Supporting Information

Melting point were determined with a Yanaco micro melting point apparatus and are uncorrected. 1 H and 13 C NMR spectra were taken on a Varian Gemini 300 or Unity Plus 500 spectrometer. 1 H NMR spectra were recorded at the indicated field strength as solutions in CDCl₃ unless otherwise indicated. Chemical shifts are given in parts per million (ppm, δ) downfield from TMS and are referenced to CHCl₃ (7.26 ppm) as internal standard. Splitting patterns are designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. 13 C NMR spectra were recorded at the indicated field strength as solutions in CDCl₃ unless otherwise indicated. Chemical shifts are given in parts per million (ppm, δ) downfield from TMS and are referenced to the center line of CDCl₃ (77.0 ppm) as internal standard. Carbon signals were assigned by a DEPT pulse sequence, q = methyl, t = methylene, d = methine, and s = quaternary carbons. Infrared spectra (IR) were measured with a Perkin-Elmer 1600 series FT-IR spectrophotometer. Mass spectra (MS) and high-resolution mass spectra (HRMS) were measured on a JEOL JMS-AX505HAD mass spectrometer. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. Column chromatography was performed on Merck silica gel 60 (No 7734-5B) or (No 9385).

Methyl (6S)-(-)-2-(tert-butyldiphenylsilyloxymethyl)-6-oxopiperidine-1-carboxylate

To a stirred solution of **1** (1.85 g, 5.40 mmol) in THF (22 mL) was added a solution of *n*-BuLi (1.6 m in hexane, 3.5 mL, 5.54 mmol) at –78 °C, and the resulting mixture was stirred at –78 °C for 30 min. To the reaction mixture was added ClCO₂Me (0.43 mL, 5.54 mmol) at –78 °C, and then the reaction mixture was warmed to 0 °C for 2 h. The reaction was quenched with satd. NaHCO₃ (aq), and the aqueous mixture was extracted with CH₂Cl₂ (50 mL x1, 15 mL x 2). The organic extracts were combined, dried, and evaporated to give colorless oil, which was chromatographed on SiO₂ (50 g, hexane:acetone=30:1~20:1) to give the imide (2.10 g, 98%) as a colorless solid (mp 97-102 °C).

IR (KBr) 2958, 1718, 1113 cm⁻¹; ¹H NMR (500 MHz) δ 1.06 (9H, s), 1.69-1.75 (1H, m), 1.86-1.99 (2H, m), 2.12-2.17 (1H, m), 2.49-2.52 (2H, m), 3.72-3.76 (2H, m), 3.76 (3H, s), 4.41-4.44 (1H, m), 7.37-7.45 (6H, m), 7.63-7.67 (4H, m); ¹³C NMR (125 MHz) δ 17.44 (t), 18.96 (s), 24.18 (t), 26.63 (q), 34.64 (t), 53.52 (q), 56.16 (d), 64.10 (t), 127.60 (d), 129.65 & 129.68 (each d), 132.63 & 132.81 (each s), 135.36 & 135.42 (each d), 154.69 (s), 171.69 (s); MS: 425 (M⁺), 115 (100); HRMS: Calcd for C₂₄H₃₁NO₄Si 425.2022; Found 425.2006; [α]_D²⁶ –41.6 (c 5.67, CHCl₃).

Mehtyl (6S)-(-)-2-(*tert*-butyldiphenylsilyloxymethyl)-6-trifluoromethanesulfonyloxy-3,4-dihydro-2*H*-pyridine-1-carboxylate

To a stirred solution of hexamethyldisilazane (1.5 mL, 6.97 mmol) in THF (5 mL) was added a solution of n-BuLi (1.6 M in hexane, 4.4 mL, 6.97 mmol) at 0 °C, and the resulting solution was stirred at 0 °C for 30 min. To a stirred solution of the above imide (2.47 g, 5.81 mmol) in THF (15 mL) was added a solution of LiHMDS prepared above at -78 °C, and the reaction mixture was stirred at -78 °C for 30 min. To the above reaction mixture was added a solution of 2-[N,N-bis(trifluoromethylsulfonyl)amino]5-chloropyridine (Comins' reagent) (97%, 2.73 g, 6.97 mmol) in THF (6 mL) at -78 °C, and the resulting mixture was warned to -40 °C for 1 h. The reaction was quenched with satd. NH₄Cl (aq), and the aqueous mixture was extracted with Et₂O (20 mL x 4). The organic extracts were combined, dried, and evaporated to give pale yellow solid, which was chromatographed on SiO₂ (60 g, hexane:acetone=100:1-50:1) to give enol triflate (3.0 g, 96%) as a colorless oil.

IR (neat) 2962, 1733, 1423, 1213, 1114 cm⁻¹; ¹H NMR (500 MHz) δ 1.06 (9H, s), 1.69-1.76 (1H, m), 1.91-2.04 (2H, br m), 2.13-2.19 (1H, m), 3.57 (2H, dd, J = 10.2, 8.1 Hz), 3.79 (3H, s), 4.64-4.68 (1H, m), 5.17 (1H, t, J = 3.8 Hz), 7.37-7.46 (6H, m), 7.63-7.67 (4H, m); ¹³C NMR (125 MHz) δ 19.09 (t), 19.29 (s), 22.22 (t), 26.81 (q), 53.69 (q), 55.63 (d), 60.79 (t), 106.05 (d), 127.63 (d), 129.69 (d), 133.06 & 133.11 (each s), 135.42 & 135.44 (each d), 138.05 (s), 154.69 (s); MS: 557 (M⁺), 422 (100); HRMS: Calcd for $C_{25}H_{30}F_3NO_6Si$ 557.1515; Found 557.1518; $[\alpha]_D^{26}$ –18.8 (c 1.57, CHCl₃).

Dimethyl (S)-(-)-6-(tert-butyldiphenylsilyloxymethyl)-5,6-dihydro-4H-pyridine-1,2-dicarboxylate (2)

To a stirred solution of the above enol triflate (5.30 g, 9.52 mmol) in DMF (25 mL) was added Pd(Ph₃P)₄ (550 mg, 0.48 mmol), and the resulting mixture was stirred at room temperature under CO balloon pressure for 30 min. To the reaction mixture were added Et₃N (5.3 mL, 38.1 mmol) and MeOH (15.4 mL, 381.0 mmol), and then the reaction mixture was stirred at 70 °C under CO balloon pressure for 15 h. After cooling, the reaction mixture was diluted with H_2O (100 mL) and brine (25 mL), and the aqueous mixture was extracted with Et₂O (50 mL x 3). The organic extracts were combined, dried, and evaporated to give pale yellow oil, which was chromatographed on SiO₂ (80 g, hexane:acetone=50:1-30:1) to give 2 (3.91 g, 88%) as a colorless oil.

IR (neat) 2968, 1732, 1652, 1240 cm⁻¹; ¹H NMR (500 MHz) δ 1.05 (9H, s), 1.77-1.85 (1H, m), 1.91-1.99 (1H, br m), 2.04-2.16 (1H, m), 3.52 (2H, dd, J = 10.2, 8.5 Hz), 3.70 (3H, s), 3.77 (1H, dd, J = 10.2, 6.3 Hz), 4.55 (1H, br), 5.96 (1H, t, J = 3.5 Hz), 7.37-7.45 (6H, m), 7.65-7.67 (4H, m); ¹³C NMR (125 MHz) δ 19.43 (t), 19.55 (s), 22.48 (t), 26.95 (q), 52.16 (q), 52.69 (d), 53.30 (q), 61.39 (t), 121.98 (s), 127.72 (d), 129.72 & 129.75 (each d), 130.59 (s), 133.31 & 133.41 (each s), 135.58 (d), 154.52 (s), 165.49 (s); MS: 467 (M⁺, 100); HRMS: Calcd for $C_{26}H_{33}NO_5Si$ 467.2128; Found 467.2134; $[\alpha]_D^{26}$ –53.3 (c 1.33, CHCl₃).

Dimethyl (2R, 3S, 6S)-(+)-6-(tert-butyldiphenylsilyloxymethyl)-3-vinylpiperidine-1,2-dicarboxylate

To a stirred suspension of CuI (1.71 g, 9.00 mmol) in Et₂O (15 mL) was added a solution of vinyl lithium, prepared from tetravinyltin (0.37 mL, 4.50 mmol) and MeLi (1.0 M in Et₂O, 18 mL, 18.0 mmol) in Et₂O (15 mL) at 0 °C for 30 min, at -78 °C, and the resulting suspension was warmed to -35 °C for 20 min. The resulting suspension was re-cooled to -78 °C, and a solution of **2** (1.05 g, 2.25 mmol) in Et₂O (5 mL) was added to the resulting suspension. The reaction mixture was warmed to -30 °C for 1 h, and the reaction was quenched with satd. NH₄Cl (aq). The aqueous mixture was diluted with CH₂Cl₂ (100 mL), and the resulting suspension was filtered. The filtrate was separated, and the aqueous layer was extracted

with CH_2Cl_2 (20 mL x 2). The organic layer and extracts were combined, dried, and evaporated to give colorless oil, which was chromatographed on SiO_2 (40 g, hexane:acetone=40:1-30:1) to give the adduct (1.07 g, 96%) as a colorless oil.

IR (neat) 3071, 2935, 2890, 1750, 1705, 1113 cm⁻¹; ¹H NMR (500 MHz) δ 1.05 (9H, s), 1.41-1.43 (1H, m), 1.59 (1H, br), 1.74-1.81 (1H, br m), 1.85-1.88 (1H, m), 3.00 (1H, br), 3.45 (3H, s), 3.65 (3H, s), 3.67-3.70 (1H, m), 4.28 (1H, br), 4.78 (1H, br), 5.09-5.30 (2H, m), 5.81-5.88 (1H, m), 7.36-7.44 (6H, m), 7.65-7.67 (4H, m); ¹³C NMR (125 MHz) δ 18.68 (t), 19.56 (s), 21.03 (t), 27.15(q), 37.06 (d), 52.27 (d), 52.34 (q), 53.19 (q), 56.05 (d), 62.34 (t), 115.56 (t), 127.74 (d), 129.72 (d), 133.76 (s), 135.63 (d), 138.91 (d), 157.63 (s), 172.66 (s); MS: 495 (M⁺); HRMS: Calcd for C₂₈H₃₇NO₅Si 495.2441; Found 495.2464; [α]_D²⁶+2.1 (c 1.57, CHCl₃).

Methyl (2R, 3S, 6S)-(+)-6-(*tert*-butyldiphenylsilyloxymethyl)-2-hydroxymethyl-3-vinylpiperidine-1-carboxylate (3)

To a stirred solution of the above adduct (2.0 g, 4.04 mmol) in THF (15 mL) was added Super-Hydride (1M in THF, 8.9 mL, 8.9 mmol) at 0 °C, and the resulting solution was stirred at 0 °C for 1 h. The reaction was quenched with satd. NaHCO₃ (aq), and the aqueous mixture was extracted with CH₂Cl₂ (15 mL x 6). The organic extracts were combined, dried, and evaporated to give colorless oil, which was chromatographed on SiO₂ (40 g, hexane:acetone=30:1-6:1) to give **3** (1.8 g, 96%) as a colorless oil. IR (neat) 3449, 3070, 2937, 2862, 1679 cm⁻¹; ¹H NMR (500 MHz) δ 1.05 (9H, s), 1.26-1.39 (2H, m), 1.63-1.70 (1H, m), 1.79-1.86 (1H, br m), 2.35 (1H, br), 2.96 (1H, br), 3.55-3.69 (4H, m), 3.67 (3H, br s), 4.25-4.29 (1H, m), 4.39 (1H, br), 5.06-5.12 (2H, m), 5.79-5.86 (1H, m), 7.39-7.46 (6H, m), 7.66-7.72 (4H, m); ¹³C NMR (125 MHz) δ 19.03 (s), 19.95 (t), 21.27 (t), 26.67 & 26.72 (each q), 36.70 (d), 50.83 (d), 52.72 (q), 56.14 (d), 64.43 (t), 64.88 (t), 115.05 (t), 127.67 & 127.70 (each d), 129.74 (d), 132.93 & 133.02 (each s), 135.44 & 135.49 (each d), 140.18 (d), 157.97 (s); MS: 410 (M*-57), 378 (100); HRMS: Calcd for C₂₃H₂₈NO₄Si 410.1787; Found 410.1807; [α]_p²⁶+19.7 (c 1.53, CHCl₃).

Methyl (2S, 3S, 6S)-(-)-6-(*tert*-butyldiphenylsilyloxymethyl)-2-propenyl-3-vinylpiperidine-1-carboxylate

To a stirred solution of $(COCl)_2$ (0.24 mL, 2.77 mmol) in CH_2Cl_2 (5 mL) was added DMSO (0.38 mL, 5.43 mmol) at -78 °C, and the resulting solution was stirred at -78 °C for 10 min. To the mixture was added a solution of **3** (857 mg, 1.84 mmol) in CH_2Cl_2 (4 mL) at -78 °C, and the reaction mixture was stirred at -78 °C for 30 min. Triethylamine (1.1 mL, 7.98 mmol) at -78 °C, and the reaction mixture was warmed to 0 °C for 1 h. The reaction was quenched with H_2O , and the aqueous mixture was extracted with Et_2O (10 mL x 4). The organic extracts were combined, dried and evaporated to give pale yellow oil, which was used directly in the next step.

To a stirred suspension of EtP+Ph₃Br⁻ (2.73 g, 7.35 mmol) in THF (15 mL) was added a solution of *n*-BuLi (1.6M ih hexane, 4 mL, 6.4 mmol) at 0 °C, and the resulting orange solution was stirred at 0 °C for 30 min. To the solution was added a solution of the above oil in THF (6 mL) at 0 °C, and the reaction mixture was stirred at room temperature for 2 h. The reaction was quenched with H₂O, and the aqueous mixture was extracted with Et₂O (15 mL x 3). The organic extracts were combined, dried, and evaporated to give pale yellow oil, which was chromatographed on SiO₂ (30 g, hexane:acetone=100:1-80:1) to give the olefin (691 mg, 79% in 2 steps) as a colorless oil.

IR (neat) 3070, 2938, 2860, 1697 cm⁻¹; ¹H NMR (500 MHz) δ 1.06 (9H, s), 1.33-1.38 (1H, m), 1.67 (3H, t-like, J = 6.8 Hz), 1.69-1.75 (2H, br m), 1.81-1.88 (1H, m), 2.19 (1H, br), 3.58-3.69 (2H, m), 3.63 (3H, br s), 4.35 (1H, m), 4.90 (1H, d-like, J = 9.4 Hz), 5.05-5.10 (2H, m), 5.29-5.33 (1H, m), 5.38-5.43 (1H, m), 5.85-5.91 (1H, m), 7.38-7.45 (6H, m), 7.67-7.68 (4H, m); ¹³C NMR (125 MHz) δ 13.02 (q), 19.18 (s), 19.47 (t), 20.73 (t), 26.78 (q), 41.73 (d), 51.01 (d), 51.71 (d), 52.46 (q), 64.35 (t), 114.70 (t), 127.62 (d), 129.62 (d), 131.10 (d), 133.50 & 133.64 (each s), 135.56 & 135.59 (each d), 140.22 (d), 156.81 (s); MS: 420 (M⁺-57), 423 (100); HRMS: Calcd for C₂₅H₃₀NO₃Si 420.1995; Found 420.2017; $[\alpha]_D^{26}$ –64.5 (c 2.09, CHCl₃).

Methyl (2S, 3R, 6S)-(-)-3-ethyl-6-hydroxymethyl-2-propylpiperidine-1-carboxylate (4)

To a solution of the above olefin (704 mg, 1.48 mmol) in EtOAc (15 mL) was added 5% Pd-C (50 mg), and the resulting suspension was hydrogenated under hydrogen atmosphere at 1 atm for 48 h. The catalyst was removed by filtration, and the filtrate was evaporated to give colorless oil, which was used directly in the next step.

To a stirred solution of the above oil in THF (10 mL) was added a solution of TBAF (1M in THF, 1.9 mL, 1.9 mmol) at 0 °C, and the resulting solution was stirred at room temperature for 1 h. The reaction was quenched eith satd. NH₄Cl (aq), and the aqueous mixture was extracted with CH₂Cl₂ (10 mL x 8). The organic extracts were combined, dried, and evaporated to give colorless oil, which was chromatographed on SiO₂ (20 g, hexane:acetone=20:1-7:1) to give 4 (276 mg, 77% in 2 steps) as a colorless oil. IR (neat) 3447, 2956, 2872, 2672 cm⁻¹; ¹H NMR (500 MHz) δ 0.87-0.91 (6H, m), 1.23-1.59 (9H, br m), 1.71-1.81 (2H, m), 2.94 (1H, br), 3.57-3.64 (2H, m), 3.68 (3H, s), 3.92 (1H, br), 4.25 (1H, br); ¹³C NMR $(125 \text{ MHz}) \delta 11.96 \text{ (q)}, 13.98 \text{ (q)}, 19.92 \text{ (t)}, 20.15 \text{ (t)}, 25.73 \text{ (t)}, 37.93 \text{ (d)}, 38.87 \text{ (t)}, 52.67 \text{ (q)}, 52.89 \text{ (d)},$ 54.46 (d), 52.46 (q), 65.77 (t), 158.85 (s); MS: 243 (M⁺), 131 (100); HRMS: Calcd for C₁₃H₂₅NO₃

243.1833; Found 243.1821; $[\alpha]_{D}^{26}$ –21.8 (*c* 1.05, CHCl₃).

Dimethyl (2S, 5R, 6S)-(-)-5-ethyl-6-propylpiperidine-1,2-dicarboxylate

To a stirred solution of (COCl)₂ (0.53 mL, 6.12 mmol) in CH₂Cl₂ (12 mL) was added DMSO (0.88 mL, 12.38 mmol) at -78 °C, and the resulting solution was stirred at -78 °C for 10 min. To the mixture was added a solution of 4 (1 g, 4.12 mmol) in CH₂Cl₂ (9 mL) at -78 °C, and the reaction mixture was stirred at -78 °C for 30 min. Triethylamine (2.6 mL, 18.47 mmol) at −78 °C, and the reaction mixture was warmed to 0 °C for 1 h. The reaction was quenched with H₂O, and the aqueous mixture was extracted with Et₂O (20 mL x 4). The organic extracts were combined, dried and evaporated to give pale yellow oil, which was used directly in the next step.

To a stirred suspension of NaH₂PO₄ (4.9 g, 40.83 mmol), 2-methyl-2-butene (8.8 mL, 82.5 mmol), and the above oil in *t*-BuOH (20 mL) was added a solution of NaClO₂ (80%, 2.7 g, 24.3 mmol) in H₂O (8 mL), and the resulting suspension was stirred at room temperature for 45 min. The reaction was quenched with satd. NaHSO₃ (aq) and 10% HCl at 0 °C, and the aqueous mixture was extracted with EtOAc (15 mL x 10). The organic extracts were combined, dried, and evaporated to give colorless oil, which was used directly in the next step.

To a stirred solution of the above oil in EtOAc (20 mL) was added a solution of CH_2N_2 in Et_2O at 0 °C, and the reaction mixture was stirred at room temperature for 20 h. The solvent was evaporated, and the residue was chromatographed on SiO_2 (40 g, hexane:acetone=20:1) to give the methyl ester (1.008 g, 90% in 3 steps) as a colorless oil.

IR (neat) 2957, 2872, 1740, 1701 cm⁻¹; ¹H NMR (500 MHz) δ 0.86 (6H, t-like, J = 6.8 Hz), 1.24-1.42 (7H, br m), 1.46-1.52 (1H, m), 1.71-1.87 (2H, m), 1.96 (1H, br), 3.66 (3H, s), 3.69 (3H, br s), 3.88-4.05 (1H, br), 4.63 & 4.84 (1H, br); ¹³C NMR (125 MHz) δ 11.87 (q), 13.86 (q), 19.91 (t), 20.31 (t), 25.02 (t), 36.19 (t), 37.75 (d), 51.92 (q), 52.72 (q), 54.79 (d), 157.80 (s), 173.24 (s); MS: 271 (M⁺), 228 (100); HRMS: Calcd for $C_{14}H_{25}NO_4$ 271.1784; Found 271.1816; $[\alpha]_D^{26}$ -65.1 (c 2.17, CHCl₃).

Dimethyl (5R, 6S)-(+)-5-ethyl-6-propyl-5,6-dihydro-4*H*-pyridine-1,2-dicarboxylate (5)

To a stirred solution of hexamethyldisilazane (0.32 mL, 1.5 mmol) in THF (3 mL) was added a solution of *n*-BuLi (1.6 M in hexane, 0.94 mL, 1.5 mmol) at 0 °C, and the resulting solution was stirred at 0 °C for 30 min. To a stirred solution of the above methyl ester (271 mg, 1 mmol) in THF (2 mL) was added a solution of LiHMDS prepared above at –78 °C, and the reaction mixture was stirred at –78 °C for 30 min. To a stirred solution of PhSeCl (610 mg, 3 mmol) in THF (5 mL) was added a solution of Li enolate prepared above at –78 °C, and the resulting suspension was stirred at room temperature for 20 h. The solvent was evaporated and the residue was chromatographed on SiO₂ (30 g, hexane:acetone=40:1-35:1) to give **5** (207 mg, 77%) as a colorless oil.

IR (neat) 2958, 2874, 1708, 1646 cm⁻¹; ¹H NMR (500 MHz) δ 0.91 & 0.93 (each 3H, each t, J = 7.2 Hz), 1.17-1.34 (4H, br m), 1.42-1.51 (3H, m), 1.99 (1H, dd, J = 19.2, 3.9 Hz), 2.27 (1H, ddd, J = 19.2, 7.3, 3.9 Hz), 3.70 (3H, br s), 3.76 (3H, s), 4.26 (1H, br), 5.97 (1H, t, J = 3.9 Hz); ¹³C NMR (125 MHz) δ 11.91 (q), 14.02 (q), 19.30 (t), 25.12 & 26.20 (each t), 33.04 (t), 36.30 (t), 37.99 & 38.66 (each d), 52.10 (q), 53.07 (q), 55.29 (d), 121.05 (d), 129.05 & 129.28 (each s), 155.49 (s), 165.40 (s); MS: 269 (M⁺, 100); HRMS: Calcd for C₁₄H₂₃NO₄ 269.1627; Found 269.1604; [α]_D²⁶ +63.4 (c 0.68, CHCl₃).

Dimethyl (2S, 3R, 5R, 6S)-(-)-5-ethyl-6-propyl-3-vinylpiperidine-1,2-dicarboxylate (6)

To a stirred suspension of CuI (622 mg, 3.27 mmol) in Et_2O (5 mL) was added a solution of vinyl lithium, prepared from tetravinyltin (0.31 mL, 1.63 mmol) and MeLi (1.01 M in Et_2O , 6.5 mL, 6.6 mmol) in Et_2O (3 mL) at 0 °C for 30 min, at -78 °C, and the resulting suspension was warmed to -35 °C for 20 min. The resulting suspension was re-cooled to -78 °C, and a solution of 5 (176 mg, 0.65 mmol) in Et_2O (4 mL) was added to the resulting suspension. The reaction mixture was warmed to 0 °C for 1 h, and the reaction was quenched with satd. NH₄Cl (aq). The aqueous mixture was diluted with CH_2Cl_2 (50 mL), and the resulting suspension was filtered. The filtrate was separated, and the aqueous layer was extracted with CH_2Cl_2 (10 mL x 2). The organic layer and extracts were combined, dried, and evaporated to give colorless oil, which was chromatographed on SiO_2 (20 g, hexane:acetone=70:1-40:1) to give 6 (174 mg, 90%) as a colorless oil.

IR (neat) 2957, 2873, 1747, 1702 cm⁻¹; ¹H NMR (500 MHz) δ 0.88 & 0.89 (each 3H, each t, J = 7.3 Hz), 0.96 (1H, q, J = 12 Hz), 1.24-1.46 (6H, br m), 1.62-1.70 (1H, m), 1.70-1.77 (1H, m), 2.64 (1H, q-like, J = 8 Hz), 3.67 (3H, s), 3.69 (3H, s), 3.92 (1H, br), 4.29 (1H, br), 5.00-5.08 (2H, m), 5.71-5.78 (1H, m); ¹³C NMR (125 MHz) δ 11.31 (q), 13.98 (q), 19.86 (t), 29.56 (t), 31.76 (t), 39.68 (d), 40.50 (t), 40.86 (d), 51.73 (q), 52.81 (q), 55.40 (d), 59.78 (d), 115.31 (t), 139.95 (d), 157.35 (s), 173.20 (s); MS: 254 (M⁺-43, 100); HRMS: Calcd for C₁₃H₂₀NO₄ (M⁺-C₃H₇) 254.1392; Found 254.1353; [α]_D²⁶ -65.9 (c 0.91, CHCl₃).

Methyl (2S, 3R, 5R, 6S)-(-)-5-ethyl-2-hydroxymethyl-6-propyl-3-vinylpiperidine-1-carboxylate

To a stirred solution of 6 (45 mg, 0.15 mmol) in THF (1 mL) was added a solution of Super-Hydride (1 M in THF, 0.4 mL, 0.4 mmol) at 0 °C, and the resulting mixture was stirred at 0 °C for 1 hr. The reaction was quenched with satd NaHCO₃ (aq), and the aqueous mixture was extracted with CH₂Cl₂ (10 mL x 5). The organic extracts were combined, dried, and evaporated to give colorless oil, which was chromatographed on SiO₂ (10 g, hexane:acetone=30:1-15:1) to give the alcohol (41 mg, 99%) as a colorless oil.

IR (neat) 3456, 3078, 2958, 2873, 1672 cm⁻¹; ¹H NMR (500 MHz) δ 0.88 & 0.92 (each 3H, each t, J = 7.3 Hz), 1.00 (1H, q, J = 10.7 Hz), 1.28-1.47 (6H, br m), 1.53-1.59 (1H, m), 1.62-1.66 (2H, m), 2.12 (1H, br q-like, J = 9.8 Hz), 3.54-3.59 (1H, m), 3.71 (3H, s), 3.72-3.85 (1H, br), 3.97 (2H, br), 5.03-5.29 (2H, m), 5.69 (1H, ddd, J = 17.1, 9.8, 8.1 Hz); ¹³C NMR (125 MHz) δ 11.22 (q), 13.88 (q), 19.65 (t), 29.56 (t), 32.50 (t), 40.51 (d), 41.63 (t), 41.74 (d), 52.98 (q), 55.65 (d), 60.40 (d), 67.09 (t), 115.63 (t), 141.02 (d); MS: 238 (M⁺-31), 117 (100); HRMS: Calcd for C₁₄H₂₄NO₂ (M⁺-MeO), 238.1808; Found 238.1792; [α]_D²⁶ -93.4 (c 1.86, CHCl₃).

(5S, 6R, 8R, 9S)-(-)-6-Ethyl-5-propyl-8-vinylhexahydrooxazolo[3,4-a]pyridin-3-one (7)

To a stirred solution of the above alcohol (41 mg, 0.15 mmol) in THF (1 mL) was added NaH (60%, 7.9 mg, 0.20 mmol) at 0 $^{\circ}$ C, and the resulting suspension was stirred at 0 $^{\circ}$ C for 1 h. The reaction was quenched with 10% AcOH, and the aqueous mixture was extracted with CH₂Cl₂ (5 mL x 4). The organic extracts were combined, dried, and evaporated to give colorless oil, which was chromatographed on SiO₂ (10 g, hexane:acetone=20:1) to give **7** (30.3 mg, 84%) as a colorless oil.

IR (neat) 3078, 2962, 2872, 1751 cm⁻¹; ¹H NMR (500 MHz) δ 0.87 (3H, t, J = 7.5 Hz), 0.93 (3H, t, J = 7.3 Hz), 1.06-1.16 (2H, m), 1.26-1.33 (1H, br m), 1.51 (1H, qm, J = 11.5 Hz), 1.54-1.62 (2H, m), 1.73-1.80 (1H, m), 3.54-3.59 (1H, m), 1.97 (1H, dt, J = 13, 3.5 Hz), 2.17 (1H, qm, J = 11 Hz), 2.21-2.29 (1H, m), 2.82 (1H, td, J = 10, 3.5 Hz), 3.24 (1H, ddd, J = 13, 7, 3 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.24 (1H, ddd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.24 (1H, ddd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 8, 3 Hz), 4.16 (1H, dd, J = 10, 3.5 Hz), 3.96 (1H, dd, J = 10, 3.96 (1H, dd,

8, 7 Hz), 5.10-5.14 (2H, m), 5.52 (1H, ddd, J = 16.5, 10, 8 Hz); ¹³C NMR (125 MHz) δ 10.20 (q), 14.01 (q), 19.49 (t), 24.19 (t), 29.34 (t), 35.98 (t), 39.97 (d), 44.78 (d), 61.16 (d), 61.20 (d), 64.87 (t), 117.44 (t), 137.61 (d), 155.82 (s); MS: 237 (M⁺, 100); HRMS: Calcd for C₁₄H₂₃NO₂, 237.1728; Found 237.1740; $[\alpha]_D^{26} - 31.9$ (c 1.52, CHCl₃).

Methyl (2S, 3R, 6S)-(-)-2-(2-ethoxycarbonylvinyl)-5-ethyl-6-propyl-3-vinylpiperidine-1-carboxylate (8)

To a stirred solution of $(COCl)_2$ (0.11 mL, 1.26 mmol) in CH_2Cl_2 (2 mL) was added DMSO (0.18 mL, 2.52 mmol) at -78 °C, and the resulting solution was stirred at -78 °C for 10 min. To the mixture was added a solution of the above alcohol (150 mg, 0.56 mmol) in CH_2Cl_2 (3 mL) at -78 °C, and the reaction mixture was stirred at -78 °C for 30 min. Triethylamine (0.52 mL, 3.78 mmol) at -78 °C, and the reaction mixture was warmed to 0 °C for 1 h. The reaction was quenched with H_2O , and the aqueous mixture was extracted with Et_2O (10 mL x 4). The organic extracts were combined, dried and evaporated to give pale yellow oil, which was used directly in the next step.

To a stirred suspension of NaH (60%, 25 mg, 0.61 mmol) in THF (2 mL) was added (EtO) $_2$ P(O)CH $_2$ CO $_2$ Et (0.12 mL, 0.59 mmol) at 0 °C, and the resulting solution was stirred at 0 °C for 15 min. To the reaction mixture was added a slolution of the above oil in THF (4 mL) at 0 °C, and the reaction mixture was stirred at room temperature for 2 h. The reaction was quenched with H $_2$ O, and the aqueous mixture was extracted with CH $_2$ Cl $_2$ (10 mL x 3). The organic extracts were combined, dried, and evaporated to give pale yellow oil, which was chromatographed on SiO $_2$ (12 g, hexane:acetone=80:1) to give 8 (181 mg, 96%) as a colorless oil.

IR (neat) 3078, 2958, 2873, 1697 cm⁻¹; ¹H NMR (500 MHz) δ 0.86-0.92 (6H, m), 1.00 (1H, q, J = 11.1 Hz), 1.25 (3H, t, J = 7.3 Hz), 1.29-1.45 (7H, br m), 1.51-1.58 (1H, m), 1.68-1.72 (1H, m), 2.30 (1H, q-like, J = 11.1 Hz), 3.67 (3H, s), 4.16 (2H, q, J = 7.3 Hz), 4.18 (1H, br), 5.03-5.07 (2H, m), 5.59-5.66 (1H, m), 5.79-5.87 (1H, m), 6.77 (1H, dd, J = 15.8, 6.9 Hz); ¹³C NMR (125 MHz) δ 11.20 (q), 13.80 (q), 14.15 (q),

19.76 (t), 29.70 (t), 32.23 (t), 41.17 (t), 41.51 (d), 41.82 (d), 52.69 (q), 55.37 (d), 58.29 (d), 60.35 (t), 116.19 (t), 122.33 (d), 139.72 (d), 147.09 (d), 157.17 (s), 166.42 (s); MS: 337 (M $^{+}$), 294 (100); HRMS: Calcd for C₁₉H₃₁NO₄, 337.2253; Found 337.2231; $\left[\alpha\right]_{D}^{26}$ –42.1 (*c* 1.08, CHCl₃).

Methyl (2R, 3S, 5R, 6S)-(-)-3,5-diethyl-2-(3-hydroxypropyl)-6-propylpiperidine-1-carboxylate

To a solution of **8** (200 mg, 0.59 mmol) in EtOAc (10 mL) was added 5% Pd-C (50 mg), and the resulting suspension was hydrogenated under hydrogen atmosphere at 1 atm for 72 h. The catalyst was removed by filtration, and the filtrate was evaporated to give colorless oil, which was used directly in the next step. To a stirred solution of the above in THF (8 mL) was added a solution of Super-Hydride (1 M in THF, 1.3 mL, 1.3 mmol) at 0 °C, and the resulting mixture was stirred at 0 °C for 1 hr. The reaction was quenched with satd NaHCO₃ (aq), and the aqueous mixture was extracted with CH₂Cl₂ (10 mL x 5). The organic extracts were combined, dried, and evaporated to give colorless oil, which was chromatographed on SiO₂ (20 g, hexane:acetone=30:1-8:1) to give the alcohol (157 mg, 89%) as a colorless oil.

IR (neat) 3448, 2957, 2872, 1674 cm⁻¹; ¹H NMR (500 MHz) δ 0.63 (1H, q-like, J = 11.1 Hz), 0.86-0.89 (6H, m), 1.18-1.66 (15H, br m), 2.01 (1H, br), 2.60 (1H, br), 3.63 (3H, s), 3.76 (1H, br), 3.92 (1H, br); ¹³C NMR (125 MHz) δ 11.46 (q), 14.02 (q), 20.09 (t), 28.45 (t), 28.82 (t), 29.73 (t), 30.60 (t), 34.41 (t), 40.46 (t), 42.12 (d), 52.43 (q), 55.23 (d), 56.74 (d), 62.70 (t), 158.40 (s); MS: 299 (M⁺), 256 (100); HRMS:

Methyl (2R, 3S, 5R, 6S)-(+)-3,5-diethyl-2-(3-methoxymethoxypropyl)-6-propylpiperidine-1-carboxylate (9)

Calcd for $C_{17}H_{33}NO_3$, 299.2460; Found 299.2459; $[\alpha]_D^{26}$ –7.2 (c 3.00, CHCl₃).

To a stirred solution of the above alcohol (217 mg, 0.73 mmol) in CHCl₃ (5 mL) were added MOMCl (0.22 mL, 2.9 mmol) and Hünig base (0.56 mL, 3.19 mmol), and the resulting mixture was refluxed for 2 h. After cooling, the solvent was evaporated and the residue was chromatographed on SiO₂ (15 g, hexane:acetone=30:1) to give **9** (215 mg, 86%) as a colorless oil.

IR (neat) 2955, 2873, 1693, 1110 cm⁻¹; ¹H NMR (500 MHz) δ 0.60 (1H, q-like, J = 8.8 Hz), 0.83-0.86 (6H, m), 1.19-1.62 (15H, br m), 2.04 (1H, br), 3.30 (3H, br s), 3.46 (2H, br), 3.60 (3H, br s), 3.71 (1H, br), 3.91 (1H, br), 4.55 (2H, br s); ¹³C NMR (125 MHz) δ 11.42 (q), 14.00 (q), 20.10 (t), 27.17 (t), 28.60 (t), 30.60 (t), 34.38 (t), 40.21 (t), 42.08 (d), 52.22 (q), 54.91 (q), 56.76 (d), 67.52 (t), 96.20 (t), 158.13 (s); MS: 343 (M⁺), 300 (100); HRMS: Calcd for C₁₉H₃₇NO₄, 343.2721; Found 343.2709; [α]_D²⁶ +0.126 (c 6.28, CHCl₃).

(5S, 6R, 8S, 9R)-(+)-6,8-Diethyl-5-propyloctahydroindolizine (10)

To a stirred solution of n-PrSLi, prepared from n-PrSH (0.11 mL, 1.17 mmol) and n-BuLi (1.6 M in hexane, 0.69 mL, 1.13 mmol) in HMPA (0.5 mL) at 0 °C for 30 min. To the reaction mixture was added a solution of **9** (40 mg, 0.17 mmol) in THF (2 mL) at 0 °C, and the resulting solution was stirred at room temperature for 48 h. The reaction was quenched with NH₃ (aq), and the aqueous mixture was extracted with Et₂O (5 mL x 10). The organic extracts were combined, dried over K₂CO₃, and evaporated to give pale yellow oil, which was used directly in the next step.

To a stirred solution of the above oil in MeOH (4 mL) was added c. HCl (3 drops), and the resulting mixture was refluxed for 1 h. After cooling, the solvent was evaporated, and the residue was washed with Et_2O . To the residue was added NH_3 (aq), and the aqueous mixture was extracted with $CHCl_3$ (5 mL x 8). The organic extracts were combined, dried over K_2CO_3 , and evaporated to give colorless oil, which was used directly in the next step.

Carbontetrabromide (55 mg, 0.16 mmol) and Ph_3P (46 mg, 0.17 mmol) were added to a solution of the above oil in CH_2Cl_2 (1 mL) at 0 °C, and the reaction mixture was stirred at 0 °C for 2 h. To the reaction mixture was added Et_3N (0.26 mL, 1.87 mmol) at 0 °C, and the resulting suspension was stirred at 0 °C for 10 min. The solvent was evaporated, and the residue was extracted with *n*-pentane (5 mL x 5). The organic extracts were combined and evaporated to give colorless solid, which was chromatographed on SiO_2 (7 g, hexane:acetone: $Et_3N=50:1:5$ drops) to give **10** (14 mg, 52%) as a pale yellow oil.

IR (neat) 2959, 2872, 2778, 1461, 1379, 1324, 1247, 1172, 934, 901, 733 cm⁻¹; ¹H NMR (500 MHz) δ 0.61 (1H, q-like, J = 12 Hz), 0.89 (9H, t, J = 7 Hz), 1.07 (2H, m), 1.20-1.80 (13H, br m), 1.93 (3H, br dt-like, J = 13, 3.5 Hz), 3.18 (1H, br); ¹³C NMR (75 MHz) δ 11.08 (q), 14.76 (q), 18.00 (t), 20.71 (t), 24.71 (t), 26.03 (t), 28.80 (t), 32.98 (t), 35.23 (t), 39.94 (d), 52.06 (t), 67.49 (d); MS: 223 (M⁺), 190 (100); $[\alpha]_D^{26}$ +60.4 (c 0.25, CHCl₃).

DCl salt: ¹H NMR (500 MHz, D₂O) δ 0.84-0.91 (9H, m), 1.01 (1H, q-like, J = 12.5 Hz), 1.23 (3H, m), 1.39 (1H, m), 1.55 (3H, br m), 1.65 (2H, m), 1.75 (2H, m), 1.94 (1H, quint-like, J = 11 Hz), 2.05 (2H, dm, J = 14 Hz), 2.33 (1H, m), 2.89 (1H, dt-like, J = 12, 2.5 Hz), 2.93 (1H, m), 3.03 (1H, q-like, J = 10 Hz), 3.65 (1H, td-like, J = 10, 3 Hz); ¹³C NMR (75 MHz, D₂O) δ 9.79 (q), 9.99 (q), 13.79 (q), 16.49 (t), 19.45 (t), 23.74 (t), 25.13 (t), 27.12 (t), 30.15 (t), 33.20 (t), 38.53 (d), 40.21 (d), 51.42 (t), 67.89 (d), 71.87 (d); $[\alpha]_D^{26} + 17.2$ (c 0.3, CHCl₃).

(2S)-2-(2-Ethylbut-3-enyloxy)tetrahydropyran

To a stirred solution of (2R)-2-(hydroxymethyl)butyl acetate (730 mg, 5 mmol) in CH_2Cl_2 (5 mL) were added 3,4-dihydro-2H-pyran (0.55 mL, 6 mmol) and PPTS (251 mg, 1 mmol), and the resulting mixture was stirred at room temperature for 2 h. The reaction was quenched with satd NaHCO₃ (a), and the aqueous mixture was extracted with CH_2Cl_2 (10 mL x 4). The organic extracts were combined, dried, and evaporated to give colorless oil, which was used directly in the next step.

To a stirred solution of the above oil in MeOH (5 mL) was added solid K₂CO₃ (414 mg, 3 mmol) at 0 °C, and the resulting suspension was stirred at room temperature for 3 h. The reaction was quenched with 10% AcOH, and the aqueous mixture was extracted with CHCl₃ (10 mL x 6). The organic extracts were combined, drie, and evaporated to give colorless oil, which was used directly in the next step.

To a stirred solution of $(COCl)_2$ (0.65 mL, 7.5 mmol) in CH_2Cl_2 (7 mL) was added DMSO (1.06 mL, 15.0 mmol) at -78 °C, and the resulting solution was stirred at -78 °C for 10 min. To the mixture was added a solution of the above oil in CH_2Cl_2 (6 mL) at -78 °C, and the reaction mixture was stirred at -78 °C for 30

min. Triethylamine (3.1 mL, 22.5 mmol) at -78 °C, and the reaction mixture was warmed to 0 °C for 1 h. The reaction was quenched with H_2O , and the aqueous mixture was extracted with Et_2O (15 mL x 4). The organic extracts were combined, dried and evaporated to give pale yellow oil, which was used directly in the next step.

To a stirred suspension of MeP⁺Ph₃Br⁻ (8.08g, 20.0 mmol) in THF (20 mL) was added a solution of *n*-BuLi (1.6M ih hexane, 12 mL, 19.0 mmol) at 0 °C, and the resulting orange solution was stirred at 0 °C for 30 min. To the solution was added a solution of the above oil in THF (10 mL) at 0 °C, and the reaction mixture was stirred at room temperature for 1.5 h. The reaction was quenched with H₂O, and the aqueous mixture was extracted with Et₂O (25 mL x 3). The organic extracts were combined, dried, and evaporated to give pale yellow oil, which was chromatographed on SiO₂ (40 g, hexane:acetone=100:1-80:1) to give **3** (695 mg, 76% in 4 steps) as a colorless oil.

¹H NMR (500 MHz) δ 0.88 (3H, t, *J* = 7.3 Hz), 1.22-1.35 (1H, m), 1.46-1.62 (5H, br m), 1.69 (1H, m), 1.80 (1H, m), 2.22 (1H, br), 3.31 (1H, m), 3.50 (1H, br), 3.68 (1H, m), 3.80 (1H, m), 4.59 (1H, br), 5.07 (2H, m), 5.63 (1H, m).

(2R, 3R)-3-(Tetrahydropyran-2-yloxymethyl)pentane-1,2-diol

To a stirred solution of the above olefin (690 mg, 3.75 mmol) in t-BuOH (10 mL) and H₂O (10 mL) was added (DHQD)₂PYR (4 g) at 0 °C, and the resulting suspension was stirred at 0 °C for 24 h. The reaction was quenched with Na₂SO₃ (4 g), and the reaction mixture was extracted with EtOAc (20 mL x 5). The organic extracts were combined, dried, and evaporated to give pale yellow oil, which was chromatographed on SiO₂ (20 g, hexane:acetone=10:1-4:1) to give **3** (654 mg, 80%) as a colorless oil. IR (neat) 3405, 2940, 2877, 1124 cm⁻¹; ¹H NMR (500 MHz) δ 0.91-0.94 (3H, m), 1.31-1.78 (9H, br m), 2.22 & 2.28 (1H, each br), 3.46-3.65 (3H, m), 3.66-3.72 (3H, m), 3.78 (1H, br), 3.82-3.93 (2H, br m), 4.52 & 4.57 (1H, each br), 3.91 (1H, br); ¹³C NMR (125 MHz) δ 11.60 & 11.61 (each q), 19.37 & 19.76 (each

t), 21.22 & 21.43 (each t), 25.13 (t), 30.41 & 30.55 (each t), 42.13 & 42.27 (each d), 62.38 & 62.99 (each t), 65.11 (t), 67.74 & 68.15 (each t), 73.61 & 73.59 (each d), 98.88 & 99.74 (each d).

(2R, 3R)-1-(tert-Butyldiphenylsilyloxy)-3-(tetrahydropyran-2-yloxymethyl)pentan-2-ol

To a stirred solution of the above diol (590 mg, 2.71 mmol) in CH₂Cl₂ (5 mL) were added TBDPSCl (0.8 mL, 2.98 mmol), Et₃N (0.5 mL, 3.52 mmol), and DMAP (70 mg, 0.54 mmol) at 0 °C, and the reaction mixture was stirred at room temperature for 20 h. The solvent was evaporated and the redisue was chromatographed on SiO₂ (30 g, hexane:acetone=50:1-30:1) to give **3** (1.21 g, 98%) as a colorless oil. IR (neat) 3486, 3069, 2935, 2864, 1113 cm⁻¹; ¹H NMR (500 MHz) δ 0.95 & 0.96 (3H, each t, each J = 7.7 Hz), 1.06 (9H, s), 1.42-1.76 (9H, br m), 3.01-3.05 (1H, m), 3.44-3.52 (2H, m), 3.72-3.95 (5H, br m), 4.52 (1H, br), 7.40-7.46 (6H, m), 7.69-7.72 (4H, m); ¹³C NMR (125 MHz) δ 11.62 & 11.76 (each q), 19.12 & 19.14 (each t), 19.32 (s), 21.02 & 21.08 (each t), 25.24 & 25.27 (each t), 26.77 (q), 30.38 & 30.41 (each t), 41.57 (d), 61.77 & 61.82 (each t), 66.33 (t), 66.97 (t), 73.18 & 73.24 (each d), 98.55 & 99.12 (each d), 127.61 (d), 129.61 & 129.62 (each d), 133.27 & 133.28 (each s), 135.47 (d).

(2S, 3S)-1-(tert-Butyldiphenylsilyloxy)-3-(tetrahydropyran-2-yloxymethyl)pentan-2-azide

To a stirred solution of the above silyl ether (1.49 g, 3.27 mmol) in CH_2Cl_2 (4 mL) were added MsCl (0.28 mL) and Et_3N (0.68 mL) at 0 °C, and the resulting suspension was stirred at 0 °C for 1 h. The reaction was quenched with satd NaHCO₃ (aq), and aqueous mixture was extracted with CH_2Cl_2 (10 mL x 4). The organic extracts were combined, dried, and evaporated to give pale yellow oil, which was used directly in the next step.

To a stirred solution of the above oil in DMF (10 mL) was added NaN₃ (2.1 g, 32.65 mmol), and the resulting suspension was stirred at 80 °C for 15 h. After cooling, the insoluble material was filtered, washed with CH₂Cl₂, and filtrate was evaporated to give pale yellow oil, which was chromatographed on SiO₂ (30 g, hexane:acetone=50:1-40:1) to give **3** (1.3 g, 83%) as a colorless oil.

IR (neat) 3070, 2936, 2098, 1112, 1032 cm⁻¹; ¹H NMR (500 MHz) δ 0.88 & 0.90 (3H, each t, each J = 7.3 Hz), 1.10 (9H, s), 1.44-1.75 (9H, br m), 3.22-3.29 (1H, m), 3.44-3.52 (1H, m), 3.66-3.83 (5H, br m), 4.46 & 4.51 (1H, each br), 7.39-7.47 (6H, m), 7.70-7.74 (4H, m); ¹³C NMR (125 MHz) δ 11.82 & 11.91 (each q), 19.06 & 19.14 (each t), 19.42 (s), 20.09 & 20.26 (each t), 25.35 & 25.38 (each t), 26.66 (q), 30.45 & 30.49 (each t), 41.26 & 41.32 (each d), 61.76 & 62.22 (each t), 65.49 & 65.55 (each d), 65.68 (t), 66.19 (t), 66.83 (t), 98.32 & 99.35 (each d), 127.70 (d), 129.70 & 129.72 (each d), 133.03 & 133.14 (each s), 135.58 & 135.60 (each d).

Ethyl (4R, 5S)-5-azide-6-(tert-butyldiphenylsilyloxy)-4-ethyl-2-hexenoate

To a stirred solution of the above azide (1.1 g, 2.29 mmol) in EtOH (5 mL) was added PPTS (115 mg, 0.46 mmol), and the reaction mixture was stirred at 60 °C for 2 h. After cooling, the reaction was quenched with satd NaHCO₃ (aq), and the aqueous mixture was extracted with CH₂Cl₂ (20 mL x 4). The organic extracts were combined, dried, and evaporated to give colorless oil, which was used directly in the next step.

To a stirred solution of $(COCl)_2$ (0.3 mL, 3.43 mmol) in CH_2Cl_2 (6 mL) was added DMSO (0.5 mL, 6.86 mmol) at -78 °C, and the resulting solution was stirred at -78 °C for 10 min. To the mixture was added a solution of the above alcohol in CH_2Cl_2 (8 mL) at -78 °C, and the reaction mixture was stirred at -78 °C for 30 min. Triethylamine (1.4 mL, 10.29 mmol) at -78 °C, and the reaction mixture was warmed to 0 °C for 1 h. The reaction was quenched with H_2O , and the aqueous mixture was extracted with Et_2O (15 mL x 4). The organic extracts were combined, dried and evaporated to give pale yellow oil, which was used directly in the next step.

To a stirred suspension of NaH (60%, 100 mg, 2.52 mmol) in THF (5 mL) was added (EtO) $_2$ P(O)CH $_2$ CO $_2$ Et (0.5 mL, 2.52 mmol) at 0 °C, and the resulting solution was stirred at 0 °C for 15 min. To the reaction mixture was added a solution of the above aldehyde in THF (6 mL) at 0 °C, and the reaction mixture was stirred at room temperature for 2 h. The reaction was quenched with H $_2$ O, and the

aqueous mixture was extracted with CH_2Cl_2 (15 mL x 3). The organic extracts were combined, dried, and evaporated to give pale yellow oil, which was chromatographed on SiO_2 (25 g, hexane:acetone=80:1) to give **9** (935 mg, 88% in 3 steps) as a colorless oil.

IR (neat) 3070, 2962, 2934, 2861, 1720, 1110 cm⁻¹; ¹H NMR (500 MHz) δ 0.84-0.92 (3H, m), 1.11 (9H, s), 1.31 (3H, t, J = 6.0 Hz), 1.33-1.40 (1H, m), 1.69-1.77 (1H, m), 2.30-2.44 (1H, m), 3.36-3.40 (1H, m), 3.56-3.74 (1H, m), 3.78-3.81 (1H, m), 4.21 (2H, q, J = 6.0 Hz),5.83 (1H, d, J = 15.4 Hz), 6.63 (1H, dd, J = 15.4, 7.7 Hz), 7.40-7.48 (6H, m), 7.69-7.73 (4H, m); ¹³C NMR (125 MHz) δ 11.35 (q), 14.17 (q), 19.00 (s), 23.36 (t), 26.62 (q), 44.97 (d), 60.28 (t), 65.37 (t), 66.12 (d), 123.73 (d), 127.71 & 127.75 (each d), 129.78 & 129.80 (each d), 132.64 & 132.66 (each s), 135.47 & 135.50 (each d), 139.33 (d), 147.35 (d), 165.79 (s).

(5R, 6S)-(+)-6-(*tert*-butyldiphenylsilyloxymethyl)-5-ethylpiperidin-2-one (12)

To a solution of **9** (3.88 g, 8.34 mmol) in EtOAc (100 mL) was added 5% Pd-C (800 mg), and the resulting suspension was hydrogenated under hydrogen atmosphere at 4 atm for 72 h. The catalyst was removed by filtration, and the filtrate was evaporated to give colorless oil, which was chromatographed on SiO₂ (80 g, hexane:acetone=40:1-8:1) to give **12** (2.4 g, 73%) as a colorless oil.

IR (neat) 3402, 3206, 2933, 1666, 1108 cm⁻¹; ¹H NMR (500 MHz) δ 0.81 (3H, t, J = 7.5 Hz), 1.05 (9H, s), 1.17-1.26 (2H, m), 1.66-1.70 (2H, m), 1.72-1.76 (1H, m), 2.30-2.39 (2H, m), 3.53-3.57 (1H, m), 3.58 (1H, t-like, J = 9 Hz), 3.63 (1H, dd, J = 9, 3 Hz), 7.37-7.46 (6H, m), 7.62-7.65 (4H, m); ¹³C NMR (125 MHz) δ 11.57 (q), 19.05 (s), 21.19 (t), 23.00 (t), 26.73 (q), 29.48 (t), 35.73 (d), 56.78 (d), 64.42 (t), 127.79 & 127.81 (each d), 129.85 & 129.88 (each d), 132.79 (s), 135.44 & 135.46 (each d), 171.89 (s); MS: 338 (M⁺-57), 199 (100); HRMS: Calcd for C₂₀H₂₄NO₂Si (M⁺-C₄H₉) 338.1577; Found 338.1592; [α]_D²⁶ +28.2 (c 2.94, CHCl₃).

Methyl (2S, 3R)-(-)-2-(tert-butyldiphenylsilyloxymethyl)-3-ethyl-6-oxopiperidine-1-carboxylate

To a stirred solution of **12** (1.7 g, 4.30 mmol) in THF (15 mL) was added a solution of *n*-BuLi (1.6 M in hexane, 3.0 ml, 4.80 mmol) at –78 °C, and the reaction mixture was stirred at –78 °C for 30 min. To the reaction mixture was added ClCO₂Me (0.5 mL, 6.33 mmol) at –78 °C, and the resulting mixture was warmed to 0 °C for 1 h. The reaction was quenched with satd. NaHCO₃ (aq), and the aqueous mixture was extracted with CH₂Cl₂ (20 mL x 4). The organic extracts were combined, dried, and evaporated to give colorless oil, which was chromatographed on SiO₂ (30 g, hexane:acetone=20:1-15:1) to give the imide (1.88 g, 97%) as a colorless oil.

IR (neat) 3069, 3049, 2957, 2883, 2860, 1774, 1719, 1108 cm⁻¹; ¹H NMR (300 MHz) δ 0.93 (3H, t, J = 7.4 Hz), 1.02 (9H, s), 1.23-1.44 (2H, m), 1.81-1.88 (2H, m), 1.99-2.06 (1H, m), 2.49-2.70 (2H, m), 3.73 (1H, dd, J = 11, 3.3 Hz), 3.80 (3H, s), 3.83 (1H, dd, J = 11, 4.4 Hz), 4.28 (1H, br), 7.35-7.47 (6H, m), 7.61-7.68 (4H, m); ¹³C NMR (75 MHz) δ 12.02 (q), 18.96 (s), 24.53 (t), 25.68 (t), 26.71 (q), 34.38 (t), 39.11 (d), 53.69 (q), 59.25 (d), 61.48 (t), 127.55 & 127.58 (each d), 129.62 (d), 132.08 & 132.63 (each s), 135.41 & 135.52 (each d), 154.82 (s), 171.78 (s); MS: 396 (M⁺-57), 84 (100); HRMS: Calcd for C₂₂H₂₆NO₄Si (M⁺-C₄H₉) 396.1631; Found 396.1631; $[\alpha]_D^{26}$ –34.9 (c 3.38, CHCl₃).

Methyl (2S, 3R)-(-)-2-(tert-butyldiphenylsilyloxymethyl)-3-ethyl-6-trifluoromethanesulfonyloxy-3,4-dihydro-2H-pyridine-1-carboxylate

To a stirred solution of hexamethyldisilazane (1.03 mL, 4.87 mmol) in THF (8 mL) was added a solution of *n*-BuLi (1.6 M in hexane, 3.03 mL, 4.86 mmol) at 0 °C, and the resulting solution was stirred at 0 °C for 30 min. To a stirred solution of the above imide (1.84 g, 4.06 mmol) in THF (10 mL) was added a solution of LiHMDS prepared above at –78 °C, and the reaction mixture was stirred at –78 °C for 30 min. To the above reaction mixture was added a solution of 2-[*N*,*N*-bis(trifluoromethylsulfonyl)amino]5-chloropyridine (Comins' reagent) (97%, 1.96 g, 4.85 mmol) in THF (6 mL) at –78 °C, and the resulting mixture was warned to –45 °C for 1 h. The reaction was quenched with satd. NH₄Cl (aq), and the aqueous mixture was extracted with Et₂O (20 mL x 4). The organic extracts were combined, dried, and

evaporated to give pale yellow solid, which was chromatographed on SiO_2 (40 g, hexane:acetone=50:1-40:1) to give the enol triflate (2.3 g, 97%) as a colorless oil.

IR (neat) 3070, 2959, 2933, 2887, 2860, 1733, 1684, 1213, 1111 cm⁻¹; ¹H NMR (300 MHz) δ 0.83 (3H, t, J = 7.4 Hz), 1.06 (9H, s), 1.13-1.30 (2H, m), 1.60-1.81 (2H, m), 2.32 (1H, dm, J = 16.4 Hz), 3.57-3.63 (1H, m), 3.71-3.78 (1H, m), 3.85 (3H, s), 4.61-4.67 (1H, m), 5.23 (1H, t, J = 3.4 Hz), 7.38-7.48 (6H, m), 7.67-7.75 (4H, m); ¹³C NMR (75 MHz) δ 11.89 (q), 19.11 (s), 25.44 (t), 26.49 (t), 26.59 (q), 37.62 (d), 53.46 (q), 59.25 (d), 58.43 (t), 59.75 (d), 105.51 (d), 127.51 & 127.56 (each d), 129.52 & 129.60 (each d), 133.09 & 133.14 (each s), 135.42 & 135.51 (each d), 138.13 (s), 153.80 (s); MS: 528 (M⁺-57), 308 (100); HRMS: Calcd for C₂₃H₂₅NO₆F₃SiS (M⁺-C₄H₉) 528.1124; Found 528.1115; $[\alpha]_D^{26} - 43.8$ (c 5.73, CHCl₃).

Dimethyl (5R, 6S)-(-)-6-(tert-butyldiphenylsilyloxymethyl)-5-ethyl-5,6-dihydro-4H-pyridine-1,2-dicarboxylate (13)

To a stirred solution of the above enol triflate (2.3 g, 3.93 mmol) in DMF (15 mL) was added Pd(Ph₃P)₄ (230 mg, 0.20 mmol), and the resulting mixture was stirred at room temperature under CO balloon pressure for 30 min. To the reaction mixture were added Et₃N (2.2 mL, 15.73 mmol) and MeOH (6.4 mL, 157.26 mmol), and then the reaction mixture was stirred at 70 °C under CO balloon pressure for 14 h. After cooling, the reaction mixture was diluted with H_2O (50 mL) and brine (10 mL), and the aqueous mixture was extracted with Et_2O (50 mL x 4). The organic extracts were combined, dried, and evaporated to give pale yellow oil, which was chromatographed on SiO_2 (40 g, hexane:acetone=40:1-20:1) to give 13 (1.46 g, 75%) as a colorless oil.

IR (neat) 3048, 2955, 2882, 2859, 1919, 1650 cm⁻¹; ¹H NMR (500 MHz) δ 0.87 (3H, t, J = 7.5 Hz), 1.04 (9H, s), 1.18-1.32 (2H, m), 1.66-1.72 (1H, m), 1.82-1.86 (1H, m), 2.27-2.33 (1H, m), 3.59-3.71 (2H, m), 3.74 (3H, s), 3.75 (3H, s), 4.54 (1H, br), 6.01 (1H, br), 7.36-7.45 (6H, m), 7.66-7.73 (4H, m); ¹³C NMR (125 MHz) δ 11.80 (q), 19.14 (s), 26.02 (t), 26.55 (q), 27.43 (t), 37.51 (d), 51.89 (q), 53.04 (q), 56.29 (d), 59.14 (t), 121.34 (d), 127.43 & 127.46 (each d), 129.41 & 129.47 (each d), 133.28 (s), 133.26 (s), 135.44

& 135.47 (each d), 154.42 (s), 165.58 (s); MS: 438 (M $^{+}$ -57), 68 (100); HRMS: Calcd for $C_{24}H_{28}NO_{5}Si$ (M $^{+}$ - $C_{4}H_{9}$) 438.1736; Found 438.1741; $[\alpha]_{D}^{26}$ –47.1 (c 4.22, CHCl $_{3}$).

Dimethyl (2R, 3S, 5R, 6S)-(+)-6-(tert-butyldiphenylsilyloxymethyl)-5-ethyl-3-vinylpiperidine-1,2-dicarboxylate (14)

To a stirred suspension of CuI (2.69 g, 14.14 mmol) in Et₂O (15 mL) was added a solution of vinyl lithium, (prepared from tetravinyltin (1.2 mL, 7.07 mmol) and MeLi (1.0 M in Et₂O, 28 mL, 28.0 mmol) in Et₂O (10 mL) at 0 °C for 30 min), at -78 °C, and the resulting suspension was warmed to -35 °C for 20 min. The resulting suspension was re-cooled to -78 °C, and a solution of 13 (1.4 g, 2.82 mmol) in Et₂O (8 mL) was added to the resulting suspension. The reaction mixture was warmed to -20 °C for 1 h, and the reaction was quenched with satd. NH₄Cl (aq). The aqueous mixture was diluted with CH₂Cl₂ (100 mL), and the resulting suspension was filtered. The filtrate was separated, and the aqueous layer was extracted with CH₂Cl₂ (20 mL x 2). The organic layer and extracts were combined, dried, and evaporated to give colorless oil, which was chromatographed on SiO₂ (30 g, hexane:acetone=50:1-30:1) to give 14 (1.41 g, 95%) as a colorless oil.

IR (neat) 3070, 2954, 2860, 1704, 1112 cm⁻¹; ¹H NMR (500 MHz) δ 0.80 (3H, t-like, J = 7 Hz), 1.05 (9H, s), 1.11-1.18 (1H, m), 1.36 (1H, quint-like, J = 7.2 Hz), 1.52 (1H, d-like, J = 13.7 Hz), 1.64 (1H, td, J = 13.2, 4.7 Hz), 1.72-1.77 (1H, m), 3.09 (1H, br), 3.45 (3H, s), 3.63 (2H, d, J = 6.8 Hz), 3.70 (3H, br s), 4.40 (1H, br), 4.98 (1H, br), 5.07-5.13 (2H, m), 5.79-5.85 (1H, m), 7.36-7.45 (6H, m), 7.68-7.69 (4H, br); ¹³C NMR (75 MHz) δ 11.91 (q), 19.21 (s), 25.70 (t), 26.83 (q), 27.81 (t), 34.63 (d), 36.99 (d), 52.00 (q), 52.97 (q), 54.80 (d), 61.18 (t), 115.07 (t), 127.46 (d), 129.49 (d), 133.34 & 133.39 (each s), 135.42 (d), 139.15 (d), 156.91 (s), 172.52 (s); MS: 466 (M⁺-57, 100); HRMS: Calcd for $C_{26}H_{32}NO_5Si$ (M⁺- C_4H_9) 466.2050; Found 466.2035; $[\alpha]_D^{26} + 26.6$ (c 5.52, CHCl₃).

Methyl (2S, 3R, 5S, 6R)-(+)-2-(*tert*-butyldiphenylsilyloxymethyl)-3-ethyl-6-hydroxymethyl-5-vinylpiperidine-1-carboxylate (15)

To a stirred solution of **14** (1.38 g, 2.64 mmol) in THF (15 mL) was added a solution of Super-Hydride (1 M in THF, 6 mL, 6.0 mmol) at 0 °C, and the resulting mixture was stirred at 0 °C for 1 h. The reaction was quenched with satd. NaHCO₃ (aq), and the aqueous mixture was extracted with CH₂Cl₂ (15 mL x 6). The organic extracts were combined, dried, and evaporated to give a colorless oil, which was chromatographed on SiO₂ (25 g, hexane:acetone=40:1-15:1) to give **15** (1.26 g, 96%) as a colorless oil. IR (neat) 3459, 3071, 2957, 2932, 1692, 1111 cm⁻¹; ¹H NMR (500 MHz) δ 0.53 & 0.64 (3H, br), 0.90-0.99 (2H, br), 1.02 (9H, s), 1.40-1.44 (1H, br), 1.56 (1H, td, J = 13.7, 4.7 Hz), 1.71-1.77 (1H, br), 2.30 & 2.41 (1H, br), 3.61-3.91 (5H, br), 4.44-4.69 (2H, br), 5.00-5.14 (2H, m), 5.83-5.90 (1H, m), 7.39-7.46 (6H, m), 7.65-7.88 (4H, m); ¹³C NMR (75 MHz) δ 11.04 (q), 18.95 (s), 25.11 (t), 26.65 (q), 27.43 (t), 33.67 (d), 36.62 (d), 52.81 (q), 54.61 (d), 61.95 (t), 64.36 (t), 114.75 (t), 127.58 & 127.69 (each d), 129.68 & 129.78 (each d), 132.66 (s), 135.21 (d), 140.12 (d), 157.90 (s); MS: 438 (M⁺-57), 407 (100); HRMS: Calcd for C₂₅H₃₂NO₄Si (M⁺-C₄H₉) 438.2101; Found 438.2099; [α]_D²⁶ +22.7 (c 2.37, CHCl₃).

(5S, 6R, 8R, 9R)-(-)-5-(*tert*-butyldiphenylsilyloxymethyl)-6-ethyl-8-vinyl-hexahydrooxazolo-[3,4-a]pyridin-3-one (16)

To a stirred solution of **15** (50 mg, 0.10 mmol) in THF (0.5 mL) was added NaH (60%, 4.8 mg, 0.12 mmol) at 0 °C, and the resulting suspension was stirred at 0 °C for 1 h. The reaction was quenched with 10% AcOH, and the aqueous mixture was extracted with CH_2Cl_2 (10 mL x 4). The organic extracts were combined, dried, and evaporated to give colorless oil, which was chromatographed on SiO_2 (10 g, hexane:acetone=40:1-25:1) to give **16** (44 mg, 94%) as a colorless oil.

IR (neat) 3070, 2958, 2933, 1753, 1110 cm⁻¹; ¹H NMR (500 MHz) δ 0.92 (3H, t, J = 7.4 Hz), 1.09 (9H, s), 1.25-1.32 (1H, m), 1.41 (1H, ddd, J = 15, 12, 5 Hz), 1.49-1.57 (1H, m), 2.01-2.05 (2H, m), 2.27 (1H, ddd, J = 12, 10, 5 Hz), 3.35 (1H, ddd, J = 10.5, 8.5, 5 Hz), 3.42 (1H, ddd, J = 8.5, 5.5, 3 Hz), 3.94 (1H, dd, J =

8.5, 5 Hz), 4.25 (1H, t, J = 8.5 Hz), 4.32 (1H, dd, J = 10.5, 8.5 Hz), 4.35 (1H, dd, J = 10.5, 5.5 Hz), 5.05-5.16 (2H, m), 5.48-5.55 (1H, m), 7.37-7.45 (6H, m), 7.65-7.73 (4H, m); 13 C NMR (75 MHz) δ 11.89 (q), 18.25 (t), 19.34 (s), 26.99 (q), 32.81 (t), 35.42 (d), 40.53 (d), 59.77 (d), 60.11 (d), 60.42 (t), 66.44 (t), 117.09 (t), 127.55 (d), 129.55 (d), 133.35 & 133.42 (each s), 135.41 & 135.44 (each d), 137.46 (d), 156.38 (s); MS: 406 (M⁺-57, 100); HRMS: Calcd for $C_{24}H_{28}NO_3Si$ (M⁺- C_4H_9) 406.1839; Found 406.1841; $[\alpha]_D^{26}$ -32.8 (c 2.03, CHCl₃).

Methyl (2S, 3R, 5S, 6R)-(-)-2-(*tert*-butyldiphenylsilyloxymethyl)-3,5-diethyl-6-(2-ethoxycarbonylvinyl)piperidine-1-carboxylate

To a stirred solution of $(COCl)_2$ (0.26 mL, 3.03 mmol) in CH_2Cl_2 (8 mL) was added DMSO (0.43 mL, 6.06 mmol) at -78 °C, and the resulting solution was stirred at -78 °C for 10 min. To the mixture was added a solution of **15** (1.0 g, 2.02 mmol) in CH_2Cl_2 (10 mL) at -78 °C, and the reaction mixture was stirred at -78 °C for 30 min. Triethylamine (1.26 mL, 9.09 mmol) at -78 °C, and the reaction mixture was warmed to 0 °C for 1 h. The reaction was quenched with H_2O , and the aqueous mixture was extracted with Et_2O (20 mL x 4). The organic extracts were combined, dried and evaporated to give pale yellow oil, which was used directly in the next step.

To a stirred suspension of NaH (60%, 90 mg, 2.22 mmol) in THF (10 mL) was added (EtO) $_2$ P(O)CH $_2$ CO $_2$ Et (0.44 mL, 2.22 mmol) at 0 °C, and the resulting solution was stirred at 0 °C for 15 min. To the reaction mixture was added a solution of the above oil in THF (10 mL) at 0 °C, and the reaction mixture was stirred at room temperature for 2 h. The reaction was quenched with H $_2$ O, and the aqueous mixture was extracted with CH $_2$ Cl $_2$ (30 mL x 3). The organic extracts were combined, dried, and evaporated to give pale yellow oil, which was chromatographed on SiO $_2$ (30 g, hexane:acetone=80:1-40:1) to give the α , β -unsaturated ester (1.05 g, 92%) as a colorless oil.

IR (neat) 3070, 2957, 2932, 1703, 1111 cm⁻¹; ¹H NMR (500 MHz) δ 0.62 (3H, br t-like, J = 7 Hz), 0.95 (2H, quint-like, J = 7.5 Hz), 1.07 (9H, s), 1.20 (3H, t, J = 7.5 Hz), 1.44 (1H, d-like, J = 14 Hz), 1.60 (1H,

td, J = 13, 4.7 Hz), 1.76 (1H, br), 2.71 (1H, br), 3.49 (1H, dd, J = 11, 5.2 Hz), 3.64-3.76 (3H, br m), 4.10-4.24 (2H, m), 5.09-5.28 (2H, m), 5.88-5.94 (1H, m), 6.16 (1H, d-like, J = 16 Hz), 7.26 (H, d-like, J = 16 Hz), 7.36-7.45 (6H, m), 7.67-7.81 (4H, m); ¹³C NMR (75 MHz) δ 11.30 (q), 14.27 (q), 19.01 (s), 25.29 (t), 26.71 (q), 27.46 (t), 33.70 (d), 39.16 (d), 52.81 (q), 53.41 (d), 54.32 (d), 60.16 (t), 60.37 (t), 115.15 (t), 121.36 (d), 129.42 & 129.50 (each d), 133.35 (s), 135.38 (d), 139.62 (d), 149.26 (d), 157.15 (s), 166.12 (s); MS: 506 (M⁺-57), 69 (100); HRMS: Calcd for $C_{29}H_{36}NO_5Si$ (M⁺- C_4H_9) 506.2363; Found 506.2363; $[\alpha]_D^{26} -10.8$ (c 4.43, CHCl₃).

Methyl (2*S*, 3*R*, 5*R*, 6*S*)-(+)-2-(*tert*-butyldiphenylsilyloxymethyl)-3,5-diethyl-6-(3-hydroxypropyl)piperidine-1-carboxylate (17)

To a solution of the above α,β -unsaturated ester (1.0 g, 1.78 mmol) in EtOAc (30 mL) was added 5% Pd-C (100 mg), and the resulting suspension was hydrogenated under hydrogen atmosphere at 1 atm for 72 h. The catalyst was removed by filtration, and the filtrate was evaporated to give colorless oil, which was used directly in the next step.

To a stirred solution of the above in THF (12 mL) was added a solution of Super-Hydride (1 M in THF, 4.0 mL, 4.0 mmol) at 0 °C, and the resulting mixture was stirred at 0 °C for 1 hr. The reaction was quenched with satd NaHCO₃ (aq), and the aqueous mixture was extracted with CH₂Cl₂ (15 mL x 5). The organic extracts were combined, dried, and evaporated to give colorless oil, which was chromatographed on SiO₂ (25 g, hexane:acetone=40:1-12:1) to give **17** (913 mg, 98%) as a colorless oil.

IR (neat) 3448, 2998, 2962, 2839, 1738, 1240 cm⁻¹; ¹H NMR (500 MHz) δ 0.76-0.95 (6H, m), 1.04 (9H, s), 1.15-1.86 (10H, br m), 1.98-2.23 (1H, br), 2.72 (1H, br), 3.58-3.71 (4H, br m), 3.62 (3H, s), 3.91-4.08 (1H, br), 4.41-4.45 (1H, br), 7.39-7.41 (6H, m), 7.63-7.69 (4H, m); ¹³C NMR (75 MHz) δ 11.89 (q), 12.38 & 12.54 (each q), 19.16 (s), 22.67 (t), 25.53 (t), 25.71 (t), 26.78 (q), 29.53 (t), 31.16 (t), 33.51 (d), 33.67 (d), 52.59 (q), 53.54 (d), 54.74 (d), 59.25 (t), 61.99 (t), 127.50 & 127.56 (each d), 129.49 & 129.58 (each

d), 133.21 & 133.35 (each s), 135.33 & 135.41 (each d), 158.23 (s); MS: 468 (M⁺-57), 256 (100); HRMS: Calcd for $C_{27}H_{38}NO_4Si$ (M⁺- C_4H_9) 468.2570; Found 468.2568; $[\alpha]_D^{26} + 10.6$ (c 1.57, CHCl₃).

Methyl (2S, 3R, 5R, 6S)-(-)-2-(*tert*-butyldiphenylsilyloxymethyl)-3,5-diethyl-6-(3-methoxymethoxypropyl)piperidine-1-carboxylate

To a stirred soultion of **17** (913 mg, 1.74 mmol) in $CHCl_3$ (12 mL) were added MOMCl (0.52 mL, 6.96 mmol) and Hünig base (1.4 mL, 7.66 mmol), and the resulting mixture was refluxed for 2 h. After cooling, the solvent was evaporated and the residue was chromatographed on SiO_2 (25 g, hexane:acetone=40:1) to give the MOM ether (878 mg, 89%) as a colorless oil.

IR (neat) 2932, 1692, 1111 cm⁻¹; ¹H NMR (500 MHz) δ 0.73 & 0.79 (3H, each t, each J = 7.3 Hz), 0.90 (3H, t-like, J = 7.3 Hz), 1.02 (9H, s), 1.14-1.77 (12H, br m), 3.30 (3H, s), 3.41-3.45 (1H, m), 3.49-3.58 (1H, m), 3.64 (3H, s), 3.61-3.69 (2H, m), 3.93 & 4.12 (1H, m), 4.42 & 4.68 (1H, m), 4.57 (2H, s), 7.37-7.44 (6H, m), 7.67-7.78 (4H, m); ¹³C NMR (75 MHz) δ 11.70 & 11.86 (each q), 12.36 & 12.48 (each q), 19.09 (s), 25.47 (t), 25.66 (t), 26.70 (q), 27.81 (t), 31.81 (t), 33.41 & 33.77 (each d), 37.59 & 38.01 (each d), 52.39 (q), 54.38 (d), 54.75 (d), 54.98 (q), 62.12 (t), 67.70 (t), 96.27 (t), 127.43 & 127.48 (each d), 129.41 (d), 133.27 & 133.37 (each s), 135.28 & 135.33 (each d), 157.53 (s); MS: 512 (M⁺-57, 100); HRMS: Calcd for C₁₇H₃₃NO₅ (M⁺-C₄H₉) 512.2832; Found 512.2829; [α]_D²⁶ –0.98 (c 3.37, CHCl₃).

Methyl (2S, 3R, 5R, 6S)-(+)-3,5-diethyl-2-hydroxymethyl-6-(3-methoxymethoxy-propyl)-piperidine-1-carboxylate (18)

To a stirred solution of the above MOM ether (240 mg, 0.42 mmol) in THF (8 mL) was added a solution of TBAF (1 M in THF, 1.5 mL, 1.5 mmol) at 0 °C, and the reaction mixture was stirred at room temperature for 22 h. The reaction was quenched with satd. NH₄Cl (aq), and the aqueous mixture was extracted with CHCl₃ (10 mL x 5). The organic extracts were combined, dried, and evaporated to give a

colorless oil, which was chromatographed on SiO_2 (15 g, hexane:acetone=30:1-6:1) to give **18** (110 mg, 79%) as a colorless oil.

IR (neat) 3461, 2955, 2878, 1680, 1114, 1042 cm⁻¹; ¹H NMR (500 MHz) δ 0.86 (3H, t-like, J = 7.3 Hz), 0.90 (3H, t, J = 7.2 Hz), 1.12 (1H, m), 1.22-1.38 (2H, m), 11.40-1.59 (3H, m), 1.61-1.72 (4H, m), 2.17 (1H, br), 2.46 (1H, br), 3.32 (3H, s), 3.50 (2H, m), 3.57-3.66 (1H, m), 3.67 (3H, s), 3.69-3.76 (1H, br), 3.93-4.14 (1H, br), 4.31-4.46 (1H, br), 4.58 (2H, s); ¹³C NMR (75 MHz) δ 11.93 (q), 12.30 (q), 25.29 (t), 25.50 (t), 27.43 (t), 32.15 (t), 33.28 (d), 37.94 (d), 52.84 (q), 54.43 (d), 55.11 (q), 55.21 (d), 62.12 (t), 67.47 (t), 96.25 (t), 159.39 (s); MS: 330 (M⁺-1), 300 (100); HRMS: Calcd for C₁₇H₃₃NO₅ (M⁺-H) 330.2279; Found 330.2291; $\lceil \alpha \rceil_D^{26} + 3.6$ (c 4.85, CHCl₃).

Methyl (2S, 3R, 5R, 6S)-(+)-3,5-diethyl-2-(3-methoxymethoxypropyl)-6-propenylpiperidine-1-carboxylate

To a stirred solution of $(COCl)_2$ (0.12 mL, 1.41 mmol) in CH_2Cl_2 (4 mL) was added DMSO (0.2 mL, 2.82 mmol) at -78 °C, and the resulting solution was stirred at -78 °C for 10 min. To the mixture was added a solution of **18** (311 mg, 0.94 mmol) in CH_2Cl_2 (4 mL) at -78 °C, and the reaction mixture was stirred at -78 °C for 30 min. Triethylamine (0.58 mL, 4.23 mmol) at -78 °C, and the reaction mixture was warmed to 0 °C for 1 h. The reaction was quenched with H_2O , and the aqueous mixture was extracted with Et_2O (10 mL x 4). The organic extracts were combined, dried and evaporated to give pale yellow oil, which was used directly in the next step.

To a stirred suspension of EtP+Ph₃Br⁻ (1.7 g, 4.70 mmol) in THF (15 mL) was added a solution of n-BuLi (1.6M ih hexane, 2.6 mL, 4.22 mmol) at 0 °C, and the resulting orange solution was stirred at 0 °C for 30 min. To the solution was added a solution of the above oil in THF (6 mL) at 0 °C, and the reaction mixture was stirred at room temperature for 2 h. The reaction was quenched with H₂O, and the aqueous mixture was extracted with Et₂O (15 mL x 3). The organic extracts were combined, dried, and evaporated

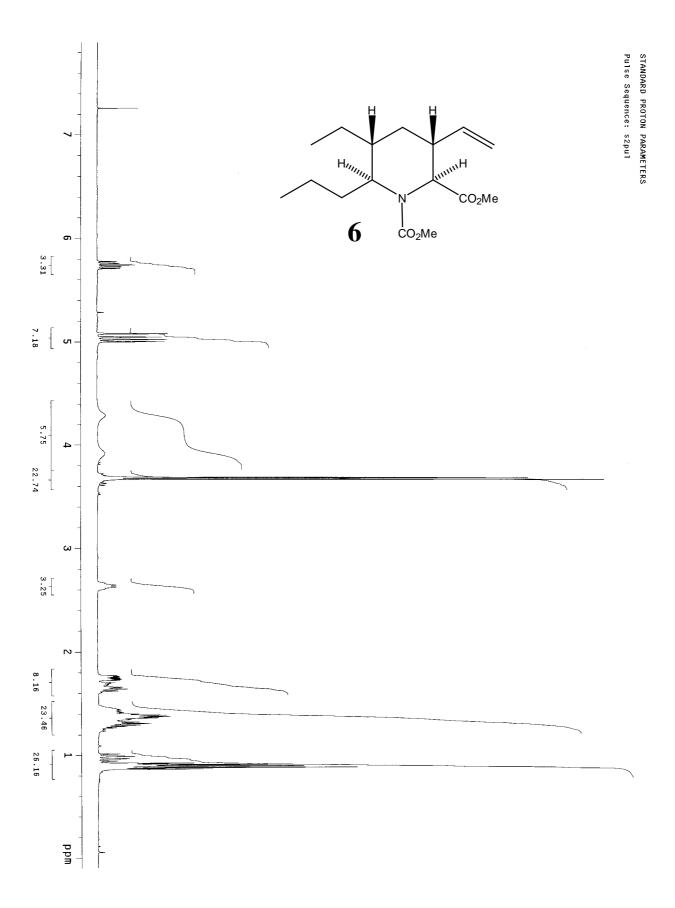
to give pale yellow oil, which was chromatographed on SiO_2 (20 g, hexane:acetone=100:1-30:1) to give the olefin (266 mg, 83% in 2 steps) as a colorless oil.

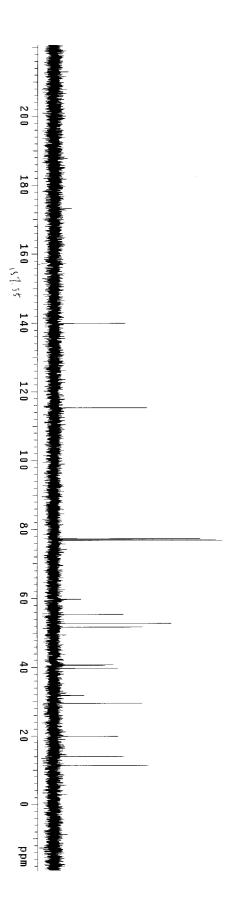
IR (neat) 2929, 1693 cm⁻¹; ¹H NMR (500 MHz) δ 0.80 (3H, t, J = 7.3 Hz), 0.86 (3H, m), 1.01-1,08 (1H, m), 1.09-1.15 (1H, m), 1.22-1.74 (12H, br m), 1.77 (1H, d-like, J = 6 Hz), 3.31 (3H, s), 3.44-3.48 (2H, br), 3.63 & 3.66 (3H, each s), 3.94 & 4.27 (1H, each br), 4.56 (2H, s), 4.93 & 5.11 (1H, each br), 5.48 (1H, q-like, J = 9.4 Hz), 5.54 (1H, br); ¹³C NMR (75 MHz) δ 11.44 (q), 12.38 (q), 13.19 & 13.63 (each q), 25.37 & 25.42 (each t), 25.76 (t), 26.99 & 27.20 (each t), 32.60 (t), 34.14 (d), 38.07 & 38.65 (each d), 49.96 (d), 52.38 (q), 54.15 (d), 55.01 (q), 67.54 (t), 96.17 (t), 126.28 & 126.51 (each d), 127.37 & 128.42 (each d), 156.83 (s); MS: 341 (M⁺), 239 (100); HRMS: Calcd for C₁₉H₃₅NO₄ 341.2564; Found 341.2583; $[\alpha]_D^{26}$ +34.7 (c 1.50, CHCl₃).

(5R, 6R, 8R, 9S)-(-)-6,8-Diethyl-5-propyloctahydroindolizine (11)

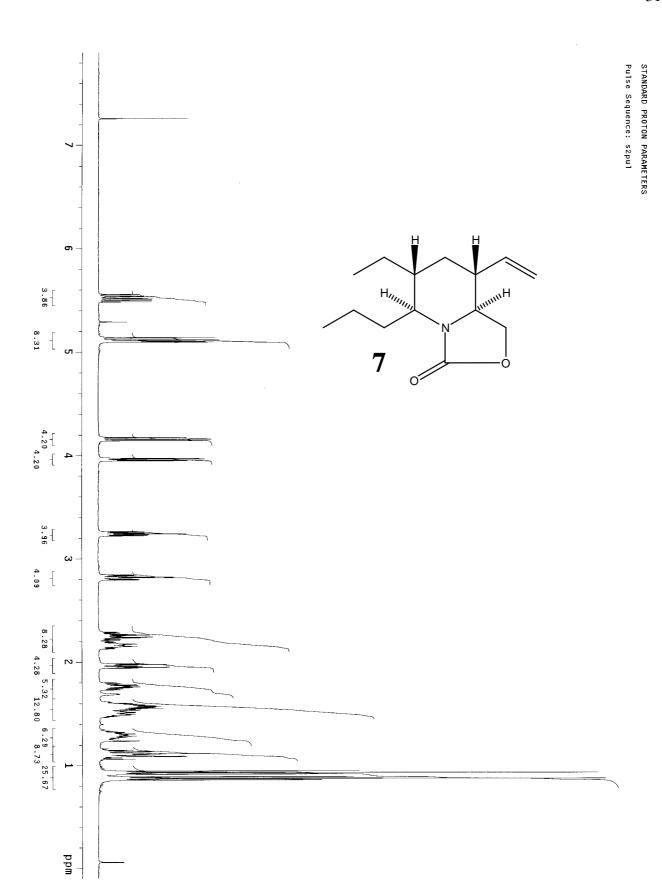
To a solution of the above olefin (120 mg, 0.35 mmol) in EtOAc (12 mL) was added 5% Pd-C (100 mg), and the resulting suspension was hydrogenated under hydrogen atmosphere at 1 atm for 84 h. The catalyst was removed by filtration, and the filtrate was evaporated to give colorless oil, which was used directly in the next step.

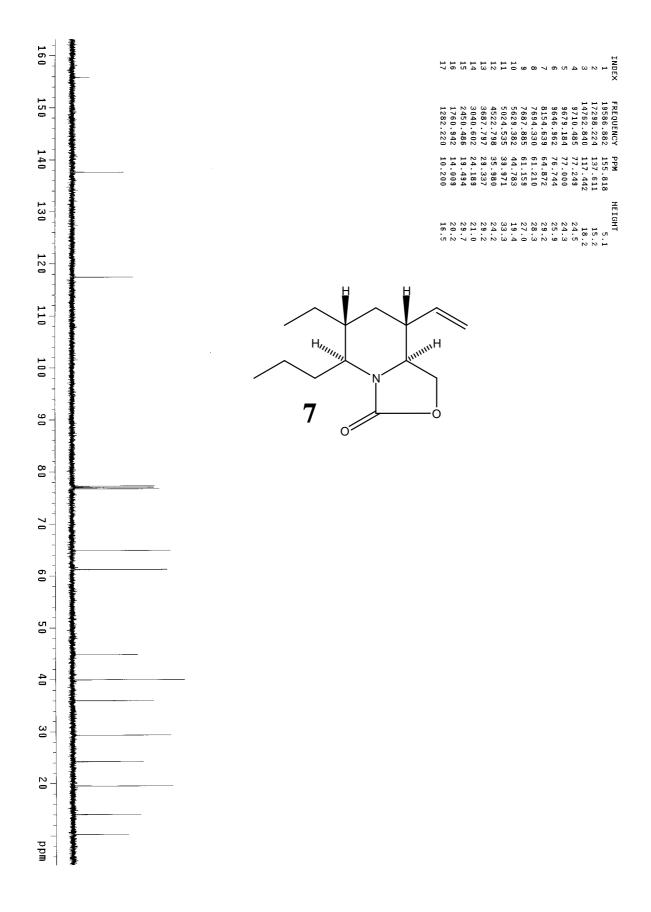
To a stirred solution of *n*-PrSLi, prepared from *n*-PrSH (0.32 mL, 3.50 mmol) and *n*-BuLi (1.6 M in hexane, 2.1 mL, 3.33 mmol) in HMPA (3 mL) at 0 °C for 30 min. To the reaction mixture was added a solution of the above oil in THF (3 mL) at 0 °C, and the resulting solution was stirred at room temperature for 60 h. The reaction was quenched with NH₃ (aq), and the aqueous mixture was extracted with Et₂O (10 mL x 10). The organic extracts were combined, dried over K₂CO₃, and evaporated to give pale yellow oil, which was used directly in the next step.

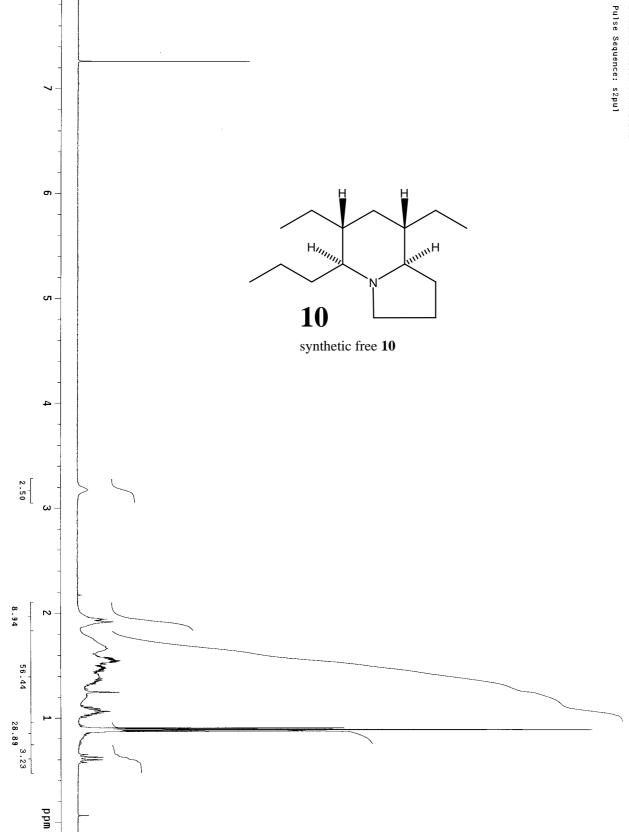

To a stirred solution of the above oil in MeOH (10 mL) was added c. HCl (8 drops), and the resulting mixture was refluxed for 2 h. After cooling, the solvent was evaporated, and the residue was washed with Et₂O. To the residue was added NH₃ (aq), and the aqueous mixture was extracted with CHCl₃ (10 mL x

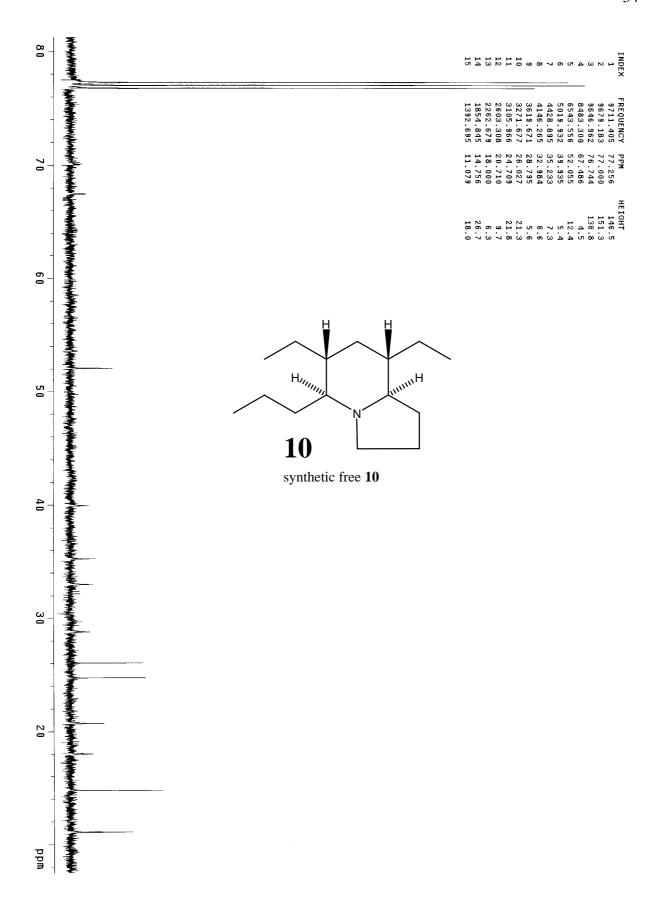

8). The organic extracts were combined, dried over K_2CO_3 , and evaporated to give colorless oil, which was used directly in the next step.

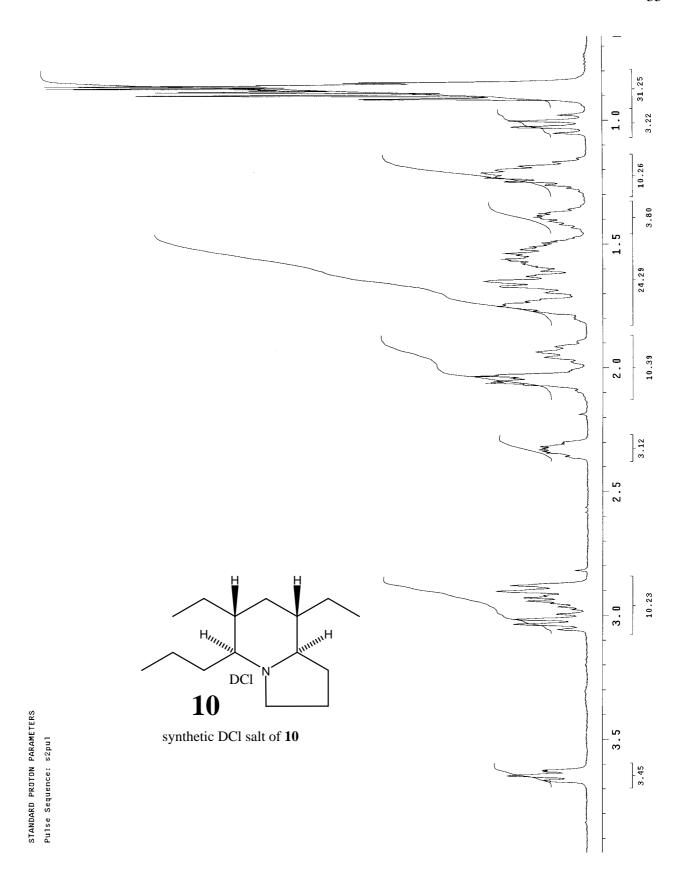
Carbontetrabromide (163 mg, 0.49 mmol) and Ph_3P (138 mg, 0.53 mmol) were added to a solution of the above oil in CH_2Cl_2 (6 mL) at 0 °C, and the reaction mixture was stirred at 0 °C for 2 h. To the reaction mixture was added Et_3N (0.77 mL, 5.60 mmol) at 0 °C, and the resulting suspension was stirred at 0 °C for 30 min. The solvent was evaporated, and the residue was extracted with *n*-pentane (10 mL x 5). The organic extracts were combined and evaporated to give colorless solid, which was chromatographed on SiO_2 (15 g, hexane:acetone: $Et_3N=50:1:5$ drops) to give **11** (40 mg, 51%) as a pale yellow oil.

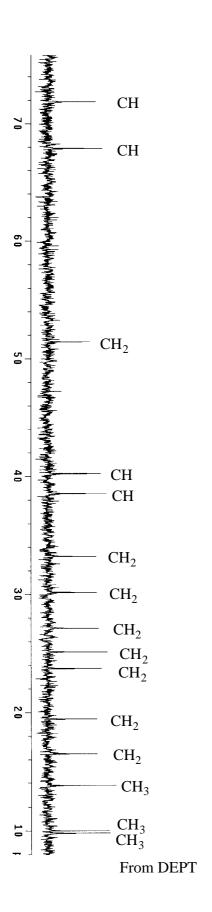

IR (neat) 2958, 2874, 2776, 1460, 1378, 1316, 1180, 1112, 928, 888 cm⁻¹; ¹H NMR (500 MHz) δ 0.86 (3H, t, J = 7.5 Hz), 0.87 (3H, t, J = 7.5 Hz), 0.91 (3H, t, J = 7 Hz), 0.97-1.06 (1H, m), 1.13-1.21 (1H, m), 1.21-1.52 (11H, br m), 1.55-1.62 (1H, m), 1.70-1.77 (1H, m), 1.86 (1H, q, J = 9 Hz), 1.86-1.92 (1H, m), 1.94 (1H, dt, J = 13, 3 Hz), 1.95-1.99 (1H, m), 3.12 (1H, td, J = 8, 2 Hz); ¹³C NMR (75 MHz) δ 11.23 (q), 12.56 (q), 14.68 (q), 18.45 (t), 19.17 (t), 20.49 (t), 26.00 (t), 29.29 (t), 32.49 (t), 33.51 (t), 37.28 (d), 37.86 (d), 52.13 (t), 66.82 (d), 71.34 (d); MS: 223 (M⁺, 100); $[\alpha]_D^{26}$ -100.9 (c 1.76, CHCl₃).

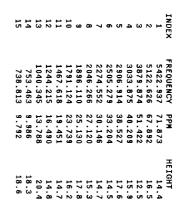

DCI salt: ¹H NMR (500 MHz, D₂O) δ 0.83-0.89 (9H, m), 1.10-1.23 (4H, m), 1.32-1.39 (1H, m), 1.42-1.51 (2H, br m), 1.53-1.62 (3H, m), 1.66-1.74 (1H, m), 1.85-2.01 (3H, m), 2.07 (1H, dm, J = 13.5 Hz), 2.27-2.34 (1H, m), 2.85 (1H, td-like, J = 11, 6 Hz), 2.94 (1H, q-like, J = 10 Hz), 3.14 (1H, dm, J = 11 Hz), 3.58 (1H, tm, J = 10 Hz); ¹³C NMR (75 MHz, D₂O) δ 9.47 (q), 11.10 (q), 12.77 (q), 16.57 (t), 17.35 (t), 18.27 (t), 24.06 (t), 26.39 (t), 29.43 (t), 29.48 (t), 34.92 (d), 35.00 (d), 51.08 (t), 66.13 (d), 71.82 (d); $[\alpha]_D^{26}$ –40.9 (c 0.25, CHCl₃).

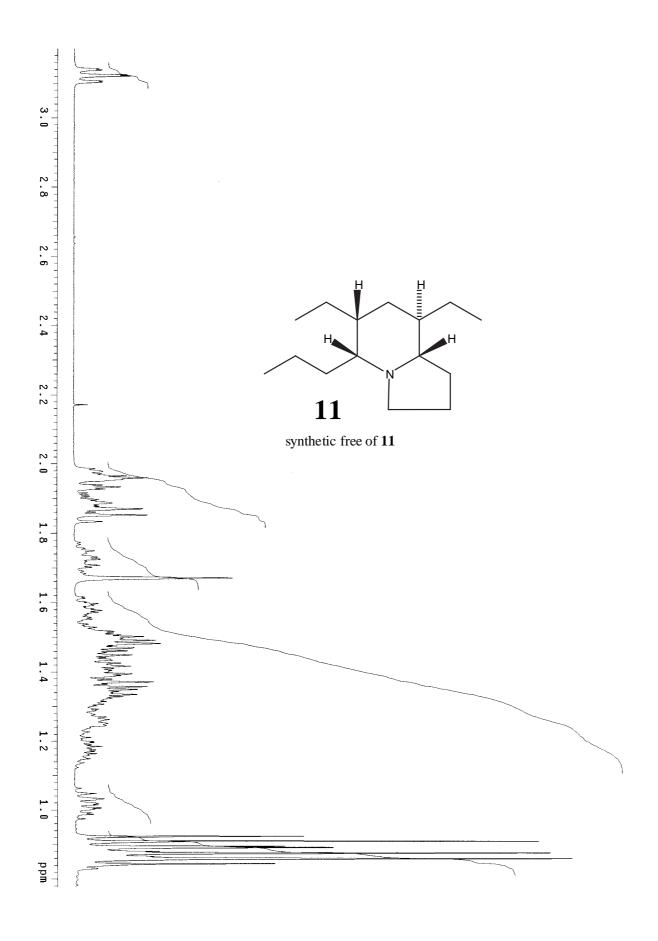


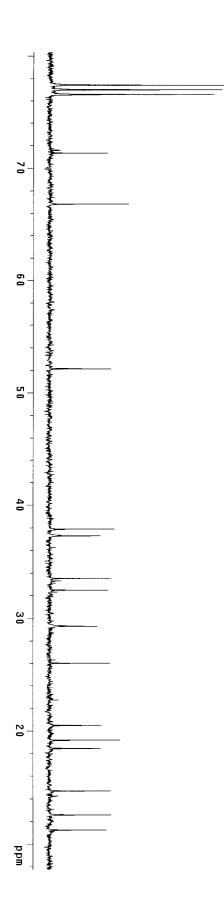

18	17	16	15	14	13	12	11	10	G	œ	7	ō	СЛ	4	ω	2	1	INDEX
421.23	757.26	496.51	5.4	992.52	987.71	090.82	135.93	502.12	638.38	964.27	513.88	646.96	679.18	711.40	494.94	0	21771.510	FREQUENCY
1.30	3.9	9.86	. 55	1.76	9.6	0.49	0.85	1.72	2.81	5.40	9.7	6.74	7.00	7.2	15.	39.9	173.197	Ö
	0	9	26.2		18.9	•	7.	6.	34.9	0.	8	٠	48.2	•	27.6	:	5.2	HEIGHT

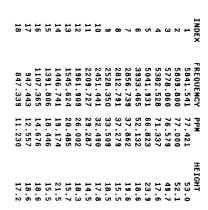


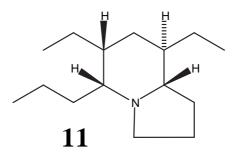




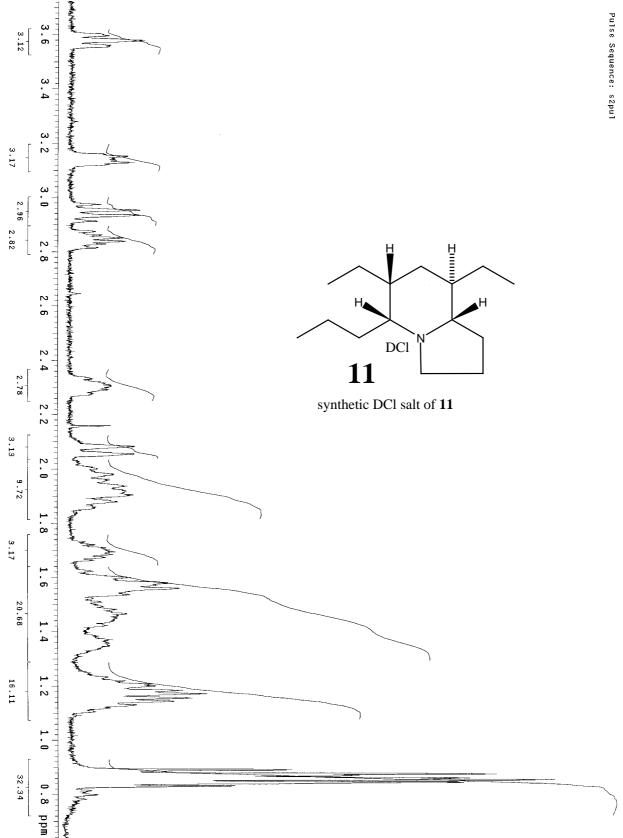


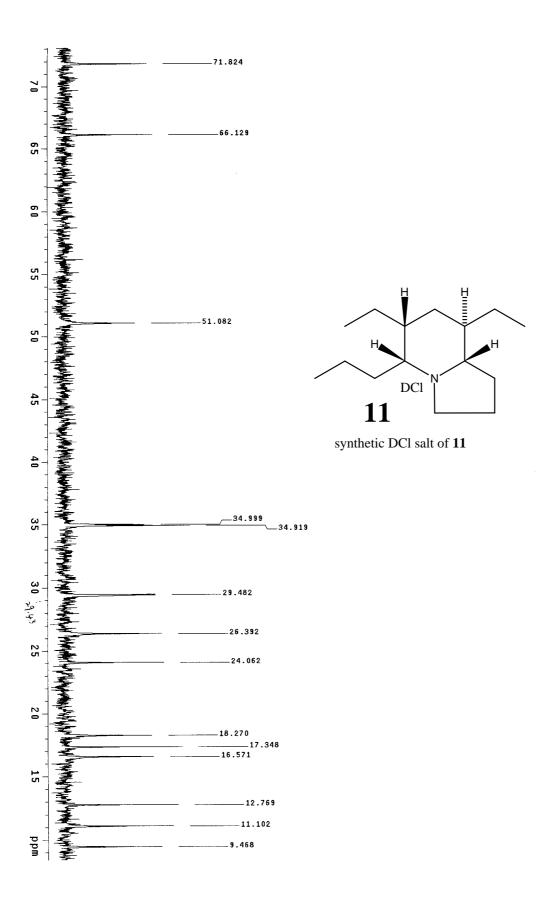


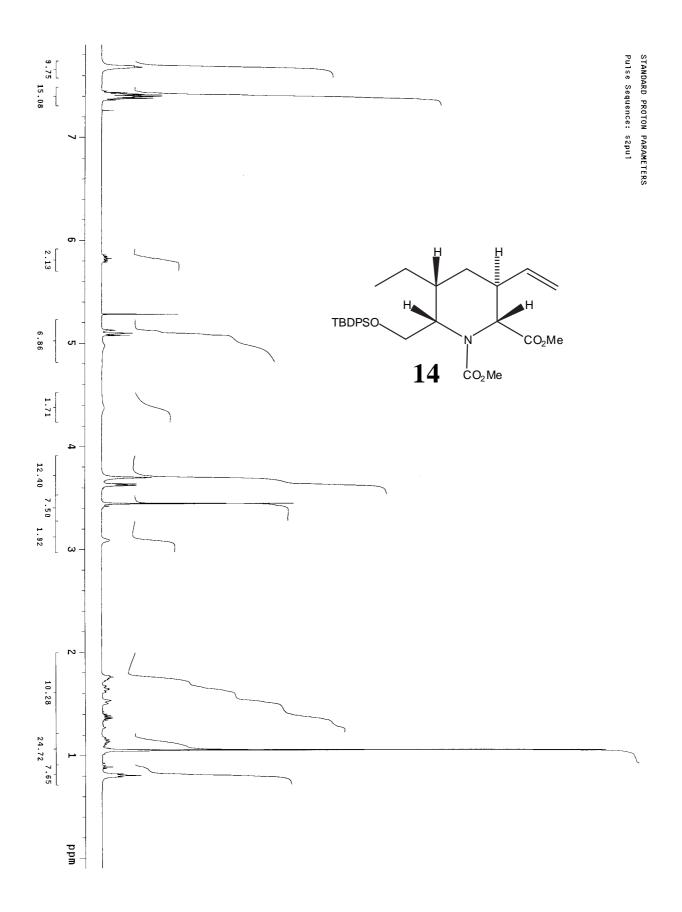


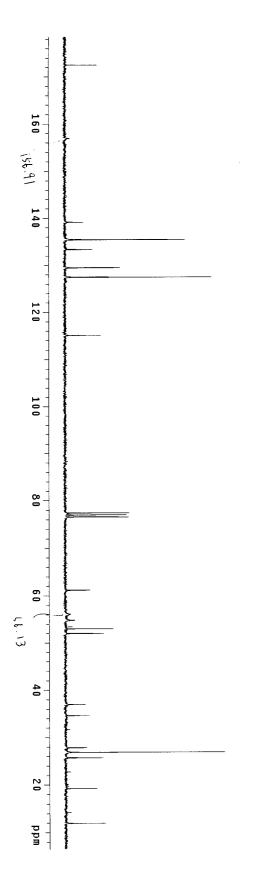


synthetic DCl salt of 10








synthetic free of 11

