Paterson/Temal-Laib

Supporting Information

Combinatorial Synthesis of Polyketide Libraries: Asymmetric Aldol Reactions with α-Chiral Aldehydes on Solid Support

Ian Paterson and Taoues Temal-Laïb
University Chemical Laboratory, Lensfield Road, Cambridge CB2 IEW, U.K.

General Comments

${ }^{1} \mathrm{H}$ NMR spectra were recorded on the following instruments: Bruker DRX500 (500 $\mathrm{MHz})$, AM400 or DRX400 (400 MHz), DPX250 $(250 \mathrm{MHz}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DPX250 and DRX400 spectrometers and all chemical shift values are reported in ppm on the δ scale relative to the deuterated solvent. The ${ }^{13} \mathrm{C}$ NMR resin samples were prepared allowing the resin to swell in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ or CDCl_{3} and the samples were degassed. Gel phase ${ }^{13} \mathrm{C}$ NMR spectra were acquired by changing some acquisition values: 1) acquisition (Aq) 0.12 sec ; 2) time domain (Td) 6026; 3) delayed 1 (D1) 0.88. Infrared spectra were recorded on a PerkinElmer 1620 Series (FT-IR) spectrophotometer, using 5 mm sodium chloride plates or 0.1 mm sodium chloride solution cells. Wavelengths of maximum absorbance ($v_{\max }$) are quoted in wavenumbers $\left(\mathrm{cm}^{-1}\right)$ calibrated relative to polystyrene. Resin IR spectra were recorded by single-bead IR analysis using a Perkin Elmer Spectrum 1000 IR spectrometer in conjunction with a Perkin Elmer Autoimage IR/visible microscope. Beads were flattened in a Specac diamond compression cell. Optical rotations were measured on a Perkin Elmer 241 polarimeter at the sodium D-line $(589 \mathrm{~nm})$ and are reported as follows: $[\alpha] / \mathrm{s}(20, \mathrm{D})$ concentration (c in $\mathrm{g} / 100$ mL) and solvent. Analytical thin layer chromatography (t.l.c) was carried out on Merck Kieselgel 60 F254 plates with visualisation by ultraviolet irradiation and/or anisaldehyde, potassium permanganate, phosphomolybydic acid or phosphomolybydic acid / $\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ dips. Flash chromatography was carried out on Merck Kieselgel 60 (230-400 mesh).

Reagents and solvents were purified by standard means. Dichloromethane (DCM) and methanol were distilled from calcium hydride and stored under an argon atmosphere; tetrahydrofuran (THF) and diethyl ether were distilled from sodium wire/benzophenone under an argon atmosphere. Triethylamine, diisopropylethylamine were distilled from and stored over calcium hydride. 2,2-Dimethoxypropane was distilled from calcium hydride. All experiments were performed under anhydrous conditions in an atmosphere of Ar, except where stated, using oven-dried apparatus and employing standard techniques for handling air-sensitive materials.

Dicyclohexylboron chloride ${ }^{1}$

Paterson/Temal-Laib

To a stirred solution of cyclohexene ($10.6 \mathrm{~mL}, 8.60 \mathrm{~g}, 105 \mathrm{mmol}$, distilled over CaH_{2}) in dry ether (45 mL) under an argon atmosphere at $-5^{\circ} \mathrm{C}$ was added dropwise, via syringe, monochloroborane-dimethylsulfide complex ($5.8 \mathrm{~mL}, 6.14 \mathrm{~g}, 50 \mathrm{mmol}$). The exothermic reaction was allowed to warm to room temperature for 2.5 h to give a clear solution. The solvent was removed by distillation and further distillation under reduced pressure afforded the title compound as a colourless oil ($6.4 \mathrm{~g}, 60 \%$); bp $90-91^{\circ} \mathrm{C} / 0.43 \mathrm{~mm} \mathrm{Hg} 104-105^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$. This reagent could be stored in the freezer at $-27^{\circ} \mathrm{C}$ without degradation for a period of several months: ${ }^{13} \mathbf{C}$ NMR $\delta\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 36.3,27.7,27.2,26.6$.

Samarium diiodide ${ }^{2}$

$\mathbf{S m I}_{2}$ (0.1 M in THF)

Samarium metal ($0.93 \mathrm{~g}, 6.08 \mathrm{mmol}$) and iodine ($1.14 \mathrm{~g}, 4.50 \mathrm{mmol}$) in THF (45 mL) were heated to reflux for 2 h (oxygen was rigorously excluded). The resultant deep blue solution (approx. 0.1 M in THF) was allowed to cool and used immediately.

Zinc Borohydride

$$
\mathbf{Z n}\left(\mathbf{B H}_{4}\right)_{2}\left(0.21 \mathrm{M} \text { in } \mathrm{Et}_{2} \mathrm{O}\right)
$$

A solution of ZnCl_{2} (anhydrous, $2.17 \mathrm{~g}, 14.7 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was stirred for 1 h at $50^{\circ} \mathrm{C}$ until almost complete dissolution, the solution was then cannulated to a solution of NaBH_{4} in dry $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ then the mixture stirred at RT for 16 h . The solution was decanted, cannulated and stored into a dry flask under Ar.

(R)-3-(p-Methoxybenzyloxy)-N,2-dimethyl- N-methoxypropionamide: (\boldsymbol{R})-32.

To a stirred solution of methyl (R)-(-)-3-hydroxy-2-methylpropionate ($3.10 \mathrm{~g}, 29.9$ mmol) and 4-methoxybenzyl-2,2,2-trichloroacetimidate ($9.40 \mathrm{~g}, 33.3 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(240 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was cautiously added triflic acid ($0.15 \mathrm{M} \mathrm{in}^{\mathrm{Et}} \mathrm{O} ; 0.50 \mathrm{~mL}, 76.4 \mathrm{mmol}, 0.29 \mathrm{~mol} \%$). The resulting yellow solution was allowed to warm to room temperature and then stirred for a further 1 h . The reaction was then quenched by the careful addition of sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The organic layer was separated and washed with brine (100 mL). The aqueous layers were sequentially re-extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to give a mixture of white crystals and a supernatant yellow oil. This mixture was triturated with hexane $(50 \mathrm{~mL})$ and filtered through a

Paterson/Temal-Laib

plug of glass wool, with hexane rinses (150 mL). Removal of the solvent in vacuo and purification by flash chromatography ($\mathrm{EtOAc} / H e x a n e, 1 / 6$) afforded the PMB ether as a colourless oil ($4.64 \mathrm{~g}, 19.5 \mathrm{mmol}, 74 \%$). This material was used in the following reaction. To a stirred slurry of this ester $(2.0 \mathrm{~g}, 8.39 \mathrm{mmol})$ and N, O-dimethylhydroxylamine hydrochloride $(1.20 \mathrm{~g}, 12.3 \mathrm{mmol})$ in THF (24.0 mL) at $-20^{\circ} \mathrm{C}$ was added dropwise over $15 \mathrm{~min}{ }^{i} \mathrm{PrMgCl}(2 \mathrm{M}$ in THF; $12.6 \mathrm{~mL}, 25.2 \mathrm{mmol}$). The rate of addition was controlled to maintain the reaction temperature below $-15{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at $-20^{\circ} \mathrm{C}$ before being quenched with Aqueous $\mathrm{NH} 4 \mathrm{Cl}(50 \mathrm{~mL})$. After dilution with EtOAc (100 mL), the organic layer was separated and washed with brine (50 mL). The aqueous layers were extracted with EtOAc ($2 \times 100 \mathrm{~mL}$) and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. Purification by flash chromatography (EtOAc/Hexane, 1/1) afforded the Weinreb amide (\boldsymbol{R}) - $\mathbf{3 2}$ as a colourless oil $(2.14 \mathrm{~g}, 8.01 \mathrm{mmol}, 96 \%)$. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}-3.9\left(c 1.33, \mathrm{CHCl}_{3}\right)$; IR $1659,1612,1513,1464 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\delta\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) 7.22(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 6.85$ $(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}), 4.43\left(1 \mathrm{H}, \mathrm{ABq}, J=11.6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOMe}), 3.63-$ $3.69\left(5 \mathrm{H}, \mathrm{m}, \mathrm{N}-\mathrm{OMe}+\mathrm{OCH}_{2} \mathrm{CHMe}\right), 3.35-3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{HMe}}), 3.19$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), 1.09 ($3 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}, \mathrm{CHMe}) ;{ }^{13} \mathbf{C}$ NMR $\delta\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) 14.2,35.8,55.2,61.5,72.3,72.9,113.7$, 129.1, 130.4, 159.1; m/z (FAB) 268 (100\%), 241 (30); HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{4}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$268.1549. Found 268.1550.

(R)-1-(p-Methoxybenzyloxy)-2-methylpentan-3-one: (\boldsymbol{R})-4. *

To a stirred solution of Weinreb amide ($13.8 \mathrm{~g}, 51.0 \mathrm{mmol}$) in THF $(250 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under argon was added dropwise $\mathrm{EtMgBr}\left(3 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 33.83 \mathrm{~mL}, 100 \mathrm{mmol}\right)$. The reaction mixture was stirred for 1 h and was then partitioned between sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(600 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ $(400 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 600 \mathrm{~mL})$ and the organic phases were washed with brine (300 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. Flash chromatography (EtOAc:hexane, 1:9) afforded the ketone $(R)-4$ as a pale yellow oil $(10.95 \mathrm{~g}$, 91%); $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}-22.5$ (c 1.12, CHCl_{3}); IR (Thin film) 2936, 1713, 1613, 1513, 1248, $1093 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \operatorname{Ar} \underline{H}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar} \underline{\mathrm{H}})$, $4.36\left(2 \mathrm{H}, \mathrm{ABq}, J=11.7 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.55(1 \mathrm{H}, \mathrm{dd}, J=9.0,7.8 \mathrm{~Hz}, \mathrm{H} 1)$, $3.39(1 \mathrm{H}, \mathrm{dd}, J=9.0,5.5 \mathrm{~Hz}, \mathrm{H} 1 '), 2.84-2.79(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 2.45\left(2 \mathrm{H}, \mathrm{q}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.03-0.99 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2}$), $0.99\left(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right) ;{ }^{13} \mathbf{C}$ NMR $\delta\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $213.4,159.2,130.2,129.1,113.7,72.8,72.0,55.1,46.1,35.1,13.5,7.5 ; \mathbf{m} / \mathbf{z}\left(\mathrm{ES}^{+}\right) 459$ (40\%), 260 (18), 259 (100), 243 (25), 186 (30); HRMS (ES^{+}) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 259.1312$. Found 259.1352.

* The enantiomeric ketone (S)-4 was prepared in an identical fashion by starting out with methyl (S)-(-)-3-hydroxy-2-methylpropionate.

To a stirred solution of ketone $(R)-4(611 \mathrm{mg}, 2.59 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}$ was added LiAlH_{4} (1 M in THF, 5.17 mmol) at $0^{\circ} \mathrm{C}$ under Ar. After stirring for 1 h at $0^{\circ} \mathrm{C}$, the mixture was quenched slowly by a solution of Rochelle's salt (aq, sat) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for another 1 h at RT. The solution was filtered and then extracted with EtOAc, the combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Flash chromatography (silica gel, Hexane/EtOAc 4:1) afforded 9 as a colourless oil ($550 \mathrm{mg}, 89 \%$), as a $1.4: 1$ mixture of diastereomers in favour of the syn isomer. IR $\left(\mathrm{CHCl}_{3}\right) 3484,3007,2964,2876,1612,1586$, $1518,1454,1302,1248,1109,1082,1035,974,827,804 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.23\left(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}_{\mathrm{PMB}}\right), 6.86\left(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{PMB}}\right), 4.43\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}\right), 3.97$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.63(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=4.2, J_{2}=9.2 \mathrm{~Hz}, \mathrm{H} 1\right), 3.48(2 \mathrm{H}, \mathrm{d}, J=5.4$ $\mathrm{Hz}, \mathrm{H} 1), 3.43\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=7.4, J_{2}=9.2 \mathrm{~Hz}, \mathrm{H} 1 '\right), 3.30(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.58(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.85(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H} 3), 1.57(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 1.41\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.94(3 \mathrm{H}, \mathrm{t}$, $\left.J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR (100.6 MHz, CDCl_{3}) $\delta 159.3,159.2,130.3,130.0,129.2,129.1,128.2,113.9,113.8,76.9$, $75.1,74.6,74.3,73.0,72.9,55.1,37.9,37.5,27.4,26.9,13.9,10.7,10.6,9.6 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right)$ $256\left(\mathrm{MH}^{+}, 25 \%\right), 237(100), 154$ (75); HRMS (ES $\left.{ }^{+}\right)$Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{3}\left(\mathrm{M}^{2} \mathrm{NH}_{4}^{+}\right) 256.1913$ Found 256.1908.
(1RS, 2R)-Benzyloxy-[1-ethyl-3-(4-methoxy-benzyloxy)-2-methyl-propoxyl-diisopropylsilane: solution model 33.

To a stirred solution of alcohols 9 ($855 \mathrm{mg}, 3.59 \mathrm{mmol}$) in DCM (5 mL) was added imidazole ($1.22 \mathrm{~g}, 17.9 \mathrm{mmol}$) then diisopropylsilyldichloride ($644 \mu \mathrm{l}, 3.59 \mathrm{mmol}$). After stirring for 1 h at RT, benzyl alcohol ($371 \mu \mathrm{l}, 3.59 \mathrm{mmol}$) was added and stirring was continued for 16 h , before addition of aqueous NH 4 Cl (sat.). After extraction with dichloromethane (4 x), the combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Flash chromatography (short pad of silica gel, $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 120: 1$) afforded the silyl ether 33 as a colourless oil (1.39 g , 85%,). IR $\left(\mathrm{CHCl}_{3}\right) 2963,2867,1612,1513,1462,1248,1097,1066,1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33\left(8 \mathrm{H}, \mathrm{m}, \operatorname{Ar} \underline{H}_{\mathrm{Ph}}\right), 7.25\left(2 \mathrm{H}, \mathrm{m}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{Ph}}\right), 6.86\left(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}_{\mathrm{PMB}}\right)$, $6.85\left(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{ArH}_{\mathrm{PMB}}\right), 4.86\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.37\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 3.96\left(1 \mathrm{H}, \mathrm{td}, J_{I}\right.$ $\left.=2.4, J_{2}=6.7 \mathrm{~Hz}, \mathrm{H} 1\right), 3.88(1 \mathrm{H}, \mathrm{q}, J=5.3 \mathrm{~Hz}, \mathrm{H} 1), 3.79\left(6 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.49(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3)$, $3.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3\right.$ '), $2.04(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.59-1.46\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.06(28 \mathrm{H}$,
$\left.\mathrm{s}, \mathrm{Si}\left({ }^{(}{ }^{(\mathrm{Pr}}\right)_{2}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.89\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.88(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.83\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1$, $141.4,131.0,130.9,129.2,129.1,128.2,126.8,126.1,125.9,125.8,113.7,75.4,74.4,73.1$, $72.7,72.6,72.4,64.7,64.6,64.5,55.2,38.3,37.1,27.4,25.9,17.8,17.7$ (x2), 17.5, 12.8, 12.7, 12.6, 12.3, 10.6, 10.3; m/z ($\mathrm{CI}^{+}, \mathrm{NH}_{3}$) 476 (50\%), 459 (48, MH^{+}), 248 (40), 231 (100), 204 (29); HRMS (ES^{+}) Calcd for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 459.2930$ Found 459.2935.
(2R, 3RS)-3-(Benzyloxy-diisopropyl-silanyloxy)-2-methyl-pentan-1-ol: solution model 34.

To a stirred solution of PMB ether 33 ($632 \mathrm{mg}, 1.38 \mathrm{mmol}$) in DCM/pH 7 buffer (20/1) at $0^{\circ} \mathrm{C}$ was added recrystallised DDQ ($376 \mathrm{mg}, 1.65 \mathrm{mmol}$). After stirring for 90 min at RT, NaHCO_{3} (sat. aq) was added. Following extraction with dichloromethane, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Flash chromatography (short pad of silica gel, PE/EtOAc 120:1) afforded alcohol 34 as a colourless oil ($364 \mathrm{~g}, 78 \%$). IR (Thin Film) 3406, 2869, 2867, 1463, 1378, 1251, 1207, 1098, 1065, 1027, 884, $730 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta ; 7.33(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \underline{\mathrm{H}}), 7.27(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \underline{\mathrm{H}}), 4.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.88(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.01\left(1 \mathrm{H}, \mathrm{td}, J_{1}=2.5, J_{2}=7.1 \mathrm{~Hz}, \mathrm{H} 3\right), 3.90(1 \mathrm{H}, \mathrm{q}, J=5.5 \mathrm{~Hz}, \mathrm{H} 3), 3.79\left(1 \mathrm{H}, \mathrm{dt}, J_{1}=\right.$ $\left.4.4, J_{2}=9.0 \mathrm{~Hz}, \mathrm{H} 1\right), 3.65\left(1 \mathrm{H}, \mathrm{ddd}, J_{I}=5.0, J_{2}=8.7, J_{3}=13.7 \mathrm{~Hz}, \mathrm{H} 1\right), 3.54\left(1 \mathrm{H}, \mathrm{ddd}, J_{I}=5.0\right.$, $\left.J_{2}=6.7, J_{3}=11.4 \mathrm{~Hz}, \mathrm{H} 1\right), 3.48\left(1 \mathrm{H}\right.$, ddd, $\left.J_{1}=5.4, J_{2}=6.9, J_{3}=10.9 \mathrm{~Hz}, \mathrm{H} 1\right), 2.63\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=\right.$ $\left.5.1, J_{2}=7.0 \mathrm{~Hz}, \mathrm{OH}\right), 2.56\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=5.1, J_{2}=6.6 \mathrm{~Hz}, \mathrm{OH}\right), 1.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.80(1 \mathrm{H}, \mathrm{m}$, H2), 1.69-1.55 (4H, m, H4 x2), $1.09\left(28 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left({ }^{(} \mathrm{Pr}\right)_{2}, 0.99\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.88\right.$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right)$; ${ }^{13} \mathbf{C}$ NMR (100.6 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 140.7,140.5,129.1,128.3,128.2,127.2,127.0,126.2,125.9$, $74.9,65.4,65.1,64.9,64.8,64.6,38.5,37.9,27.1,26.6,17.5,17.4,14.2,12.6,12.4,12.3,10.3$, $9.9,8.7 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 356(32 \%), 339\left(40, \mathrm{MH}^{+}\right), 312$ (100), 248 (51), 231 (100), 204 (23); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{O}_{3} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 339.2364$ Found 339.2346.
(2S, 3RS)-3-(Benzyloxy-diisopropyl-silanyloxy)-2-methyl-pentanal: solution model 12.

To a stirred solution of alcohol 34 ($273 \mathrm{mg}, 0.80 \mathrm{mmol}$) in DCM (5 mL) was added DessMartin Periodinane ($685 \mathrm{mg}, 1.60 \mathrm{mmol}$). After stirring for 0.5 h at RT, hexanes was added until a precipitate was formed; the mixture was then adsorbed on silica gel and purified by flash chromatography (long pad of silica gel, Hex/EtOAc 50:1) to afford aldehyde $\mathbf{1 2}$ as a colourless oil ($236 \mathrm{mg}, 88 \%$,). IR (Thin film) 2963, 2866, 1726, 1463, 1378, 1254, 1098, 1067, 1027, 884 $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 9.75(1 \mathrm{H}, \mathrm{d}, J=2.2 \mathrm{~Hz}, \mathrm{CHO}), 7.34$ $(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \underline{\mathrm{H}}), 7.26(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \underline{\mathrm{H}}), 4.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.31\left(1 \mathrm{H}, \mathrm{td}, J_{1}=\right.$ $\left.3.3, J_{2}=6.7 \mathrm{~Hz}, \mathrm{H} 3\right), 4.14(1 \mathrm{H}, \mathrm{q}, J=5.6 \mathrm{~Hz}, \mathrm{H} 3), 2.57(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 2.49\left(1 \mathrm{H}, \mathrm{qd}, J_{1}=3.3, J_{2}=\right.$ $7.1 \mathrm{~Hz}, \mathrm{H} 2), 1.63\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.07\left(31 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left({ }^{(}{ }^{\mathrm{Pr}}\right)_{2}+\mathrm{CHCH}_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}(\mathrm{x} 2)+\right.$ CHCH_{3}); ${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.1,204.7,128.2,126.9,125.8$ (x2), 74.7, 73.5, $64.6,50.7,50.4,27.5,27.3,17.5,17.4,12.6,12.5,12.4$ (x2), 10.2, 10.0, $9.1,7.0 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right)$ 354 (18, $\mathrm{M}+\mathrm{NH}_{4}$), 248 (52) 246 (48), 231 (67), 229 (100); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{Si}$ $\left(\mathrm{M}+\mathrm{NH}_{4}\right) 354.2464$ Found 354.2458.
(1RS, 2R)-[1-Ethyl-3-(4-methoxy-benzyloxy)-2-methyl-propoxy]-diisopropyl-silanyloxymethoxypolystyrene: resin 11.

To a stirred solution of alcohols $9(1.47 \mathrm{~g}, 6.17 \mathrm{mmol})$ in dry DMF $(5 \mathrm{~mL})$ was added imidazole ($2.5 \mathrm{~g}, 37.0 \mathrm{mmol}$) then diisopropylsilyldichloride ($1.1 \mathrm{~mL}, 6.17 \mathrm{mmol}$). After stirring for 1 h at RT, the mixture was transferred via cannula to pre-swollen hydroxymethyl polystyrene resin ($1.18 \mathrm{~g}, 1.02 \mathrm{mmol}$, loading $0.87 \mathrm{mmol} / \mathrm{g}$) in DMF. After shaking for 36 h , the resin was filtered off, washed in turn with DMF, $\mathrm{H}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}$, DCM and MeOH , then dried under high vacuum at $60^{\circ} \mathrm{C}$ for 4 h . A second cycle of reaction was then repeated for another 36 h . After washing and drying, 1.56 g of resin 11 was obtained (the loading, $0.75 \mathrm{mmol} / \mathrm{g}$, was determined by cleavage with TBAF). IR (Single Bead) 3028, 2928, 2867, 1604, 1514, 1494, 1454, 1374, 1249, 1090, 1019, 887, 819, $758 \mathrm{~cm}^{-1} ;{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 159.0$, $131.0,113.5,75.3,74.3,73.0,72.5,72.3,64.3,55.1,38.3,37.1,27.3,25.9,17.5,13.0,12.6$, 10.4, 10.0, 9.4.
(2R, 3RS)-3-(Diisopropyl-silanyloxy-methoxypolystyrene)-2-methyl-pentan-1-ol: resin 35.

Paterson/Temal-Laib

To resin 11 ($318 \mathrm{mg}, 0.254 \mathrm{mmol}$) swollen in DCM, was added at $0^{\circ} \mathrm{C}$ recrystallised DDQ ($115 \mathrm{mg}, 0.51 \mathrm{mmol}$). After shaking for 3 h at RT, the solution was filtered off, the resin was washed in turn with DCM, THF/ $\mathrm{H}_{2} \mathrm{O}$, THF, DCM and MeOH , then dried under high vacuum at $60^{\circ} \mathrm{C}$ for 4 h . This gave pale yellowish resin 35 (330 mg). IR (Single Bead) 3580, $3494,3029,2925,2869,1703,1605,1494,1454,1095,1055,1030,844,758 \mathrm{~cm}^{-1} ;{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$), $\delta 77.2,74.9,65.2,64.9,38.7,38.4,26.9,26.7,17.3,15.1,13.9,12.6,12.5$, 10.2, 9.9, 8.7.

(2S, 3RS)-3-(Diisopropyl-silanyloxy-methoxypolystyrene)-2-methyl-pentanal: resin 3.

To resin 35 ($326 \mathrm{mg}, 0.283 \mathrm{mmol}$), swollen in DCM, was added pyridine ($114 \mu \mathrm{l}, 1.42$ mmol) followed by Dess-Martin periodinane ${ }^{3}(242 \mathrm{mg}, 0.56 \mathrm{mmol})$. After shaking for 6 h at RT, the solution was filtered off and the resin was washed in turn with DCM, THF/ $\mathrm{H}_{2} \mathrm{O}$, THF, DCM and MeOH , then dried under high vacuum at $60^{\circ} \mathrm{C}$ for 4 h . This afforded the pale yellow resin 3 (330 mg). IR (Single Bead) 3028, 2924, 2867, 2723, 1725, 1703, 1605, 1584, 1494, 1454, 1376, 1267, 1067, 886, $758 \mathrm{~cm}^{-1} ;{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$), $\delta 204.6,204.2,74.7,73.5,64.5$, $50.6,50.4,27.4,17.3,17.3,15.0,12.6,12.4,10.1,9,8.9,6.8$.

Paterson/Temal-Laib

5-hydroxy-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonan-3-one: solution model 14.

To a solution of dicyclohexylboron chloride ($554 \mu \mathrm{~L}, 2.83 \mathrm{mmol}$) in diethyl ether (1 mL) was added triethylamine $(497 \mu \mathrm{~L}, 3.54 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 15 min , a solution of ketone $(R)-4(668 \mathrm{mg}, 2.83 \mathrm{mmol})$ in diethyl ether $(0.5 \mathrm{~mL}+0.5 \mathrm{~mL}$ rinse) was added via cannula. The resulting mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. After cooling to $-78^{\circ} \mathrm{C}$, the enolate solution was transfered via cannula to a solution of aldehyde ($214 \mathrm{mg}, 0.63 \mathrm{mmol}$) in diethyl ether (0.5 mL) and stirring was continued at $-78^{\circ} \mathrm{C}$ for 1 h , before storing the mixture in the freezer at $-27^{\circ} \mathrm{C}$ for 16 h . After addition of pH 7 buffer, the aqueous phase was extracted with diethyl ether, and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The crude product was redissolved in a mixture of methanol $(0.5 \mathrm{~mL})$ and pH 7 buffer $(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \% \mathrm{aq}, 0.5 \mathrm{~mL})$ was then added. The mixture was warmed up to RT and stirred for 2 h . The layers were separated and the aqueous phase was extracted with dichloromethane. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Purification by flash chromatography (silica gel, $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 8: 1$ then $6: 1$) gave aldol adduct 14 as a colourless oil (350 $\mathrm{mg}, 95 \%, 97 \% \mathrm{ds}$). IR (Thin Film) 3492, 2964, 2937, 2866, 1711, 1612, 1513, 1462, 1376, $1302,1248,1100,1088,1035,821 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33\left(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}_{\mathrm{Ph}}\right)$, $7.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \underline{\mathrm{H}}_{\mathrm{Ph}}\right), 7.17\left(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{PMB}}\right), 6.86\left(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \operatorname{Ar} \underline{H}_{\mathrm{PMB}}\right), 4.87$ $\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.40\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 4.20(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{H} 5), 3.88\left(1 \mathrm{H}, \mathrm{dt}, J_{l}=2.7\right.$, $\left.J_{2}=8.6 \mathrm{~Hz}, \mathrm{H} 5\right), 3.79\left(6 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.62(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}, \mathrm{H} 1), 3.45\left(2 \mathrm{H}, \mathrm{m}+\mathrm{dd}, J_{l}=5.1\right.$, $\left.J_{2}=8.9 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 3.38(1 \mathrm{H}, \mathrm{d}, J=1.9 \mathrm{~Hz}, \mathrm{OH}), 3.20(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz} \mathrm{OH}), 3.05(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2)$, $2.89(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 1.83-1.57\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H} 6+\mathrm{CH}_{2} \mathrm{CH}_{3} \times 2\right), 1.07\left(28 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left({ }^{(} \mathrm{Pr}\right)_{2}\right), 1.05(3 \mathrm{H}, \mathrm{d}, J=7.0$ $\left.\mathrm{Hz}, \mathrm{CHCH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.98\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.97(3 \mathrm{H}, \mathrm{d}, J$ $\left.=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.92\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.89\left(3 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.83$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.81\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 217.7,217.3,159.2,140.7,140.4,130.3,130.1,129.2,128.3,128.2,127.0,126.9,126.0$, $125.9,113.7$ (x2), 78.9, 78.3, 72.9, 72.4, 64.8, 64.7, 55.2, 49.2, 48.8, 47.3, 46.6, 36.3, 35.0, 27.6, $27.3,17.5,17.4,13.3,13.1,13.0,12.8,12.6,12.5,12.2,10.1,9.7,9.0,5.8 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 590$ (72\%), 573 (100, MH^{+}), 482 (61), 465 (100), 391 (49), 374 (70), 229 (33); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{33} \mathrm{H}_{53} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$573.3611 Found 573.3616.

(2R, 4R, 5R, 6R, 7RS)-7-(Diisopropyl-silanyloxy-methoxypolystyrene)-5-hydroxy-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonan-3-one: resin 13.

To a solution of dicyclohexylboron chloride ($437 \mu \mathrm{l}, 2.23 \mathrm{mmol}$) in diethyl ether (1 mL) was added triethylamine ($365 \mu \mathrm{l}, 2.60 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring for 15 min , a solution of ketone $(R)-4 \quad(527 \mathrm{mg}, 2.23 \mathrm{mmol})$ in diethyl ether $(0.5 \mathrm{~mL}+0.5 \mathrm{~mL}$ rinse) was added via cannula. The resulting mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$. After cooling to $-78^{\circ} \mathrm{C}$, the enolate solution was transfered via cannula to the aldehyde resin $\mathbf{3}$ ($428 \mathrm{mg}, 0.37 \mathrm{mmol}$), swollen in diethyl ether (1.5 mL), and shaking was continued at $-78^{\circ} \mathrm{C}$ for 1 h , before storing in the freezer at $-27^{\circ} \mathrm{C}$ for 16 h . The solution was filtered off and the resin was washed with diethyl ether and dried under high vacuum for 3 h at $60^{\circ} \mathrm{C}$. A second cycle of aldol reaction with the same conditions and amounts of reagents was carried out on this resin sample swollen in diethyl ether. After 16 h in the freezer, the solution was filtered off and the resin was washed in turn with $\mathrm{Et}_{2} \mathrm{O}$, pH 7 buffer, $\mathrm{Et}_{2} \mathrm{O}$ and MeOH . The resin was then swollen in a mixture of $\mathrm{MeOH}(1 \mathrm{~mL})$, DMF $(2 \mathrm{~mL}), \mathrm{pH} 7$ buffer $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and 3 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ were added. Shaking was continued for 2 h at $0^{\circ} \mathrm{C}$ before storing in the freezer at $-27^{\circ} \mathrm{C}$ for 16 h . The solution was filtered off, and the resin was washed in turn with $\mathrm{H}_{2} \mathrm{O}$, THF/ $\mathrm{H}_{2} \mathrm{O}$, THF, DCM and MeOH , then dried under high vacuum for 4 h at $60^{\circ} \mathrm{C}$. This afforded resin 13 (478 mg). IR (Single Bead) 3503, 3062, 3028, 2928, 1713, 1603, 1585, 1514, 1494, 1453, 1375, 1249, 1090, 1031, 822, $758 \mathrm{~cm}^{-1} ;{ }^{13} \mathbf{C}$ NMR (100.6 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 216.9,216.6,159.2,130.3,129.1,113.6,79.2,77.1,72.8,72.3,64.6,55.1,49.1$, $48.6,47.3,46.7,36.2,34.9,27.5,17.3,15.0,13.0,12.8,12.2,10.0,9.5,8.9,5.5$.
(2R, 3R, 4S, 5S, 6S, 7S)-7-(benzyloxy-diisopropyl-silanyloxy)-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl, 5-acetoyl-nonan-3-ol: solution model 15a.

To a solution of acetaldehyde (800μ 1, excess, freshly distilled) in THF was added SmI_{2} (freshly prepared; 0.1 M in THF, $3.8 \mathrm{~mL}, 0.38 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$ under argon. After stirring for 5 min, aldol adduct 14 ($362 \mathrm{mg}, 0.632 \mathrm{mmol}$) in THF was added via cannula to the premixed yellow solution. After complete addition, the mixture was allowed to warm-up to $0^{\circ} \mathrm{C}$ for 3 h , then left in the freezer for 16 h before addition of NaHCO_{3} (sat. aq). Following extraction with

EtOAc, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Flash chromatography (silica gel, PE/Ether 6:1 to 4:1, gradient) afforded isomer 15 a as a colourless oil ($140 \mathrm{mg}, 36 \%$); $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}-2.0\left(c \quad 0.48, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}$ (Thin Film) 3509, 2975, 2943, 2866, 1714, 1610, 1513, 1458, 1370, 1302, 1251, 1093, 1065, 1027, 885, 815, $733 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (500 $\left.\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 7.33\left(4 \mathrm{H}, \mathrm{m}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{Ph}}\right), 7.24\left(3 \mathrm{H}, \mathrm{m}, \operatorname{Ar} \underline{H}_{\mathrm{Ph}}\right), 6.86\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}_{\mathrm{H}}^{\mathrm{PMB}}\right)\right)$, $5.15\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=2.2, J_{2}=9.6 \mathrm{~Hz}, \mathrm{H} 5\right), 4.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.43(2 \mathrm{H}, \mathrm{ABq}, J=13.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 3.82\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArOCH}_{3}+\mathrm{H} 7\right), 3.61\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=4.3, J_{2}=8.9 \mathrm{~Hz}, \mathrm{H} 1\right), 3.44\left(1 \mathrm{H}, \mathrm{dd}, J_{1}\right.$ $\left.=6.1, J_{2}=8.9 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 3.28\left(1 \mathrm{H}\right.$, ddd, $\left.J_{1}=1.6, J_{2}=3.5, J_{3}=9.8 \mathrm{~Hz}, \mathrm{H} 3\right), 3.15(1 \mathrm{H}, \mathrm{d}, J=3.5$ $\mathrm{Hz}, \mathrm{OH}), 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.00\left(1 \mathrm{H}, \mathrm{qdd}, J_{l}=2.2, J_{2}=6.8, J_{3}=13.2 \mathrm{~Hz}, \mathrm{H} 6\right), 1.87(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H} 2), 1.79\left(1 \mathrm{H}, \mathrm{ddq}, J_{1}=1.3, J_{2}=6.9, J_{3}=9.6 \mathrm{~Hz}, \mathrm{H} 4\right), 1.61\left(1 \mathrm{H}\right.$, qdd, $J_{1}=4.8, J_{2}=7.3, J_{3}=14.4$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.55\left(1 \mathrm{H}, \mathrm{qdd}, J_{1}=5.4, J_{2}=7.3, J_{3}=14.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.07\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}(\underline{\mathrm{Pr}})_{2}\right)$, $0.91\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.86(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 0.82\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,159.0$, $141.2,130.9,129.0,128.1,126.8,125.7,113.7,75.5,75.4,73.7,72.8,71.1,64.4,55.2,37.9$, $36.4,36.3,26.2,21.1,17.7,17.6,17.5,13.9,12.6,12.5,9.1,8.7 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 635(38 \%), 634$ (80), 617 (40), 527 (46), 526 (100), 509 (52), 389 (36), 374 (50); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{O}_{7} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 617.3873$ Found 617.3880.
(2R, 3R, 4S, 5S, 6S, 7R)-7-(Benzyloxy-diisopropyl-silanyloxy)-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-acetoyl-nonane-3-ol: solution model 15 b .

Diastereoisomer 15b was obtained by chromatography as a colourless oil from the previous procedure ($201 \mathrm{mg}, 51 \%$) . $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}-10.0^{\circ}\left(c 1.2, \mathrm{CHCl}_{3}\right.$); IR (Thin Film) 3509, 2975, 2855, 1714, 1613, 1513, 1462, 1374, 1302, 1248, 1097, 1027, 956, $884 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}_{\mathrm{Ph}}\right), 7.24\left(3 \mathrm{H}, \mathrm{m}+\mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}_{\mathrm{Ph}}\right), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, $\left.\mathrm{Ar} \underline{\mathrm{H}}_{\mathrm{PMB}}\right), 5.07\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=3.4, J_{2}=8.9 \mathrm{~Hz}, \mathrm{H} 5\right), 4.88\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.43(2 \mathrm{H}, \mathrm{ABq}, J=11.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.75\left(1 \mathrm{H}, \mathrm{dt}, J_{1}=4.6, J_{2}=6.8 \mathrm{~Hz}, \mathrm{H} 7\right), 3.59\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=\right.$ $\left.4.6, J_{2}=8.9 \mathrm{~Hz}, \mathrm{H} 1\right), 3.46\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=5.8, J_{2}=8.9 \mathrm{~Hz}, \mathrm{H} 1 '\right), 3.32\left(1 \mathrm{H}, \mathrm{ddd}, J_{1}=1.3, J_{2}=3.2\right.$, $\left.J_{3}=9.7 \mathrm{~Hz}, \mathrm{H} 3\right), 3.12(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}, \mathrm{OH}), 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 1.86$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2+\mathrm{H} 4), 1.65\left(1 \mathrm{H}, \mathrm{qdd}, J_{1}=4.6, J_{2}=7.4, J_{3}=14.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.60\left(1 \mathrm{H}, \mathrm{qdd}, J_{1}=\right.$ $\left.4.7, J_{2}=7.4, J_{3}=14.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.08\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left({ }^{(} \mathrm{Pr}\right)_{2}\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right)$, $0.87\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.84(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$, CHCH_{3}); ${ }^{13} \mathbf{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,159.0,141.1,130.7,129.0,128.1,126.8$, $125.7,113.7,75.9,74.9,73.8,72.8,71.4,64.5,55.2,37.4,36.3,36.1,26.5,21.0,17.7,17.6$, $17.5,13.9,12.7,12.5,9.5,8.6,8.7 ; ~ m / z\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 635$ (25\%), 634 (49), 527 (49), 526 (100), 509 (33), 389 (49); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{O}_{7} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 617.3873$ Found 617.3879.
(2R, 3R, 4S, 5S, 6S, 7RS)-7-(Diisopropyl-silanyloxy-methoxypolystyrene)-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-acetoyl-nonane-3-ol: resin 16.

To resin 13 ($411 \mathrm{mg}, 0.357 \mathrm{mmol}$), swollen in THF (3 mL), was added a premixed solution of acetaldehyde ($200 \mu \mathrm{l}$, excess) and SmI_{2} (freshly prepared; 0.1 M in THF, 3.57 mL , 0.357 mmol) in THF via cannula at $-20^{\circ} \mathrm{C}$. After shaking for 2 h at $0^{\circ} \mathrm{C}$, the mixture was transferred into the fridge $\left(0^{\circ} \mathrm{C}\right.$, no shaking) for 16 h . The solution was filtered off and the resin was washed in turn with THF, NaHCO_{3} solution (sat. aq), $\mathrm{H}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$, methanol, THF and dichloromethane, then dried under reduced pressure at $50^{\circ} \mathrm{C}$ for 3 h . A second cycle was carried out to enable the reaction to go to completion. This gave a pale orange resin 16 (410 mg). IR (Single Bead) 3506, 3062, $3^{0} 29$ ²922, 1736, 1604, 1586, 1514, 1494, 1454, 1372, 1250, 1094, 1031, 821, $758 \mathrm{~cm}-1$; 13C NMR (100.6 MHz, CD2Cl2), $\delta 171.6,159.1,130.8,129.0,113.5$, $75.5,74.9,73.9,72.7,71.3,69.6,64.3,55.1,44.0,42.7,40.4,37.5,36.3,26.4,20.9,17.5,13.6$, 12.6, 9.4, 9.1, 8.5.
(2R, 3R, 4S, 5S, 6R, 7S)-7-(Benzyloxy-diisopropyl-silanyloxy)-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonane-3,5-diol: solution model 20a.

To a solution of acetate $\mathbf{1 5 a}(100 \mathrm{mg}, 0.162 \mathrm{mmol})$ in dry THF was added a solution of LiBH_{4} (freshly prepared, 2 M in THF, $1.6 \mathrm{~mL}, 3.24 \mathrm{mmol}$). The reaction mixture was stirred for 16 h at RT before the addition of aqueous NH 4 Cl (sat. aq) at $0^{\circ} \mathrm{C}$. Following extraction with EtOAc, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Flash chromatography (silica gel, $\mathrm{PE} / \mathrm{EtOAc} 9: 1$, then 6:1, gradient) afforded diol 20a as a colourless oil (44 mg, 47\%); $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}-12.0\left(c 0.34, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3467,3018,2967,2869,1612,1513$, 1463, 1249, 1083, $1013 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}_{\mathrm{Ph}}\right), 7.24(3 \mathrm{H}$, $\left.\mathrm{m}+\mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{Ph}}\right), 6.86\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} \underline{\mathrm{H}}_{\mathrm{PMB}}\right), 4.88\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2} \mathrm{Ph}\right), 4.45(2 \mathrm{H}, \mathrm{ABq}$, $\left.J=11.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 4.02(1 \mathrm{H}, \mathrm{brd}$ d $J=9.3 \mathrm{~Hz}, \mathrm{H} 5), 3.95\left(1 \mathrm{H}\right.$, ddd, $J_{1}=3.3, J_{2}=5.1, J_{3}=$ $13.1 \mathrm{~Hz}, \mathrm{H} 7), 3.93(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=9.6 \mathrm{~Hz}, \mathrm{H} 3), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.65(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OH}), 3.55$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=5.0, J_{2}=8.9 \mathrm{~Hz}, \mathrm{H} 1\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=8.9, J_{2}=16.9 \mathrm{~Hz}, \mathrm{H} 1 '\right), 1.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2)$,
1.84-1.73 (3H, m, H4+H8), $1.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 1.09-1.06\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Si}(\underline{(\mathrm{Pr}})_{2}\right), 1.03(3 \mathrm{H}, \mathrm{d}, J=7.1$ $\left.\mathrm{Hz}, \mathrm{CHCH}_{3}\right), 0.81\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.79\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.77(3 \mathrm{H}, \mathrm{d}, J$ $\left.=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,140.7,129.9,129.3,128.2,126.9$, $125.9,113.8,79.9,74.7,73.1,70.6,64.7,55.2,37.3,36.1,35.2,27.3,17.6,17.5,13.1,12.6$, 10.7, $9.8,8.8 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 576\left(42 \%, \mathrm{MH}^{+}\right), 575$ (100), 485 (40); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{O}_{7} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$575.3768 Found 575.3766.
(2R, 3R, 4S, 5S, 6R, 7R)-7-(Benzyloxy-diisopropyl-silanyloxy)-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonane-3,5-diol: solution model 20b.

To a solution of acetate $\mathbf{1 5 b}(97 \mathrm{mg}, 0.157 \mathrm{mmol})$ in dry THF was added a solution of LiBH_{4} (freshly prepared, 2 M in THF, $1.6 \mathrm{~mL}, 3.15 \mathrm{mmol}$) and the reaction mixture was stirred for 16 h at RT. Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (sat. aq) was added at $0^{\circ} \mathrm{C}$, then the mixture was extracted with EtOAc and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Flash chromatography (silica gel, PE/EtOAc 9:1, then 6:1) afforded diol 20b as a colourless oil (39 $\mathrm{mg}, 44 \%) ;[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}-18.0\left(c 0.25, \mathrm{CHCl}_{3}\right)$; IR (Thin Film) 3449, 2963, 2866, 1613, 1513, 1462, 1248, 1095, 1028, $825 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}_{\mathrm{ph}}\right), 7.24(3 \mathrm{H}$, $\left.\mathrm{m}+\mathrm{d}, J=8.7 \mathrm{~Hz}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{Ph}}\right), 6.86\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{PMB}}\right), 4.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.45(2 \mathrm{H}, \mathrm{ABq}$, $\left.J=11.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 3.98\left(1 \mathrm{H}, \mathrm{ddd}, J_{I}=2.5, J_{2}=4.8, J_{3}=9.5 \mathrm{~Hz}, \mathrm{H} 7\right), 3.88\left(1 \mathrm{H}, \mathrm{dt}, J_{1}=1.7\right.$, $\left.J_{2}=7.8 \mathrm{~Hz}, \mathrm{H} 3\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \operatorname{ArOCH}_{3}\right), 3.76(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 3.54\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=\right.$ $\left.5.1, J_{2}=9.1 \mathrm{~Hz}, \mathrm{H} 1\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=9.1, J_{2}=16.8 \mathrm{~Hz}, \mathrm{H} 1 '\right), 3.41(1 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}, \mathrm{OH})$, $1.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.77(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4+\mathrm{H} 6), 1.72-1.61(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 1.07\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Si}(\underline{\mathrm{Pr}})_{2}\right), 0.95$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.77\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,140.8,129.9,129.3$, $128.2,126.9,125.9,113.8,78.9,76.3,75.3,73.1,64.6,55.2,36.9,36.8,35.9,27.7,17.6,17.5$, $17.4,13.2,12.9,12.6,10.0,9.6,5.9 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 576\left(42 \%, \mathrm{MH}^{+}\right), 575$ (100), 467 (32); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{O}_{7} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 575.3768$ Found 575.3765.
(2R, 3R, 4S, 5S, 6R, 7RS)-7-(Diisopropyl-silanyloxy-methoxypolystyrene)-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonane-3,5-diol : resin 18.

To resin $\mathbf{1 6}$ (306 mg , approx. 0.21 mmol), swollen in THF (3 mL), was added via cannula LiBH_{4} solution ($2.1 \mathrm{~mL}, 2 \mathrm{M}$ in THF, $4.2 \mathrm{mmol}, 20$ equiv) at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm up to RT and shaken for 20 h . The solution was filtered off and the resin was washed with $\mathrm{H}_{2} \mathrm{O} /$ THF ($1: 1 \mathrm{v} / \mathrm{v}$) ; after shaking for 1 h with this mixture, the resin was washed in turn with $\mathrm{H}_{2} \mathrm{O}$, THF, DCM and MeOH and dried under reduced pressure at $60^{\circ} \mathrm{C}$. This gave pale yellow resin 18 (320 mg). ${ }^{13} \mathrm{C}$ NMR spectroscopy indicated complete removal of the acetate. IR (Single Bead) 3487, 3028, 2922, 1603, 1586, 1514, 1494, 1453, 1249, 1090, 821, $758 \mathrm{~cm}^{-1} ;{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$), $\delta 159.4,129.2,127.9,113.7,79.3,78.3,76.1,75.0,74.3,72.9,71.3,64.5$, $55.1,37.9,37.3,36.0,27.4,17.3,12.6,10.5,9.6,8.7$.
(2R, 3R, 4S, 5S, 6R, 7S)-3,5-Isopropylidendioxy-7-(benzyloxy-diisopropyl-silanyloxy)-1-(4-methoxy-benzyloxy)-2,4,6-trimethylnonane: solution model 22a.

To a stirred solution of anti diol 20a ($24 \mathrm{mg}, 0.0418 \mathrm{mmol}$) in dichloromethane (1.5 mL) at $0^{\circ} \mathrm{C}$ was added 2,2-dimethoxypropane ($155 \mu \mathrm{l}, 1.25 \mathrm{mmol}$) followed by PPTS (2 mg , cat). The solution was allowed to warm up to RT and stirred for 16 h . After termination of the reaction by addition of solid NaHCO_{3}, the mixture was absorbed on silica gel and purified by flash chromatography (silica gel, $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 20: 1$) to give acetonide 22a as a colourless oil (21 mg , $82 \%) ;[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}+0.7\left(c 0.29, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right) 2939,2871,2359,1612,1513,1463,1381$, 1249, 1094, 1067, $1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}_{\mathrm{Ph}}\right), 7.25(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ar} \underline{\mathrm{H}}_{\mathrm{Ph}}\right), 6.87\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar} \underline{\mathrm{H}}_{\mathrm{PMB}}\right), 4.85\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 3.86(1 \mathrm{H}$, $\left.\operatorname{td}, J_{1}=3.2, J_{2}=6.4 \mathrm{~Hz}, \mathrm{H} 7\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.53(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1+\mathrm{H} 3$ or H 5 interchangeable), $3.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1+\mathrm{H} 3\right.$ or H 5 interchangeable), $1.80\left(1 \mathrm{H}, \mathrm{qdd}, J_{1}=3.0, J_{2}=6.6\right.$, $\left.J_{3}=13.2 \mathrm{~Hz}, \mathrm{H} 2\right), 1.77(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4+\mathrm{H} 6), 1.71-1.59(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 4, \mathrm{H} 6, \mathrm{H} 8), 1.48(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8$ '), 1.28 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.09\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left({ }^{(} \underline{\mathrm{Pr}}_{2}\right), 0.91\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)\right.$, $0.90\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.81(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}$,
$\left.\mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0,141.3,131.0,129.1,128.1,126.7,125.7$, $113.6,100.2,76.0,74.8,72.8,72.3,70.2,64.3,55.2,42.5,36.1,33.8,25.9,25.0,23.7,17.8$, 17.7, 17.6, 13.3, 12.7, 12.6, 11.7, 9.1, 8.4; m/z ($\left.\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 632$ (38\%), 615 (71), 557 (43), 377 (47), 329 (48); HRMS (ES^{+}) Calcd for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$615.4081 Found 615.4091.
(2R, 3R, 4S, 5S, 6R, 7R)-3,5-Isopropylidendioxy-7-(benzyloxy-diisopropyl-silanyloxy)-1-(4-methoxy-benzyloxy)-2,4,6-trimethylnonane: solution model 22b.

To a stirred solution of anti diol $\mathbf{2 0 b}(41 \mathrm{mg}, 0.071 \mathrm{mmol})$ in dichloromethane (1.5 mL) at $0^{\circ} \mathrm{C}$ was added 2,2-dimethoxypropane ($222 \mu \mathrm{l}, 1.79 \mathrm{mmol}$) followed by PPTS (2 mg , cat). The solution was allowed to warm up to RT and stirred for 16 h . After termination of the reaction by addition of solid NaHCO_{3}, the mixture was absorbed onto silica gel and purified by flash chromatography ($\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 20: 1$) to give acetonide $\mathbf{2 2 b}$ as a colourless oil ($33 \mathrm{mg}, 84 \%$); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}$ $+5.5\left(c 0.73, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right) 2965,2855,2359,1613,1513,1462,1378,1247,1225,1096$, $1016,884,808 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.31\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}_{\mathrm{ph}}\right), 7.26(3 \mathrm{H}, \mathrm{m}+\mathrm{d}, J$ $\left.=8.7 \mathrm{~Hz}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{Ph}}\right), 6.86\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}_{\mathrm{PMB}}\right), 4.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2} \mathrm{Ph}\right), 4.41\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right)$, $3.83\left(1 \mathrm{H}, \mathrm{q}, J_{1}=5.5 \mathrm{~Hz}, \mathrm{H} 7\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.57\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=4.5, J_{2}=6.3 \mathrm{~Hz}, \mathrm{H} 1\right)$, $3.54(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.44\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=2.6, J_{2}=7.3 \mathrm{~Hz}, \mathrm{H} 5\right), 3.38\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=6.3, J_{2}=8.7 \mathrm{~Hz}\right.$, H^{\prime}), 1.87-1.75 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2+\mathrm{H} 4$), 1.72-1.61 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 6+\mathrm{H} 8$), 1.59-1.49 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8$ '), $1.30(3 \mathrm{H}$, s, $\left.\mathrm{CCH}_{3}\right), 1.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.09\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left({ }^{(} \underline{\mathrm{Pr}}_{2}\right), 0.96\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.94\right.$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.89\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \underline{\mathrm{H}}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right)$; ${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,141.2,131.0,129.1,128.1,126.7,125.8,113.6,100.2$, $76.0,73.7,72.8,72.3,70.2,64.5,55.2,41.4,35.7,33.8,26.4,25.0,23.5,17.7,17.6,13.4,12.8$, 12.7, 11.8, 10.4, $9.7 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 632(30 \%), 616(50), 615(100), 557(70) ;$ HRMS (ES $\left.{ }^{+}\right)$ Calcd for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 615.4081$ Found 615.4081.
($2 R, 3 R, 4 S, 5 S, 6 R, 7 R S$)-3,5-Isopropylidendioxy-7-(diisopropyl-silanyloxy-methoxy-polystyrene)-1-(4-methoxy-benzyloxy)-2,4,6-trimethylnonane: resin 21.

To resin 18 ($194 \mathrm{mg}, 0.168 \mathrm{mmol}$), swollen in dichloromethane (3 mL), was added 2,2dimethoxypropane (2 mL) and camphorsulfonic acid (10 mg) at RT. After shaking for 2 days,

Paterson/Temal-Laib

the solution was filtered off. The resin was washed with dichloromethane, methanol, THF and dichloromethane and dried under reduced pressure at $50^{\circ} \mathrm{C}$ for 3 h . This gave pale yellow resin 21 (247 mg); IR (Single Bead) 2924, 1604, 1586, 1514, 1495, 1454, 1379, 1248, 1225, 1091, $1032,886,757 \mathrm{~cm}^{-1} ;{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 159.0,135.6,131.0,129.1,127.9,113.7$, $100.2,74.6,73.7,72.3,70.2,67.9,55.2,42.3,41.4,35.8,33.8,26.5,26.1,25.6,25.1,23.9,17.8$, 13.5, 12.7, 11.9, 10.5, 9.8, 8.8.
(2R, 3R, 4S, 5S, 6R, 7S)-3,5-Isopropylidendioxy-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonan-7-ol: solution model 23a.

To a solution of silyl ether 22a ($19 \mathrm{mg}, 0.031 \mathrm{mmol}$) in acetonitrile (1 mL) in a polypropylene bottle was added a solution of $\mathrm{HF} /$ pyridine in pyridine $(0.5 \mathrm{~mL}, 8.3 \mathrm{M}$ in pyridine) at $0^{\circ} \mathrm{C}$. After stirring for 3 h at $\mathrm{RT}, \mathrm{NaHCO}_{3}$ (aq sat) was added and the mixture was extracted with EtOAc. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Flash chromatography (silica gel, gradient $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 3: 1$) gave alcohol 23a as a colourless oil ($10 \mathrm{mg}, 82 \%$) $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}+1.3\left(c 0.45, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3489,2936,2877,1612,1513,1463$, 1383, 1247, 1093, $1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}_{\mathrm{PMB}}\right)$, $6.88\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}_{\mathrm{PMB}}\right), 4.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.65\left(1 \mathrm{H}, \mathrm{dd}, J_{1}\right.$ $\left.=2.0, J_{2}=7.3 \mathrm{~Hz}, \mathrm{H} 5\right), 3.59\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=4.1, J_{2}=10.8 \mathrm{~Hz}, \mathrm{H} 3\right), 3.52\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=2.9, J_{2}=8.7\right.$ $\mathrm{Hz}, \mathrm{H} 1), 3.47(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 3.38\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=6.2, J_{2}=8.7 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}\right), 2.97(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}$, $\mathrm{OH}), 1.91\left(1 \mathrm{H}, \mathrm{qdd}, J_{1}=4.1, J_{2}=6.9, J_{3}=7.3 \mathrm{~Hz}, \mathrm{H} 4\right), 1.85-1.79(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.65(1 \mathrm{H}, \mathrm{m}$, H6), $1.52(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.02(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 0.96\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.86(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,130.9,129.1,113.7,100.7,76.4,75.3$, $72.8,72.0,70.3,55.2,39.2,34.2,33.7,28.5,24.9,23.7,13.3,12.1,11.7,10.2 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right)$ 395 ($83 \%, \mathrm{MH}^{+}$), 377 (100), 337 (30), 319 (29), 275 (35), 257 (40); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right)$395.2797 Found 395.2791.
(2R, 3R, 4S, 5S, 6R, 7R)-3,5-Isopropylidendioxy-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonan-7-ol: solution model 23b.

To a solution of silyl ether 22b ($35 \mathrm{mg}, 0.057 \mathrm{mmol}$) in acetonitrile (1 mL) in a polypropylene bottle was added a solution of $\mathrm{HF} /$ pyridine in pyridine $(0.8 \mathrm{~mL}, 8.3 \mathrm{M}$ in pyridine) at $0^{\circ} \mathrm{C}$. After stirring for 3 h at $\mathrm{RT}, \mathrm{NaHCO}_{3}$ (aq sat) was added and the mixture was extracted with EtOAc. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in

Paterson/Temal-Laib

vacuo. Flash chromatography (silica gel, gradient $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ 2:1) gave alcohol 23b as a colourless oil ($18.5 \mathrm{mg}, 82 \%$); $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}+4.0^{\circ}\left(c 0.63, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3492,2987,2936,2878,1612$, 1513, 1463, 1382, 1248, 1161, 1074, 1035, $1017 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(2 \mathrm{H}$, $\left.\mathrm{d}, J=8.5 \mathrm{~Hz}, \operatorname{Ar} \underline{H}_{\text {PMB }}\right), 6.87\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \operatorname{Ar} \underline{H}_{\text {PMB }}\right), 4.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, ArOCH ${ }_{3}$), $3.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 3.59\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=4.2, J_{2}=10.7 \mathrm{~Hz}, \mathrm{H} 3\right), 3.51\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=2.9, J_{2}\right.$ $=8.7 \mathrm{~Hz}, \mathrm{H} 1), 3.47\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=1.9, J_{2}=7.5 \mathrm{~Hz}, \mathrm{H} 5\right), 3.39\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=6.0, J_{2}=8.7 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}\right)$, $3.22(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 1.85-1.79(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.61-1.55(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 6+\mathrm{H} 8), 1.39$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8\right.$ ') , $1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 0.94\left(6 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, 2 \times \mathrm{CHCH}_{3}\right), 0.93$ $\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 159.1,131.0,129.2,113.7,100.8,80.9,78.5,72.9,72.0,70.2,55.3,38.7,34.9,33.8,27.6$, $24.8,23.8,13.4,11.9,10.5,5.5 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 395$ (100\%), 377 (60), 337 (32), 319 (30), 275 (65); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right)$395.2797 Found 395.2798.

Cleavage of alcohols 23a and 23b from resin 21

To resin 21 ($67 \mathrm{mg}, 0.058 \mathrm{mmol}$, maximum loading 0.54 mmol) swollen in dry THF was added a 1 M solution of TBAF in THF ($290 \mu \mathrm{l}, 0.29 \mathrm{mmol}$) at RT under Ar. After stirring overnight at RT, the solution was filtered off and quenched by aqueous NH 4 Cl (aq, sat) and stirring was continued for 30 min . The resin was washed in turn with $\mathrm{DCM}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, \mathrm{DCM}$ then dried under reduced pressure at $50^{\circ} \mathrm{C}$, leading to 59 mg of resin. Evaporation of the filtrate gave the released epimeric alcohols, which were separated by flash chromatography to give 23a (3.4 mg) and 23b (4.8 mg). This corresponds to 43% overall yield for 7 steps performed on the resin (calculated loading $0.32 \mathrm{mmol} / \mathrm{g}$). Compounds 23a and 23 b had identical physical and spectroscopic data to that listed above using the solution model.
(2R, 3R, 4S, 5S, 6R)-3,5-Isopropylidendioxy-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonan-7-one: 5.

To a solution of alcohol 23a or 23b ($6.4 \mathrm{mg}, 0.015 \mathrm{mmol}$) in dichloromethane (1 mL) was added pyridine $(7.2 \mu \mathrm{l}, 0.09 \mathrm{mmol})$ then Dess-Martin periodinan ${ }^{3}(19.5 \mathrm{mg}, 0.045 \mathrm{mmol})$ at RT. After stirring for 90 min , hexane was added and the mixture was absorbed on silica gel and purified by flash chromatography (Hexane/EtOAc 9:1) to give ketone 5 as a colourless oil (5.6 $\mathrm{mg}, 88 \%) ;[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}-17.6\left(c 0.54, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right), 2986,2937,1708,1611,1513,1460,1380$, 1247, 1086, 1034, $1021 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar}_{\mathrm{PMB}}\right)$, $6.87\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{ArH}_{\mathrm{PMB}}\right), 4.40\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.58\left(1 \mathrm{H}, \mathrm{dd}, J_{I}\right.$ $\left.=4.3, J_{2}=10.9 \mathrm{~Hz}, \mathrm{H} 5\right), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=4.0, J_{2}=10.5 \mathrm{~Hz}, \mathrm{H} 3\right), 3.52\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=2.9, J_{2}=8.7\right.$ $\mathrm{Hz}, \mathrm{H} 1), 3.38\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=6.2, J_{2}=8.7 \mathrm{~Hz}, \mathrm{H} 1^{\prime}\right), 2.61\left(1 \mathrm{H}, \mathrm{qd}, J_{1}=4.3, J_{2}=6.9 \mathrm{~Hz}, \mathrm{H} 6\right), 2.50$ $(2 \mathrm{H}, \mathrm{q}(\mathrm{x} 2), J=7.3 \mathrm{~Hz}, \mathrm{H} 8), 1.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 1.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.24(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CCH}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.03\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.88\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.3$, $159.0,130.9,129.1,113.6,100.6,75.5,72.8,72.1,70.0,55.2,49.7,34.8,33.7,24.9,23.6,13.3$,

Paterson/Temal-Laib

12.1, 11.1, 7.7; m/z ($\left.\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 410$ (30\%), 393 (100, MH^{+}), 335 (60), 317 (28), 273 (50); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 393.2641$ Found 393.2638.
(2S, 4R, 5S, 6R, 7S)-7-(Benzyloxy-diisopropyl-silanyloxy)-5-hydroxy-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonan-3-one: solution model 24a.

To a solution of $\mathrm{Ti}\left(\mathrm{O}^{i} \operatorname{Pr}\right)_{4}(210 \mu \mathrm{l}, 0.709 \mathrm{mmol})$ in dry $\mathrm{DCM}(0.5 \mathrm{~mL})$ was added TiCl_{4} (1 M in DCM freshly prepared, 0.709 mmol) at $0^{\circ} \mathrm{C}$. After stirring for 5 min at $0^{\circ} \mathrm{C}$ under Ar , the mixture was cannulated into a solution of ketone $(S)-4(161.5 \mathrm{mg}, 0.684 \mathrm{mmol})$ in dry DCM $(0.7$ mL) at $-78^{\circ} \mathrm{C}$. After stirring for $5 \mathrm{~min},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ was added and the resulting orange mixture was left stirring at $-78^{\circ} \mathrm{C}$ for 1 h for enolization. A solution of aldehyde $\mathbf{1 2}(89 \mathrm{mg}, 0.273 \mathrm{mg})$ in dry DCM (1 mL) was then added to the mixture via cannula. After stirring for 20 min , Aqueous NH 4 Cl (sat. aq) was added to the reaction mixture. The mixture was extracted with DCM, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Flash chromatography (short pad of silica gel, PE/EtOAc $80: 1$ to 60:1) gave recovered ketone (S) - $\mathbf{4}$ followed ($40: 1$) by the separated aldol adduct $\mathbf{2 4 a}$ as a colourless oil ($59 \mathrm{mg}, 39 \%$) and its epimer 24b (77 mg, 51\%). 24a had $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}+1.5\left(c 0.82, \mathrm{CHCl}_{3}\right)$; IR (Thin Film) 3509, 2938, 2864, 1712, 1613, 1513, 1460, 1376, 1302, 1248, 1097, 1066, 821, $731 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34\left(4 \mathrm{H}, \mathrm{m}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{Ph}}\right), 7.22\left(1 \mathrm{H}, \mathrm{m}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{Ph}}\right), 7.18\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}_{\mathrm{PMB}}\right)$, $6.85\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} \underline{\mathrm{H}}_{\mathrm{PMB}}\right), 4.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.36\left(2 \mathrm{H}, \mathrm{ABq}, J=11.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right)$, $4.22\left(1 \mathrm{H}, \mathrm{dt}, J_{l}=3.2, J_{2}=9.0 \mathrm{~Hz}, \mathrm{H} 7\right), 3.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 3.78\left(3 \mathrm{H}, \mathrm{s}, \operatorname{ArOCH}_{3}\right), 3.60(1 \mathrm{H}, \mathrm{t}, J=$ $9.0 \mathrm{~Hz}, \mathrm{H} 1), 3.43\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=4.8, J_{2}=8.5 \mathrm{~Hz}, \mathrm{H} 1{ }^{\prime}\right), 3.17-3.08(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 2.92(1 \mathrm{H}, \mathrm{d}, J=3.0$ $\mathrm{Hz}, \mathrm{OH}), 2.70\left(1 \mathrm{H}, \mathrm{qd}, J_{l}=1.7, J_{2}=7.0 \mathrm{~Hz}, \mathrm{H} 4\right), 1.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 1.47-1.26(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 1.09$ $\left(14 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{Pr}_{2}\right), 1.00\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.94(3 \mathrm{H}\right.$, $\left.\mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.74\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 218.1,159.3,141.4,129.6,129.3,128.1,126.7,125.7,113.8,74.1,73.2,73.1,71.1,64.3,55.2$, $48.5,44.2,40.9,23.7,17.6(x 3), 17.5,13.7,12.6,12.3,11.1,9.9,7.0 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 573$ (100%, MH^{+}), 294 (55), 256 (100), 246 (80); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$ 573.3611 Found 573.3607.
(2S, 4R, 5S, 6R, 7R)-7-(Benzyloxy-diisopropyl-silanyloxy)-5-hydroxy-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonan-3-one: solution model 24b.

Diastereoisomer 24b was obtained as a colourless oil from the previous procedure (77 $\mathrm{mg}, 51 \%) ;[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}-12.0\left(c 0.54, \mathrm{CHCl}_{3}\right)$; IR (Thin Film) 3491, 2939, 2865, 1712, 1613, 1513, 1462, 1376, 1302, 1248, 1098, 828, $732 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(4 \mathrm{H}, \mathrm{m}$, $\left.\operatorname{Ar} \underline{H}_{\mathrm{Ph}}\right), 7.23\left(1 \mathrm{H}, \mathrm{m}, \operatorname{Ar} \underline{H}_{\mathrm{Ph}}\right), 7.18\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{Ar}_{\mathrm{PMB}}\right), 6.84\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}_{\mathrm{PMB}}\right)$, $4.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.35\left(2 \mathrm{H}, \mathrm{ABq}, J=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 4.26(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{H} 7), 4.17$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.57(1 \mathrm{H}, \mathrm{t}, J=8.7 \mathrm{~Hz}, \mathrm{H} 1), 3.39(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \mathrm{OH})$, $3.31\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=5.3, J_{2}=8.6 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{'}^{\prime}\right), 3.11(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 2.72(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 1.66(2 \mathrm{H}, \mathrm{m}$, $\mathrm{H} 6+\mathrm{H} 8), 1.60-1.53(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 1.07\left(17 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}+\mathrm{Si}\left({ }^{(}{ }^{(\mathrm{Pr}}\right)_{2}\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right)$, $0.84\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.78\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}(100.6 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 217.0,159.2,141.1,129.7,129.2,128.2,126.8,125.9,125.7,113.8,73.7,73.0,72.5$, $70.8,64.5,55.2,48.5,43.6,38.3,27.5,17.6(\mathrm{x} 2), 14.0,12.6,12.5,10.4,9.2,7.4 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right)$ $573\left(100 \%, \mathrm{MH}^{+}\right), 293(55), 256$ (100); HRMS (ES') Calcd for $\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 573.3611$ Found 573.3607.
(2S, 4R, 5S, 6R, 7RS)-7-(Diisopropyl-silanyloxy-methoxypolystyrene)-5-hydroxy-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonan-3-one: resin 25.

To a solution of $\mathrm{Ti}\left(\mathrm{O}^{i} \mathrm{Pr}\right)_{4}(294 \mu \mathrm{l}, 0.994 \mathrm{mmol})$ in dry $\mathrm{DCM}(2 \mathrm{~mL})$ was added TiCl_{4} $(1 \mathrm{M}$ in DCM freshly prepared, 0.994 mmol$)$ at $0^{\circ} \mathrm{C}$. After stirring for 5 min at $0^{\circ} \mathrm{C}$ under Ar , the mixture was added via cannula to a solution of ketone (S) - $\mathbf{4}(228 \mathrm{mg}, 0.966 \mathrm{mmol})$ in dry DCM $(0.7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring for $5 \mathrm{~min},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ was added and the resulting orange mixture was left stirring at $-78^{\circ} \mathrm{C}$ for 1 h for complete enolization. The enolate solution was then transferred via cannula to the swollen resin $\mathbf{3}$ in dry $\mathrm{DCM}(2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the mixture was shaken for 5 h at the same temperature for complete conversion. The enolate solution was filtered off and the resin was washed in turn with DCM (3x), THF/ $\mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{MeOH}, \mathrm{DCM}$, then dried under reduced pressure for 3 h at $60^{\circ} \mathrm{C}$. This gave the pale yellow resin $25(230 \mathrm{mg})$; IR (Single Bead) 3463, 3028, 2924, 2867, 1703, 1604, 1586, 1514, 1494, 1454, 1375, 1303, $1249,1225,1093,1032,821,758 \mathrm{~cm}^{-1} ;{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 218.0,217.0,159.2$, $129.2,125.8,113.8,74.1,73.2,72.6,71.2,70.9,64.3,55.2,48.5,44.2,43.6,38.4,27.4,23.8$, $17.7,15.2,14.1,13.8,13.4,12.5,11.2,10.5,10.0,9.3,7.5,7.2$.

Paterson/Temal-Laib

(2S, 3R, 4S, 5R, 6R, 7S)-7-(Benzyloxy-diisopropyl-silanyloxy)-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonane-3,5-diol: solution model 26a.

To a stirred solution of β-hydroxy ketone 24a ($12 \mathrm{mg}, 0.019 \mathrm{mmol}$) in dry DCM was added a freshly prepared solution of $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}\left(274 \mu \mathrm{l}, 0.057 \mathrm{mmol}, 0.21 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ at $-78^{\circ} \mathrm{C}$. The mixture was then allowed to warm up to $-30^{\circ} \mathrm{C}$ and stirred for 2 h under argon before adding a mixture of $\mathrm{MeOH} / \mathrm{pH} 7$ buffer ($1: 1, \mathrm{v}: \mathrm{v}$) at $-30^{\circ} \mathrm{C}$. After warming-up to RT, the solution was extracted with DCM, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Preparative TLC (silica gel plates, hexane/EA 3:1) afforded diol 26a as a colourless oil ($10 \mathrm{mg}, 91 \%$). Sometimes a small amount of diol was still complexed with Zn salts; stirring with silica gel in EtOAc for 5 h led to to decomplexation and recovery of further material; $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}+2.5\left(c 0.27, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right) 3458,3016,2967,2868,1612,1513,1463$, $1383,1248,1066,829 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34\left(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}_{\mathrm{Ph}}\right), 7.26-7.21(3 \mathrm{H}$, $\left.\mathrm{m}+\mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}_{\mathrm{Ph}}\right), 6.86\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{ArH}_{\mathrm{PMB}}\right), 4.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.40(2 \mathrm{H}, \mathrm{ABq}$, $\left.J=11.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 4.03(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.68\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=3.1, J_{2}=6.5\right.$ $\mathrm{Hz}, \mathrm{H} 3), 3.62(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 5+\mathrm{OH}), 3.47(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.37(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}, \mathrm{H} 1), 1.92(1 \mathrm{H}, \mathrm{m}$, H2), $1.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 1.73(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 1.63(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8) ; 1.53(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8) ; 1.10(14 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Si}\left({ }_{(}{ }^{(} \mathrm{Pr}\right)_{2}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.87(3 \mathrm{H}, \mathrm{d}, J=6.9$ $\left.\mathrm{Hz}, \mathrm{CHCH}_{3}\right), 0.72\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,140.8$, $130.4,129.0,128.2,126.9,125.7,113.7,79.1,79.0,77.7,73.4,72.8,64.6,55.2,40.1,36.5,36.1$, $26.4,17.5$ (x2), 17.4, 13.4, 12.6, 12.5, 12.4, 9.1, 5.4; m/z (CI', $\left.\mathrm{NH}_{3}\right) 575$ (20\%), 467 (100); HRMS (ES^{+}) Calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{O}_{7} \mathrm{Si}(\mathrm{MH}+) 575.3768$ Found 575.3778.
(2S, 3R, 4S, 5R, 6R, 7R)-7-(Benzyloxy-diisopropyl-silanyloxy)-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonane-3,5-diol: solution model $26 b$.

To a stirred solution of β-hydroxy ketone $\mathbf{2 4 b}$ ($10.8 \mathrm{mg}, 0.018 \mathrm{mmol}$) in dry DCM was added a freshly prepared solution of $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}\left(270 \mu \mathrm{l}, 0.056 \mathrm{mmol}, 0.21 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ at $-78^{\circ} \mathrm{C}$. The mixture was then allowed to warm-up to $-30^{\circ} \mathrm{C}$ and stirred for 2 h under argon before addition of a mixture of $\mathrm{MeOH} / \mathrm{pH} 7$ buffer $(1: 1, \mathrm{v}: \mathrm{v})$ at $-30^{\circ} \mathrm{C}$. After warming to RT, the solution was extracted with DCM, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporatied in vacuo. Flash chromatgraphy (silica gel, PE/diethyl ether 6:1) afforded diol 26b as a colourless oil ($8.7 \mathrm{mg}, 88 \%$); $\boldsymbol{[\alpha}_{\mathbf{d}}^{\mathbf{2 0}}+10.5(\mathrm{c} 0.17, \mathrm{CHCl} 3)$; IR (CHCl3) 3439, 2987, 2867, 1612, 1513, 1463, 1381, 1248, 1090, 1046, $826 \mathrm{~cm}-1$; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) d $7.34(4 \mathrm{H}$, $\mathrm{m}, \mathrm{ArHPh}), 7.27-7.21(3 \mathrm{H}, \mathrm{m}+\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{ArHPh}), 6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}$, ArHPMB$), 4.87$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{CH} 2 \mathrm{Ph}), 4.41\left(2 \mathrm{H}, \mathrm{ABq}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 4.35(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 4.04\left(1 \mathrm{H}, \mathrm{td}, J_{l}=\right.$ $\left.2.1, J_{2}=6.7 \mathrm{~Hz}, \mathrm{H} 7\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.76-3.70(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 5+\mathrm{OH}) ; 3.66\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=3.0\right.$, $\left.J_{2}=6.5 \mathrm{~Hz}, \mathrm{H} 3\right), 3.37(2 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}, \mathrm{H} 1), 1.92(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.82(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 1.72(1 \mathrm{H}, \mathrm{m}$, H4), $1.61(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 8) ; 1.09\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left({ }^{(}{ }^{\mathrm{Pr}}\right)_{2}\right), 1.05\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.91(3 \mathrm{H}, \mathrm{t}, J=$ $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.67\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0,139.9,130.5,129.0,128.4,127.4,126.3,113.7,78.8,74.0,72.9$, $65.2,55.2,39.0,36.3,35.9,25.8,17.3$ (x3), 13.4, 12.3 (x3), 10.9, 10.8, $5.7 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 575$ (15), 485 (10), 467 (100); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{O}_{7} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 575.3768$ Found 575.3763 .
(2S, 3R, 4S, 5R, 6R, 7RS)-7-(Diisopropyl-silanyloxy-methoxypolystyrene)-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonane-3,5-diol : resin 27.

To resin 24 ($232 \mathrm{mg}, 0162 \mathrm{mmol}$), swollen in dry DCM (1 mL), was added a freshly prepared solution of $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}\left(3.8 \mathrm{~mL}, 0.812 \mathrm{mmol}, 0.21 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ at $-78^{\circ} \mathrm{C}$. After shaking for 1 h and 3 h at $-30^{\circ} \mathrm{C}$, the solution was filtered off and the resin was treated carefully with a solution of Rochelle's salt. Shaking was continued with a mixture of Rochelle's salt and DMF
($1: 1,2 \mathrm{~mL}$) overnight. The solution was then filtered off, and the resin was washed in turn with $\mathrm{H}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{MeOH}$ and DCM ; then dried under high vacuum for 3 h at $60^{\circ} \mathrm{C}$. This gave resin 27 (240 mg). IR (Single Bead) 3433, 3028, 2925, 1604, 1514, 1494, 1454, 1390, 1249, 1119, 820, $758 \mathrm{~cm}^{-1} ;{ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 159.2,129.1,113.8,79.1,78.7$, $73.9,72.9,65.1,55.2,36.2,26.5,25.6,17.5,13.5,12.5,11.4,11.0,9.1,5.8$.
(2S, 3R, 4S, 5R, 6R, 7S)-3,5-Isopropylidendioxy-7-(benzyloxy-diisopropyl-silanyloxy)-1-(4-methoxy-benzyloxy)-2,4,6-trimethylnonane: solution model 31a.

To a stirred solution of diol 27a ($23 \mathrm{mg}, 0.040 \mathrm{mmol}$) in dry DMF (1 mL) at $0^{\circ} \mathrm{C}$ was added 2-methoxypropene (freshly distilled, $192 \mu \mathrm{l}, 2.00 \mathrm{mmol}$) followed by CSA (1 mg , cat). The solution was stirred for 90 min at $0^{\circ} \mathrm{C}$ under Ar. After termination of the reaction by addition of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$, the mixture was evaporated 3 times with toluene then absorbed onto silica gel and purified by flash chromatography $\left({\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}}_{20 / 1)}\right.$) to give acetonide 31a as a colourless oil ($19.6 \mathrm{mg}, 80 \%$) $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}-8.0\left(c 0.20, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 2938,2866,2359,1611$, 1513, 1466, 1380, 1248, 1172, 1091, 1062, $1010 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(4 \mathrm{H}$, $\left.\mathrm{m}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{Ph}}\right), 7.23\left(3 \mathrm{H}, \mathrm{m}+\mathrm{d}, J=8.7 \mathrm{~Hz}, \operatorname{ArH}_{\mathrm{Ph}}\right), 6.87\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \operatorname{Ar} \underline{H}_{\mathrm{PMB}}\right), 4.90(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.40\left(2 \mathrm{H}, \mathrm{ABq}, J=11.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 4.17\left(1 \mathrm{H}, \mathrm{dt}, J_{1}=3.1, J_{2}=8.9 \mathrm{~Hz}, \mathrm{H} 7\right), 3.80$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.57\left(1 \mathrm{H}, \mathrm{dd}, J_{l}=1.8, J_{2}=9.5 \mathrm{~Hz}, \mathrm{H} 3\right), 3.50\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=1.9, J_{2}=10.3 \mathrm{~Hz}\right.$, H5), $3.29(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 1.95(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.83(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 1.45-1.29(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 6+\mathrm{H} 8), 1.31$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.09\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Si}\left(\underline{\mathrm{Pr}}_{2}\right), 1.02\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.95(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.73\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.73\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 59.1,141.5,130.6,129.1,128.0,126.6,125.7,113.7,98.5,76.3,74.6,73.5$, $72.8,71.2,64.3,55.2,40.3,35.0,31.0,29.8,23.7,19.4,17.6,17.5$ (x3), 14.8, 12.6, 12.5, 11.5, $8.4,4.8 ; \mathbf{~ m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 632(10 \%), 615$ (52), 366 (50), 319 (100); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$615.4081 Found 615.4091.
(2S, 3R, 4S, 5R, 6R, 7R)-3,5-Isopropylidendioxy-7-(benzyloxy-diisopropyl-silanyloxy)-1-(4-methoxy-benzyloxy)-2,4,6-trimethylnonane: solution model 31b.

To a stirred solution of diol $\mathbf{2 7 b}$ ($24 \mathrm{mg}, 0.0418 \mathrm{mmol}$) in dichloromethane (1.5 mL) at $0^{\circ} \mathrm{C}$ was added 2,2-dimethoxypropane ($155 \mu \mathrm{l}, 1.25 \mathrm{mmol}$) followed by PPTS (2 mg , cat.). The solution was allowed to warm to RT and stirred for 17 h . After termination of the reaction by addition of solid NaHCO_{3}, the mixture was absorbed on to silica gel and purified by flash chromatography ($\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 20 / 1$) to give the acetonide 31b as a colourless oil ($21 \mathrm{mg}, 82 \%$); $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}-5.6^{\circ}\left(c 0.32, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}\left(\mathrm{CHCl}_{3}\right) 2941,2867,2359,1513,1463,1379,1248,1088,1066$, $1033,883 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), \delta 7.32\left(4 \mathrm{H}, \mathrm{m}, \operatorname{ArH}_{\mathrm{Ph}}\right), 7.23(3 \mathrm{H}, \mathrm{m}+\mathrm{d}, J=8.6 \mathrm{~Hz}$, $\left.\mathrm{Ar} \underline{\mathrm{H}}_{\mathrm{Ph}}\right), 6.87\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{PMB}}\right), 4.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.41(2 \mathrm{H}, \mathrm{ABq}, J=11.7 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}$), $4.16\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=5.2, J_{2}=8.3 \mathrm{~Hz}, \mathrm{H} 7\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.73\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=1.9\right.$, $\left.J_{2}=9.8 \mathrm{~Hz}, \mathrm{H} 5\right), 3.50\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=1.7, J_{2}=9.5 \mathrm{~Hz}, \mathrm{H} 3\right), 3.32\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=4.2, J_{2}=9.3 \mathrm{~Hz}\right.$, $\mathrm{H} 1), 3.28\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=5.5, J_{2}=9.3 \mathrm{~Hz}, \mathrm{H} 1 '\right), 1.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.66(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 1.59-1.51$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 6+\mathrm{H} 8), 1.43(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.08(14 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Si}\left({ }^{(}{ }^{(} \mathrm{Pr}\right)_{2}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.80\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}+\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.72(3 \mathrm{H}, \mathrm{d}, J=6.9$ $\mathrm{Hz}, \mathrm{CHCH}_{3}$); ${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,141.3,130.6,129.0,128.1,126.7,125.8$, $113.7,98.8,76.2,73.4,72.7,72.3,71.2,64.3,55.2,37.3,34.9,31.1,30.1,28.3,20.1,17.9,17.8$ (x2), 17.7, 14.8, 12.9, 12.8, 10.2, 6.9, 4.9; m/z ($\left.\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 615\left(100 \%, \mathrm{MH}^{+}\right), 557$ (35), 539 (38), 419 (38); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{36} \mathrm{H}_{59} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{MH}^{+}\right)$615.4081 Found 615.4074.
(2S, 3R, 4S, 5R, 6R, 7RS)-3,5-Isopropylidendioxy-7-(diisopropyl-silanyloxy-methoxypolystyrene)-1-(4-methoxy-benzyloxy)-2,4,6-trimethylnonane: resin 29.

To resin 27 ($177 \mathrm{mg}, 0.106 \mathrm{mmol}$), swollen in dry DMF, were added 2-methoxypropene $(610 \mu 1,457 \mathrm{mmol})$ and CSA $(2 \mathrm{mg})$ at $0^{\circ} \mathrm{C}$. After shaking at room temperature for 40 h , the solution was filtered off and the resin was washed in turn with DCM, THF, MeOH and DCM, then dried under high vacuum for 3 h at $60^{\circ} \mathrm{C}$. This afforded resin $29(180 \mathrm{mg})$; IR (Single Bead) 3031, 2928, 1605, 1514, 1494, 1456, 1380, 1249, 1076, 1031, 821, $758 \mathrm{~cm}^{-1} ;{ }^{13}$ C NMR (100.6 MHz, CDCl_{3}), $\delta 159.1,129.1,113.8,98.6,76.3,74.7,73.8,73.5,72.8,71.3,68.0,55.2$,
$37.3,35.1,31.1,30.0,28.3,23.9,20.1,19.6,17.8,14.9,13.0,12.7,10.4,8.6,7.0,5.0$.
(2S, 3R, 4S, 5R, 6R, 7S)-3,5-Isopropylidendioxy-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonan-7-ol: solution model 30a.

To a solution of silyl ether 31a ($17 \mathrm{mg}, 0.027 \mathrm{mmol}$) in THF (1 mL) was added a solution of TBAF ($68 \mu \mathrm{l}, 1 \mathrm{M}$ in THF). After stirring for 1 h at RT, aqueous NH 4 Cl (aq sat) was added and the solution was extracted with EtOAc. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated in vacuo. Flash chromatography (silica gel, gradient $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 3: 1$) gave the alcohol 30a as a colourless oil ($10 \mathrm{mg}, 82 \%$) . $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}-1.8\left(c 0.16, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3541$, 2936, 1612, 1513, 1463, 1382, 1248, 1178, 1035, 1011, $976 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$), $\delta 7.22\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} \underline{H}_{\mathrm{PMB}}\right), 6.87\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}_{\mathrm{PMB}}\right), 4.40(2 \mathrm{H}, \mathrm{ABq}, J=11.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 4.25(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.74\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=1.8, J_{2}=9.6 \mathrm{~Hz}, \mathrm{H} 5\right)$, $3.64\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=1.8, J_{2}=9.4 \mathrm{~Hz}, \mathrm{H} 3\right), 3.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 3.31(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 1), 1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2)$, $1.69(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4+\mathrm{H} 8), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.42-1.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 1.03(3 \mathrm{H}$, d, $\left.J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.97\left(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.84\left(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.69$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,130.5,129.1,113.7,99.1$, $80.0,76.1,72.8,71.1,55.2,38.9,35.0,31.2,29.9,26.9,19.7,14.7,11.1,9.2,5.1 ; ~ \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}\right.$, NH_{3}) 395 ($100 \%, \mathrm{MH}^{+}$), 358 (25), 337 (70), 319 (20), 257 (38), 154 (50), 138 (48), 121 (100); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 395.2797$ Found 395.2786.
(2S, 3R, 4S, 5R, 6R, 7R)-3,5-Isopropylidendioxy-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonan-7-ol: solution model 30b.

To a solution of silyl ether 31b ($19 \mathrm{mg}, 0.031 \mathrm{mmol}$) in acetonitrile (1 mL) in a polypropylene bottle was added a solution of $\mathrm{HF} /$ pyridine in pyridine ($0.5 \mathrm{~mL}, 8.3 \mathrm{M}$ in pyridine) at $0^{\circ} \mathrm{C}$. The solution was allowed to reach RT. After stirring for $3 \mathrm{~h}, \mathrm{NaHCO}_{3}$ solution (aq sat) was added. Following extraction with EtOAc, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. Flash chromatography (silica gel, gradient $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O} 3: 1$) gave alcohol 30b as a colourless oil $(10 \mathrm{mg}, 82 \%)$. $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}+15.1\left(c 0.22, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right) 3496,2937$, 2876, 1611, 1513, 1463, 1381, 1248, 1173, 1108, 1011, $977 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.23\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar} \underline{\mathrm{H}}_{\mathrm{PMB}}\right), 6.87\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{Ar}_{\mathrm{PMB}}\right), 4.40(2 \mathrm{H}, \mathrm{ABq}, J=11.8$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 3.83\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{dd}, J_{l}=1.8, J_{2}=10.2 \mathrm{~Hz}, \mathrm{H} 5\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.64(1 \mathrm{H}$,

Paterson/Temal-Laib

$\left.\mathrm{dd}, J_{l}=1.7, J_{2}=9.5 \mathrm{~Hz}, \mathrm{H} 3\right), 3.48(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7) ; 3.31(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}, \mathrm{H} 1), 2.61(1 \mathrm{H}, \mathrm{d}, J=$ $8.6 \mathrm{~Hz}, \mathrm{OH}), 1.92(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6), 1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 1.49-1.34(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 4+\mathrm{H} 8), 1.42(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CCH}_{3}\right), 1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.84\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.72\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}(100.6 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 159.1,130.5,129.1,113.7,107.0,98.9,80.0,76.3,76.2,75.6,72.8,71.1,55.2,38.6$, $35.0,31.1,29.9,25.6,19.6,14.7,11.4,11.0,5.0 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 395\left(100 \%, \mathrm{MH}^{+}\right), 337$ (30), 275 (38), 257 (48), 178 (50), 154 (48); HRMS (ES^{+}) Calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 395.2797$ Found 395.2792.

Cleavage of 30a and 30b from resin 29

To resin 30 ($133 \mathrm{mg}, 0.08 \mathrm{mmol}$, maximum loading 0.6 mmol) swollen in dry THF was added a 1 M solution of TBAF in THF $(400 \mu \mathrm{l}, 0.4 \mathrm{mmol})$ at RT under Ar. After stirring overnight at RT, the solution was filtered off and quenched by aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (aq, sat), and stirring was continued for 30 min . The resin was washed with $\mathrm{DCM}, \mathrm{H}_{2} \mathrm{O}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, \mathrm{DCM}$ then dried under reduced pressure at $50^{\circ} \mathrm{C}$. This gave 100 mg of resin and 9.7 mg of an inseparable mixture of epimeric alcohols $\mathbf{3 0 a}$ and $\mathbf{3 0 b}$, which were oxidized together to prduce ketone 6 following the Dess-Martin procedure in order to determine the overall diastereoselectivity (24% overall yield for 6 steps on solid support, loading $0.25 \mathrm{mmol} / \mathrm{g}, 90 \%$ ds by NMR).

(2S, 3R, 4S, 5R, 6R)-3,5-Isopropylidendioxy-1-(4-methoxy-benzyloxy)-2,4,6-trimethyl-nonan-7-one, 6.

To a solution of alcohols $\mathbf{3 0}(10 \mathrm{mg}, 0.025 \mathrm{mmol})$ in dichloromethane (1 mL) was added pyridine ($12 \mu \mathrm{l}, 0.15 \mathrm{mmol}$) then Dess-Martin periodinane ($32 \mathrm{mg}, 0.076 \mathrm{mmol}$) at RT. After stirring for 90 min , hexane was added and the mixture was absorbed on to silica gel and purified by flash chromatography (silica gel, hexane/EtOAc 9:1) to give ketone 6 as a colourless oil (9.5 $\mathrm{mg}, 94 \%) ;[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}-21.0\left(c 0.4, \mathrm{CHCl}_{3}\right) ; \mathbf{I R}$ (Thin film), 2969, 2878, 1715, 1613, 1513, 1456, 1378, 1248, 1201, 1183, 1092, 1037, 1012, $981 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $\delta 7.22(2 \mathrm{H}$, $\left.\mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{Ar} \underline{\mathrm{H}}_{\mathrm{PMB}}\right), 6.86\left(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \operatorname{ArH}_{\mathrm{PMB}}\right), 4.39(2 \mathrm{H}, \mathrm{ABq}, J=11.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ar}_{\mathrm{PMB}}\right), 3.92\left(1 \mathrm{H}, \mathrm{dd}, J_{I}=2.0, J_{2}=10.0 \mathrm{~Hz}, \mathrm{H} 5\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 3.63\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=\right.$ $\left.1.8, J_{2}=9.5 \mathrm{~Hz}, \mathrm{H} 3\right), 3.30(2 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}, \mathrm{H} 1), 2.71\left(1 \mathrm{H}, \mathrm{dq}, J_{1}=7.0, J_{2}=10.0 \mathrm{~Hz}, \mathrm{H} 6\right), 2.51$ $\left(2 \mathrm{H}, \mathrm{dq}, J_{l}=7.2, J_{2}=17.9 \mathrm{~Hz}, \mathrm{H} 8\right), 2.43\left(2 \mathrm{H}, \mathrm{dq}, J_{1}=7.2, J_{2}=17.9 \mathrm{~Hz}, \mathrm{H} 8\right.$ '), $1.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2)$, $1.46(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.01\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 0.82(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}$, CHCH_{3}); ${ }^{13} \mathbf{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.9,159.1,130.5,129.1,113.7,98.8,75.9,75.8$, $72.8,71.1,55.2,46.9,36.9,35.0,30.4,29.7,19.3,14.7,11.8,7.4,5.0 ; \mathbf{m} / \mathbf{z}\left(\mathrm{CI}^{+}, \mathrm{NH}_{3}\right) 410$ (10\%), 393 (100, MH^{+}), 335 (100), 317 (23), 273 (20), 248 (20), 215 (23); HRMS (ES ${ }^{+}$) Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{O}_{5}\left(\mathrm{MH}^{+}\right) 393.2641$ Found 393.2638.

Paterson/Temal-Laib

References

1. Brown, H. C. ; Dhar, R. K. ; Ganesan, K.; Singaram, B. J. Org. Chem. 1992, 57, 499.
2. Imamoto, T. ; Ono, M. Chem. Lett. 1987, 501.
3. (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155. (b) Dess, J. B. ; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.
