf{1 H}$-indene- 5β-carboxaldehyde (14b). To a solution of oxalyl chloride (615 mg of 98% pure, 4.75 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added a solution of DMSO ($988 \mathrm{mg}, 12.6$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and a solution of $19(460 \mathrm{mg}$, 1.58 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added. Further stirring for 1 h at the same temperature was followed by addition of triethylamine ($3.53 \mathrm{~mL}, 25.3 \mathrm{mmol}$). The reaction mixture was allowed to warm to $\mathrm{rt} . \mathrm{H}_{2} \mathrm{O}$ was added and the mixture was taken up in ether. The ether layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude residue was purified by flash chromato-graphy (49:1 hexane/EtOAc) to provide $372 \mathrm{mg}(82 \%)$ of pure 14b: ${ }^{1} \mathrm{H}$ NMR 9.39 (s, 1), 4.69 (br s, 1), 4.67 ($\mathrm{br} \mathrm{s}, 1$), 2.87 (dd, $1, J=5.1,11.7$), 2.76 (h, $1, J=6.8$), 2.29 (ddd, $1, J=7.8,10.0,15.7$), 2.14 (ddd, $1, J=1.7,9.3,15.7$), 2.07-1.82 (m, 2), 1.75-1.23 (series of m, 8), 1.72 (br s, 3), 1.09 $(\mathrm{s}, 3), 0.97(\mathrm{~s}, 3), 0.97(\mathrm{~d}, 6, J=6.8) ;{ }^{13} \mathrm{C}$ NMR 207.4, 146.5, 143.5, 135.7, 109.4, 50.4, 46.0, $41.7,38.8,38.4,36.0,27.54,27.49,27.3,26.6,25.1,22.7,21.3,21.2 .20 .8$; IR (neat) 1728 , 1651.

2,4,5,6,7,7a-Hexahydro-5 $\alpha, 7 \mathrm{a} \alpha$-dimethyl-3-(1-methylethyl)-4 α-(3-oxobutyl)$\mathbf{1 H}$-indene-5 β-methanol (20). To a solution of $\mathbf{1 4 b}(27 \mathrm{mg}, 0.092 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ and acetone $(4 \mathrm{~mL})$ was added $\mathrm{KIO}_{4}(63 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(47 \mathrm{mg}$ of 2.5% solution in tert$\mathrm{BuOH}, 0.005 \mathrm{mmol})$. The mixture was stirred at rt for 24 h , and quenched by addition of a solution of $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. The mixture was taken up in ether, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash chromatography of the residue on silica gel ($4: 1$ hexane/EtOAc) provided $22 \mathrm{mg}(82 \%)$ of pure 20: ${ }^{1} \mathrm{H}$ NMR $3.47(\mathrm{~d}, 1, J=10.6), 3.23(\mathrm{~d}, 1, J=10.6), 2.55(\mathrm{~h}, 1, J$ $=6.8), 2.45-2.12(\mathrm{~m}, 5), 2.10(\mathrm{~s}, 3), 1.88-1.32(\mathrm{~m}, 9), 1.05(\mathrm{~s}, 3), 0.97(\mathrm{~d}, 3, J=6.8), 0.97(\mathrm{~s}, 3)$, 0.93 (d, 3, $J=6.8$); ${ }^{13} \mathrm{C}$ NMR 209.4, 143.6, 136.6, 68.8, 46.1, 42.3, 42.2, 39.2, 38.7, 37.2, 29.8, 27.6, 27.1, 26.3, 25.4, 23.1, 22.7, 21.3, 20.7; IR (neat) 3444, 1714. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{2}$: C, 78.03; H, 11.03. Found: C, 77.90; H, 11.27.

2,4,5,6,7,7a-Hexahydro-5 $\alpha, 7 \mathrm{a} \alpha$-dimethyl-3-(1-methylethyl)-4 α-(3-oxobutyl)$1 H$-indene- 5β-carboxaldehyde (21). To a solution of oxalyl chloride (22 mg of 98% pure, 0.17 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of DMSO ($40 \mathrm{mg}, 0.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$. A solution of $20(10 \mathrm{mg}, 0.034 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added. The temperature was maintained at $-78^{\circ} \mathrm{C}$ for 1 h and $\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL}$, 1.02 mmol) was added. The resulting solution was warmed to rt , quenched with $\mathrm{H}_{2} \mathrm{O}$, and diluted with ether. The ether layer was washed with $\mathrm{H}_{2} \mathrm{O}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude residue was purified by flash chromatography on silica gel (19:1 hexane/EtOAc) to afford 8 mg (81%) of pure 21: ${ }^{1} \mathrm{H}$ NMR $9.36(\mathrm{~s}, 1), 2.86(\mathrm{dd}, 1, J=4.9,12.6$), $2.66(\mathrm{~h}, 1, J=6.8), 2.44$ (ddd, $1 . J=5.6,9.3,15.5), 2.37(\mathrm{dd}, 1, J=6.2,9.3), 2.28(\mathrm{ddd}, 1, J=7.9,9.9,15.5), 2.19-2.09(\mathrm{~m}, 1)$,
$2.13(\mathrm{~s}, 3), 1.88-1.53(\mathrm{~m}, 6), 1.47-1.23(\mathrm{~m}, 2), 1.05(\mathrm{~s}, 3), 0.99(\mathrm{~s}, 3), 0.99(\mathrm{~d}, 3, J=6.8), 0.98(\mathrm{~d}$, $3, J=6.8$); ${ }^{13} \mathrm{C}$ NMR 208.9, 206.9, 144.1, 135.5, 50.5, 45.9, 41.7, 41.6, 38.4, 37.7, 29.9, 27.6, $27.3,26.6,25.2,22.2,21.2,21.1,20.9$; IR (neat) $1722,1716$.

2,4,5,6,7,7a-Hexahydro-5 $\alpha, 7 \mathrm{a} \alpha$-dimethyl-3-(1-methylethyl)-4 α-(3-oxobutyl)-

$1 \boldsymbol{H}$-indene-5 β-carboxylic Acid (22). A solution of $21(12 \mathrm{mg}, 0.041 \mathrm{mmol})$ and PDC (31 mg , 0.082 mmol) in DMF (1 mL) was stirred at rt for 20 h . The solution was diluted with ether, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude residue was purified by flash chromatography on silica gel ($3: 2$ hexane/EtOAc) to afford 11 mg (87%) of 22 which was crystallized from 1:1 hexane-ether: $\mathrm{mp} 155-157^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR 3.06 (dd, $1, J=4.6,12.6$), $2.65(\mathrm{~h}, 1, J=6.8$), 2.45-2.08 (m, 4), $2.12(\mathrm{~s}, 3), 1.88-1.37$ (series of $\mathrm{m}, 8$), $1.24(\mathrm{~s}, 3), 1.04(\mathrm{~s}, 3), 0.97(\mathrm{~d}, 3, J=6.8)$, $0.91(\mathrm{~d}, 3, J=6.8) ;{ }^{13} \mathrm{C}$ NMR 209.0, 183.1, 143.7, 135.7, 48.0, 46.0, 42.05, 41.98, 39.0, 38.9, $29.9,28.1,27.5,26.6,25.4,25.2,22.3,20.98,20.95 ; \operatorname{IR}\left(\mathrm{Cll}_{4}\right) 3524,1719,1698$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$: C, $74.51 ; \mathrm{H}, 9.87$. Found: $\mathrm{C}, 74.76 ; \mathrm{H}, 9.88$.
(3a $\alpha, 5 \mathrm{a} \beta, 6 \beta, 10 \mathrm{a} \beta$)-2,3,3a,4,5,5a,6,7,10,10a-Decahydro-3a,5a-dimethyl-1-(1-methylethyl)-6-(dimethyl-1,1-dimethylethylsilyloxy)-cyclohept[e]indene-8-methanol (26). To a solution of $23(477 \mathrm{mg}, 1.65 \mathrm{mmol}$) in DMF (2 mL) was added imidazole ($225 \mathrm{mg}, 3.31$ mmol) and TBDMSCl (514 mg of 97% pure, 3.31 mmol). The mixture was stirred at rt for 1 d . The reaction mixture was taken up in ether and washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Flash chromatography ($99: 1$ hexane/EtOAc) of the crude residue provided 664 mg (100%) of the silyl ether as a clear oil: ${ }^{1} \mathrm{H}$ NMR 4.66 ($\mathrm{br} \mathrm{s}, 1$), $4.65(\mathrm{br} \mathrm{s}, 1), 3.47(\mathrm{~d}, 1, J=9.7$), $2.63(\mathrm{~h}, 1, J=6.8), 2.61(\mathrm{dd}, 1, J=10.3,14.1), 2.42-2.35(\mathrm{~m}, 1), 2.33(\mathrm{~d}, 1, J=10.5), 2.25$ (ddd, $1, J=7.2,10.1,15.4), 2.19-2.09(\mathrm{~m}, 3), 1.78-1.63(\mathrm{~m}, 2), 1.56-1.36(\mathrm{~m}, 5), 1.28-1.19(\mathrm{~m}, 1), 0.97$ $(\mathrm{d}, 3, J=6.8), 0.96(\mathrm{~s}, 3), 0.93(\mathrm{~d}, 3, J=6.8), 0.90(\mathrm{~s}, 9), 0.77(\mathrm{~s}, 3), 0.09(\mathrm{~s}, 3), 0.04(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR 149.2, 142.4, 139.2, 110.7, 80.3, 46.1, 43.4, 41.3, 41.0, 40.8, 39.3, 36.7, 30.9, 30.3, 27.7, 26.4, 26.0, 24.7, 21.4, 21.2, 19.2, 18.0, -3.7, -4.8; $\mathrm{IR}\left(\mathrm{CCl}_{4}\right)$ 1639. Anal Calcd for $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{OSi}$: C, 77.54; H, 11.51. Found: C, 77.52; H, 11.72.

To a solution of the above silyl ether ($664 \mathrm{mg}, 1.65 \mathrm{mmol}$) in tert- $\mathrm{BuOH}\left(8.0 \mathrm{~mL}\right.$) and $\mathrm{H}_{2} \mathrm{O}$
$(2.0 \mathrm{~mL})$ was added NMO (398 mg of 97% pure, 3.30 mmol) and $\mathrm{OsO}_{4}(168 \mathrm{mg}$ of 2.5% in tert$\mathrm{BuOH}, 0.017 \mathrm{mmol})$. The mixture was stirred at rt for 1 d and was quenched by addition of a solution of $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. After 30 min at it the reaction mixture was extracted with EtOAc. The combined extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure to afford 715 mg of a crude $2: 1$ mixture of the epimeric diols that was used without further purification.

A solution of crude diols (715 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and pyridine (4 mL) was treated with $\mathrm{Ac}_{2} \mathrm{O}(0.31 \mathrm{~mL}, 3.30 \mathrm{mmol})$. The mixture was stirred at rt for 10 h , diluted with ether, washed with saturated $\mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude residue was purified by flash chromatography on silica gel ($9: 1$ hexane/EtOAc) to give 635 mg (80% for 2 steps) of a $2: 1$ mixture of epimeric hydroxy acetates.

To a solution of the epimeric hydroxy acetates ($600 \mathrm{mg}, 1.25 \mathrm{mmcl}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{MsCl}(0.50 \mathrm{~mL}, 6.25 \mathrm{mmol})$ dropwise. The mixture was kept at $-20^{\circ} \mathrm{C}$ for 2 h and at rt for 1 h . The solution was diluted with ether, washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give crude allylic acetate.

Crude allylic acetate was dissolved in $\mathrm{MeOH}(30 \mathrm{~mL})$ and $10 \% \mathrm{NaOH}(5 \mathrm{~mL})$ was added. The resulting solution was heated to reflux for 1 h , diluted with ether, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude residue was purified by flash chromatography on silica gel (9:1 hexane/EtOAc) to provide $356 \mathrm{mg}(68 \%)$ of pure 26: ${ }^{1} \mathrm{H}$ NMR 5.66 (br d, $1, J=8.3$), 4.05-3.92 (m, 2), 3.67 (dd, $1, J=1.3,10.7$), $2.75-2.64(\mathrm{~m}, 1), 2.58(\mathrm{~h}, 1, J=6.8), 2.54-2.45(\mathrm{~m}, 1), 2.39(\mathrm{~d}, 1, J$ $=11.7), 2.26(\mathrm{ddd}, 1, J=7.3,10.5,15.5), 2.13(\mathrm{dd}, 1, J=9.1,15.5), 1.89(\mathrm{~d}, 1, J=17.1), 1.72-$ $1.32(\mathrm{~m}, 8), 0.98(\mathrm{~s}, 3), 0.95(\mathrm{~d}, 3, J=6.8), 0.90(\mathrm{~d}, 3, J=6.8), 0.89(\mathrm{~s}, 9), 0.79(\mathrm{~s}, 3), 0.05(\mathrm{~s}$, 3), 0.04 ($\mathrm{s}, 3$); ${ }^{13} \mathrm{C}$ NMR $141.1,140.2,138.2,126.8,78.5,68.8,46.1,41.7,41.5,40.9,36.6$, $34.0,32.3,29.4,27.7,26.1,25.9,25.0,21.4,21.1,18.0,17.6,-4.1,-4.8$; IR (neat) $3300,1669$. (3a $\alpha, 5 \mathrm{a} \beta, 6 \beta, 10 \mathrm{a} \beta$)-2,3,3a,4,5,5a,6,7,10,10a-Decahydro-3a,5a-dimethyl-1-(1-methylethyl)-6-(dimethyl-1,1-dimethylethylsilyloxy)-cyclohept[e]indene-8-carboxaldehyde (27). A reaction identical to that described above for the preparation of 26 was carried out using $300 \mathrm{mg}(0.63 \mathrm{mmol})$ of a $2: 1$ epimeric mixture of hydroxy acetates. However, the crude 26
obtained was oxidized directly by stirring in a slurry of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and $\mathrm{MnO}_{2}(644 \mathrm{mg}$ of 85% pure, 6.30 mmol) for 15 h at rt . The reaction mixture was filtered through a thin layer of silica gel, and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated and the crude residue was purified by flash chromatography on silica gel ($49: 1$ hexane/EtOAc) to provide 164 mg (62% from the hydroxy acetates) of pure 27: ${ }^{1} \mathrm{H}$ NMR $9.36(\mathrm{~s}, 1), 6.71(\mathrm{~d}, 1, J=7.6), 3.53$ (dd, $1, J=4.7,7.3$), 2.88-2.74 (m, 1), 2.58-2.48 (m, 3), 2.43 (d, $1, J=11.9$), 2.27 (ddd, $1, J=7.3,10.5,15.8$), 2.15 (dd, $1, J=9.1$, 14.7), $2.04(\mathrm{dd}, 1, J=7.8,9.1), 1.68(\mathrm{dd}, 1, J=7.0,11.9), 1.65-1.36(\mathrm{~m}, 5), 1.01(\mathrm{~s}, 3), 0.94(\mathrm{~d}$, $3, J=6.8), 0.91(\mathrm{~d}, 3, J=6.8), 0.88(\mathrm{~s}, 9), 0.81(\mathrm{~s}, 3), 0.02(\mathrm{~s}, 3), 0.00(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR 193.7, $154.9,142.4,141.3,140.0,78.2,46.1,41.6,41.2,40.5,36.4,33.8,29.2,28.3,27.8,26.2,25.9$, $25.1,21.3,21.1,18.0,17.5,-4.3,-4.9$; IR (neat) $1690,1643$.
(3a $\alpha, 5 a \beta, 6 \beta, 10 a \beta$)-8,9-ероху-2,3,3a,4,5,5a,6,7,8,9,10,10a-Dodecahydro-3a,5a-dimethyl-1-(1-methylethyl)-6-(dimethyl-1,1-dimethylethylsilyloxy)-cyclohept[e]indene-8-methyl t-butyldimethylsilyl ether (28). To a solution of 26 ($100 \mathrm{mg}, 0.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added $\mathrm{VO}(\mathrm{acac})_{2}(3.2 \mathrm{mg}, 0.012 \mathrm{mmol})$ and tert- $\mathrm{BuOOH}(32 \mu \mathrm{~L}$, 0.29 mmol). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and was quenched by addition of a solution of $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2.0 \mathrm{~mL})$. The mixture was stirred at rt for 15 min , and was taken up in ether. The ether layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed providing 109 mg of epoxy alcohols as a 3:1 mixture of epimers, which were sensitive to silica gel purification: partial ${ }^{1} \mathrm{H}$ NMR (major) 3.29 (dd, $1, J=2.1,8.2$), $2.57(\mathrm{~h}, 1, J=6.8$), 1.86 (d, $1, J=15.5$), 0.96 (d, 3, $J=6.8$), $0.93(\mathrm{~d}, 3, J=6.8), 0.91(\mathrm{~s}, 3), 0.87(\mathrm{~s}, 9), 0.74(\mathrm{~s}, 3), 0.08(\mathrm{~s}, 3), 0.04(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR (major) $140.3,140.1,80.1,76.6,72.4,65.1,59.0,46.1,41.3,36.4,32.6,29.4,27.8,27.7$, 26.2, 25.9, 24.8, 21.4, 21.1, 18.0, -4.1, -4.7 (2 C were not assigned); IR (both, CCl_{4}) 3569.

To a solution of crude epoxy alcohols ($109 \mathrm{mg}, 0.24 \mathrm{mmol}$) in DMF $(1.0 \mathrm{~mL})$ were added imidazole ($49 \mathrm{mg}, 0.72 \mathrm{mmol}$) and $\mathrm{TBDMSCl}(112 \mathrm{mg}, 0.72 \mathrm{mmol}$). The mixture was stirred at rt for 10 h . The solution was taken up in ether, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent gave 136 mg of crude 28 as a 3:1 mixture of epimers, which was used without further purification: partial ${ }^{1} \mathrm{H}$ NMR 3.56 ($\mathrm{d}, 1, J=10.9$), 3.51 ($\mathrm{dd}, 1, J=1.5,11.0$),
$3.45(\mathrm{~d}, 1, J=10.9), 3.07(\mathrm{dd}, 1, J=2.3,8.3), 2.61(\mathrm{~h}, 1, J=6.8), 2.39(\mathrm{dd}, 1, J=11.0,15.5)$, $1.91(\mathrm{~d}, 1, J=15.5), 0.92(\mathrm{~s}, 3), 0.91(\mathrm{~s}, 9), 0.88(\mathrm{~s}, 9), 0.75(\mathrm{~s}, 3), 0.09(\mathrm{~s}, 3), 0.07(\mathrm{~s}, 3), 0.05$ $(\mathrm{s}, 3), 0.046(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR (major) 140.6, 140.0, 80.3, 77.0, 72.6, 68.6, 60.6, 46.1, 41.3, 36.5, $32.6,31.4,29.3,27.8,26.2,25.9,25.8,24.8,21.4,21.0,18.2,18.0,17.2,-4.1,-4.6,-5.36$, -5.41.
(3a $\alpha, 5 \mathrm{a} \beta, 6 \beta, 10 \mathrm{a} \beta$)-2,3,3a,4,5,5a,6,7,10,10a-Decahydro-3a,5a-dimethyl-1-(1-methylethyl)-6-hydroxycyclohept[e]indene-8-methanol. To a solution of 26 (150 mg , 0.358 mmol) in THF (5 mL) was added a solution of $10 \% \mathrm{HCl}(1.0 \mathrm{~mL})$. The mixture was stirred at rt for 15 h and diluted with ether. The ether solution was washed with saturated NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude residue was purified by flash chromatography on silica gel (hexane:EtOAc, 4:1) to afford $98 \mathrm{mg}(90 \%)$ of pure diol as a white solid: $\mathrm{mp} 140-142{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR 5.71 (br d, $1, J=7.6$), 4.00 (d, 1, $J=12.3$), 3.97 ($\mathrm{d}, 1, J=12.3$), 3.74 (d, $1, J=10.7$), 2.73-2.47 ($\mathrm{m}, 3$), $2.41(\mathrm{~d}, 1, J=11.7), 2.26(\mathrm{ddd}, 1, J=7.1,10.3,16.0), 2.20-2.08(\mathrm{~m}, 2), 1.91(\mathrm{br} \mathrm{s}, 2)$, $1.74-1.40(\mathrm{~m}, 6), 1.00(\mathrm{~s}, 3), 0.95(\mathrm{~d}, 3, J=6.8), 0.91(\mathrm{~d}, 3, J=6.8), 0.84(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR 140.7 (2 C), 137.9, 127.4, 77.6, 68.5, 46.1, 41.7, 41.54, 41.47, 40.4, 36.4, 33.6, 32.0, 29.1, 27.7, 26.1, 25.0, 21.4, 21.1; IR (KBr) 3321. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}: \mathrm{C}, 78.90 ; \mathrm{H}, 10.59$. Found: C , 79.12; H, 10.72.

5-epi-Cyathin \mathbf{B}_{2} (29). To a solution of the above diol ($17 \mathrm{mg}, 0.056 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL) was added PDC ($84 \mathrm{mg}, 0.22 \mathrm{mmol}$). The mixture was stirred for 10 h at rt and diluted with ethyl acetate. The mixture was filtered through a thin layer of silica gel and rinsed with ethyl acetate. The solvent was removed and the crude residue was purified by flash chromatography on silica gel ($9: 1$ hexane/EtOAc) to give 14 mg (82%) of pure 29 as a tan solid: $\mathrm{mp} 90-92{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $9.37(\mathrm{~s}, 1)$, $6.74(\mathrm{ddd}, 1, J=2.5,2.5,7.6), 3.67(\mathrm{br} \mathrm{d}, 1, J=14.4), 3.41(\mathrm{dd}, 1, J=14.4,1.1), 2.96$ (br d, $1, J$ $=12.0), 2.78-2.68(\mathrm{~m}, 1), 2.61(\mathrm{~h}, 1, J=6.8), 2.33(\mathrm{ddd}, 1, J=7.1,10.3,15.7), 2.31-2.17(\mathrm{~m}, 2)$, 1.89 (ddd, $1, J=4.7,15,15$), 1.73 (ddd, $1, J=1.4,7.2,12.1$), $1.78-1.65(\mathrm{~m}, 2), 1.55$ (dd, $1, J=$ $10,10), 1.41(\mathrm{ddd}, 1, J=4.7,14,14), 1.11(\mathrm{~s}, 3), 1.02(\mathrm{~s}, 3), 1.00(\mathrm{~d}, 3, J=6.8), 0.96(\mathrm{~d}, 3, J=$ $6.8) ;{ }^{13} \mathrm{C}$ NMR 211.9, 192.1, 153.1, 143.7, 137.9, 137.2, 51.7, 46.0, 41.7, 39.2, 35.7, 34.9, 34.6,
28.1, 26.4, 25.2, 23.5, 22.3, 21.5, 21.1; $\mathrm{IR}\left(\mathrm{CCl}_{4}\right) 2717,1711,1696,1645$.
(3a $\alpha, 5 \mathrm{a} \beta, 6 \beta, 10 \mathrm{a} \beta$)-2,3,3a,4,5,5a,6,7,8,10a-Decahydro-8-hydroxy-3a,5a-dimethyl-1-(1-methylethyl)-6-(dimethyl-1,1-dimethylethylsilyloxy)-cyclohept[e]ind-ene-8-methyl \boldsymbol{t}-butyldimethylsilyl ether (30). To a yellow solution of diphenyl diselenide (96 $\mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{EtOH}(2.0 \mathrm{~mL})$ was added NaBH_{4} in small portions until the yellow color disappeared. ${ }^{23}$ To this freshly prepared solution of sodium phenylselenide was added a solution of crude $28(86 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{EtOH}(1.0 \mathrm{~mL})$. The mixture was heated at reflux for 36 h , cooled to $0^{\circ} \mathrm{C}$, and treated with $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.70 \mathrm{~mL}, 6.0 \mathrm{mmol})$. The solution was stirred at ft for 3 h , diluted with ether, washed with saturated NaHCO_{3}, and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of solvent and flash chromatography on silica gel (99:1 hexane/EtOAc) gave $42 \mathrm{mg}(51 \%)$ of one isomer of 30 and 5 $\mathrm{mg}(6 \%)$ of a minor isomer.

Spectral data for the major isomer: ${ }^{1} \mathrm{H}$ NMR 5.29 (dd, $1, J=4.7,11.5$), 5.23 (br d, $1, J=$ 11.5), $3.82(\mathrm{~d}, 1, J=10.0), 3.45(\mathrm{~d}, 1, J=9.5), 3.41(\mathrm{~d}, 1, J=9.5), 2.98-2.93(\mathrm{~m}, 1), 2.52(\mathrm{br} \mathrm{s}$, 1), 2.48 (h, $1, J=6.8$), 2.29 (ddd, $1, J=7.1,10.2,15.4$), $2.26-2.11$ (m, 2), 1.70 (dd, $1, J=7.1$, 12.0), 1.60-1.35 (m, 6), $1.05(\mathrm{~s}, 3), 0.96(\mathrm{~d}, 3, J=6.8), 0.91(\mathrm{~d}, 3, J=6.8), 0.91(\mathrm{~s}, 9), 0.88(\mathrm{~s}$, 9), $0.73(\mathrm{~s}, 3), 0.11(\mathrm{~s}, 3), 0.08(\mathrm{~s}, 3), 0.073(\mathrm{~s}, 3), 0.068(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C} \operatorname{NMR} 141.8,138.5,132.3$, $131.7,75.5,75.4,70.2,46.3,42.4,41.4,39.9,39.6,36.2,31.0,27.8,26.2,26.0,25.8,25.7$, $24.6,21.4,21.2,18.1,18.0,-3.9,-4.9,-5.4,-5.5 ; \mathrm{IR}\left(\mathrm{CCl}_{4}\right) 3571$.

Spectral data for the minor isomer: ${ }^{1} \mathrm{H}$ NMR 5.71 (dd, $1, J=4.7,11.7$), 5.31 (ddd, $1, J=$ $2.4,2.4,11.7$), $3.83(\mathrm{~d}, 1, J=9.3), 3.40(\mathrm{~d}, 1, J=9.4), 3.36(\mathrm{~d}, 1, J=9.4), 2.50(\mathrm{~s}, 1), 2.12-2.09$ $(\mathrm{m}, 1), 2.09(\mathrm{dd}, 1, J=9.6,14.8), 1.81-1.70(\mathrm{~m}, 2), 1.63-1.44(\mathrm{~m}, 6), 1.29-1.21(\mathrm{~m}, 2), 1.11(\mathrm{~s}$, 3), $1.06(\mathrm{~d}, 3, J=6.8), 1.05(\mathrm{~d}, 3, J=6.8), 0.92(\mathrm{~s}, 3), 0.90(\mathrm{~s}, 9), 0.88(\mathrm{~s}, 9), 0.11(\mathrm{~s}, 3), 0.07(\mathrm{~s}$, 3), $0.06(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C}$ NMR $132.3,129.2,78.2,75.4,69.8,43.6,41.4,40.1,34.5,31.5,30.5,28.2$, $25.9,25.8$ (2C), 22.3, 21.9, 19.8, 19.0, 18.9, 18.2, 18.0, $-3.9,-4.9,-5.4,-5.5$ (2C were not observed); $\mathbb{R}\left(\mathrm{CCl}_{4}\right) 3559$.
(3a $\alpha, 5 \mathrm{a} \beta, 6 \beta, 10 a \beta$)-2,3,3a,4,5,5a,6,7,8,10a-Decahydro-8-hydroxy-3a,5a-dimethyl-1-(1-methylethyl)-6-(dimethyl-1,1-dimethylethylsilyloxy)-cyclohept[e]ind-
ene-8-methanol (31). To a solution of $30(30 \mathrm{mg}, 0.055 \mathrm{mmol})$ in THF (2 mL) at $0{ }^{\circ} \mathrm{C}$ was added TBAF (0.27 mL of 1.0 M in THF, 0.27 mmol). The reaction mixture was stirred at rt for 1 h , diluted with ether, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude residue was purified by flash chromatography on silica gel ($4: 1$ hexane/EtOAc) to provide $22 \mathrm{mg}(92 \%)$ of $\mathbf{3 1}$: ${ }^{1} \mathrm{H}$ NMR 5.36 (dd, $1, J=5.1,11.4$), 5.24 (ddd, $1, J=2.3,2.3,11.4$), 3.77 (d, $1, J=9.7$), 3.48 (d, $1, J$ $=9.5$), $3.45(\mathrm{~d}, 1, J=9.5), 3.02-2.96(\mathrm{~m}, 1), 2.44(\mathrm{~h}, 1, J=6.8), 2.32(\mathrm{dd}, 1, J=10.0,15.1), 2.25$ (ddd, $1, J=7.1,10.3,15.6), 2.16(\mathrm{dd}, 1, J=9.1,15.6), 1.70(\mathrm{dd}, 1, J=7.3,12.1), 1.68$ (br s, 1), $1.61-1.34(\mathrm{~m}, 5), 1.05(\mathrm{~s}, 3), 0.95(\mathrm{~d}, 3, J=6.8), 0.90(\mathrm{~d}, 3, J=6.8), 0.88(\mathrm{~s}, 9), 0.74(\mathrm{~s}, 3), 0.12$ (s, 3), 0.07 ($\mathrm{s}, 3$); ${ }^{13} \mathrm{C}$ NMR 142.2, 138.1, 133.3, 130.9, 76.1, 75.3, 70.0, 46.3, 42.4, 41.4, 39.8, $39.6,36.1,31.0,27.9,26.3,25.9,24.7,21.4,21.2,18.02,17.99,-3.9,-4.9 ; \operatorname{IR}\left(\mathrm{CCl}_{4}\right) 3611$.
(3a $\alpha, 5 \mathrm{a} \beta, 6 \beta, 10 \mathrm{a} \beta$)-2,3,3a,4,5,5a,6,7,8,10a-Decahydro-3a,5a-dimethyl-1-(1-methylethyl)-6-(dimethyl-1,1-dimethylethylsilyloxy)-8-(dimethyl-1,1-dimethylethyl-silyloxymethylene)-cyclohept[e]indene (32). To a solution of $\mathbf{3 0}$ ($10 \mathrm{mg}, 0.018 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{MsCl}(14 \mu \mathrm{~L}, 0.18 \mathrm{mmol})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at rt for 1 h . The solution was diluted with ether, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude residue was purified by flash chromatography on silica gel ($99: 1$ hexane/EtOAc) to give 8 mg (84%) of $\mathbf{3 2}$ as a $2: 1$ mixture of E / Z-stereoisomers: partial ${ }^{1} \mathrm{H}$ NMR (major) 6.36 (br s, 1), 5.68 (dd, $1, J=2.0,11.2$), 4.95 (dd, $1, J=4.9,11.2$), 3.60 (dd, 1 , $J=1.8,9.3$), 3.25 (br s, 1); (minor) $6.29(\mathrm{br} \mathrm{d}, 1, J=11.5), 6.07(\mathrm{br} \mathrm{s}, 1), 5.10(\mathrm{ddd}, 1, J=1.6$, $5.0,11.5$), $3.59\left(\mathrm{dd}, 1, J=1.7,9.3\right.$), 3.32 ($\mathrm{br} \mathrm{s}, 1$); $\mathbb{R}\left(\right.$ both, CCl_{4}) 1632, 1598.
(3a $\alpha, 5 \mathrm{a} \beta, 6 \beta, 10 \mathrm{a} \beta$)-2,3,3a,4,5,5a,6,7,8,10a-Decahydro-3a,5a-dimethyl-1-(1-methylethyl)-6-(dimethyl-1,1-dimethylethylsilyloxy)-cyclohept[e]inden-8-one (33). To a solution of $\mathbf{3 1}(17 \mathrm{mg}, 0.039 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ was added Dess-Martin reagent ($34 \mathrm{mg}, 0.078$ $\mathrm{mmol}) .{ }^{25}$ The reaction mixture was stirred at rt for 2 h and quenched by addition of saturated NaHCO_{3} (2 mL) and $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. After stirring for 15 min , the reaction mixture was extracted with ether. The ether layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude residue was purified by flash chromatography on silica gel (95:5 hexane/EtOAc) to afford 14 mg (89%)
of pure 33: ${ }^{1} \mathrm{H}$ NMR $6.13(\mathrm{dd}, 1, J=4.1,12.3), 5.87(\mathrm{dd}, 1, J=2.5,12.3), 3.71(\mathrm{~d}, 1, J=7.8)$, $3.40-3.33(\mathrm{~m}, 1), 2.88$ (dd, $1, J=7.8,17.6), 2.72(\mathrm{~d}, 1, J=17.6), 2.56(\mathrm{~h}, 1, J=6.8), 2.32$ (ddd, $1, J=7.4,10.5,15.7$), 2.21 (dd, $1, J=9.0,15.7$), 1.75 (ddd, $1, J=1.4,7.4,12.1$), $1.70-1.32(\mathrm{~m}$, 5), $1.02(\mathrm{~s}, 3), 0.96(\mathrm{~d}, 3, J=6.8), 0.94(\mathrm{~d}, 3, J=6.8), 0.90(\mathrm{~s}, 3), 0.87(\mathrm{~s}, 9), 0.06(\mathrm{~s}, 3), 0.04(\mathrm{~s}$, 3); ${ }^{13} \mathrm{C}$ NMR 201.4, 149.9, 142.5, 137.4, 130.3, 75.6, 47.7, 46.7, 43.1, 41.0, 40.4, 36.2, 30.3, $27.9,26.3,25.7,24.5,21.4,21.2,21.1,18.0,-4.1,-5.0 ; \mathrm{IR}\left(\mathrm{CCl}_{4}\right) 1674$.

Preparation of 35. To a solution of $33(5.0 \mathrm{mg}, 0.012 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added sequentially 2,6-di-tert-butyl-4-methylpyridine ($8.0 \mathrm{mg}, 0.036 \mathrm{mmol}$) and triflic anhydride ($6 \mu \mathrm{~L}, 0.036 \mathrm{mmol}$). The mixture was stirred at rt for 1 h and diluted with ether. The ether layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The crude residue was passed through a short column of silica gel, eluting with hexane. The enol triflate 34, which coeluted with 2,6 -di-tert-butyl-4-methylpyrindine, was used directly in the carbonylation reaction without further purification.

The crude enol triflate was dissolved in a solution of anhydrous $\mathrm{MeOH}(1.0 \mathrm{~mL})$ and $N, N-$ diisopropylethylamine (2 drops). The mixture was purged with CO for 5 min via a syringe and $\mathrm{Pd}(\mathrm{OAc})_{2}(1 \mathrm{mg}, 4.5 \mu \mathrm{~mol})$ and $\mathrm{P}(\mathrm{Ph})_{3}(2.5 \mathrm{mg}, 9.5 \mu \mathrm{~mol})$ were added. The resulting solution was stirred at rt for 10 h , while CO was bubbled through. The mixture was diluted with ether, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent removal and flash chromatography on silica gel (99:1 hexane/EtOAc) provided 4.0 mg (75% for 2 steps) of pure 35: ${ }^{1} \mathrm{H}$ NMR 7.27-7.24 ($\mathrm{m}, 1$), 5.31 (br s , 1), 3.71 ($\mathrm{s}, 3$), 3.62 (dd, $1, J=2.9,4.9$), 2.77 ($\mathrm{dd}, 1, J=4.9,19.0$), 2.49 (dd, $1, J=2.9,19.0$), $2.41(\mathrm{~d}, 1, J=15.4), 1.82(\mathrm{dd}, 1, J=2.9,15.4), 1.77-1.70(\mathrm{~m}, 1), 1.63(\mathrm{~h}, 1, J=7.0), 1.59(\mathrm{br} \mathrm{s}$, 1), 1.39-1.16 (m, 4), $1.13(\mathrm{~s}, 3), 1.05(\mathrm{~d}, 3, J=7.0), 0.98(\mathrm{~d}, 3, J=7.0), 0.97(\mathrm{~s}, 3), 0.89(\mathrm{~s}, 9)$, 0.07 (s, 3), $0.04(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR $168.8,152.6,142.4,126.1,117.8,77.4,51.8,44.2,40.7,35.6$, $34.6,33.1,31.7,30.9,29.7,28.6,28.1,25.9,24.6,24.0,23.6,22.0,18.1,-4.1,-5.0 ; \operatorname{IR}\left(\mathrm{CCl}_{4}\right)$ 1709, 1654.
(3a $\alpha, 5 \mathrm{a} \beta, 6 \beta, 10 \mathrm{a} \beta$)-2,3,3a,4,5,5a,6,10a-Octahydro-3a,5a-dimethyl-1-(1-methylethyl)-6-(dimethyl-1,1-dimethylethylsilyloxy)-8-trifluoromethylsulfonyloxycyclohept $[e]$ indene (36). To a solution of KHMDS ($90 \mu \mathrm{~L}$ of 0.5 M in toluene, 0.045 mmol) in

Snider, Vo, and O'Neil Allocyathin B2 Supplementary Material Page 12

THF (0.5 mL) at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of $33(7 \mathrm{mg}, 0.018 \mathrm{mmol})$ in THF (0.6 mL). The mixture was stirred for 15 min and was quenched by addition of N-phenyltrifluoromethanesulfonimide ($16 \mathrm{mg}, 0.045 \mathrm{mmol}$) as a powder. After warming to $0^{\circ} \mathrm{C}$ over 15 min , the reaction mixture was diluted with ether, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent followed by flash chromatography on silica gel (hexane:EtOAc, 199:1) provided 7.8 mg (84\%) of impure 36: ${ }^{1} \mathrm{H}$ NMR 6.21 (dd, $1, J=5.7,10.6$), 6.11 (dd, $1, J=1.2,4.9$), 5.92 (d, $1, J=$ 10.6), 3.70 (d, $1, J=4.9$), 2.86-2.79 ($\mathrm{m}, 1$), $2.44(\mathrm{~h}, 1, J=6.8$), 2.30 (ddd, $1, J=7.4,10.2,15.7$), 2.18 (ddd, $1, J=1.0,9.2,15.7$), 1.73 (ddd, $1, J=1.4,7.4,12.1$), $1.60-1.31(\mathrm{~m}, 5), 1.08(\mathrm{~s}, 3)$, $0.92(\mathrm{~d}, 3, J=6.8), 0.90(\mathrm{~s}, 9), 0.88(\mathrm{~s}, 3), 0.87(\mathrm{~d}, 3, J=6.8), 0.02(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C}$ NMR 146.1, $135.9,130.6,122.7,120.8,79.0,46.3,44.2,40.9,35.3,30.7,27.9,26.0,25.8,24.1,21.3,21.1$, 18.6, 18.0, -4.4, -5.1 (3 carbons not observed); $\operatorname{IR}\left(\mathrm{CCl}_{4}\right) 1638,1609$.

Methyl (3a $\alpha, 5 \mathrm{a} \beta, 10 \mathrm{a} \beta$)-2,3,3a,4,5,5a,10,10a-Octahydro-3a,5a-dimethyl-1-(1-methylethyl)-6-(dimethyl-1,1-dimethylethylsilyloxy)-cyclohept[e]indene-8-carboxylate (37). To a solution of crude $36(7.3 \mathrm{mg}, 0.014 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(1.0 \mathrm{~mL})$ was added N, N-diisopropylethylamine (2 drops). The solution was purged with CO for 5 min followed by addition of $\mathrm{Pd}(\mathrm{OAc})_{2}\left(1.0 \mathrm{mg}, 4.4 \times 10^{-3} \mathrm{mmol}\right)$ and $\mathrm{P}(\mathrm{Ph})_{3}\left(2.3 \mathrm{mg}, 8.8 \times 10^{-3} \mathrm{mmol}\right)$. The mixture was heated to reflux for 15 h , while CO was bubbled through. After being cooled to rt , the reaction solution was diluted with ether, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of solvent followed by flash chromatography on deactivated silica gel (hexane/EtOAc, 99:1) gave 5.1 mg (79\%) of pure 37: ${ }^{1} \mathrm{H}$ NMR $7.04(\mathrm{dd}, 1, J=4.0,8.9), 5.71(\mathrm{~s}, 1), 3.75(\mathrm{~s}, 3), 2.57(\mathrm{~h}, 1, J=6.8)$, 2.45 (dd, $1, J=9.5,9.5$), 2.28 (ddd, $1, J=7.5,10.4,15.5$), 2.15 (dd, $1, J=9.0,15.5$), 2.05 (dd, $1, J=9.0,13.9$), 1.94-1.88 (m, 1), $1.69(\mathrm{dd}, 1, J=7.5,12.0), 1.60-1.40(\mathrm{~m}, 5), 1.04(\mathrm{~s}, 3), 1.03$ $(\mathrm{s}, 3), 0.96(\mathrm{~s}, 9), 0.94(\mathrm{~d}, 3, J=6.8), 0.93(\mathrm{~d}, 3, J=6.8), 0.26(\mathrm{~s}, 3), 0.25(\mathrm{~s}, 3) ;{ }^{13} \mathrm{C}$ NMR 167.9, $140.5,140.0,139.2,128.0,101.4,51.8,46.5,45.8,44.6,41.6,36.4,34.3,29.1,27.9,26.2$, 26.0, 25.9, 24.9, 24.6, 21.3, 21.1, 18.4, -4.3, -4.5; IR ($\left.\mathrm{CCl}_{4}\right)$ 1717, 1608.
8

$$
{ }^{\text {pata }}
$$

an

1

$\begin{array}{llllllllllllllllll}220 & 200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20\end{array}$

26

26

27

29

