General procedure for 1,4-addition of dialkylzinc reagents to cyclohexadienones 2-6 and 13-16:

Under Argon, a solution of $\mathrm{Cu}(\mathrm{OTf})_{2}(9.0 \mathrm{mg}, 0.024 \mathrm{mmol})$ and $\mathbf{L}^{*}-1(26 \mathrm{mg}, 0.048 \mathrm{mmol})$ in 5.0 ml of toluene was stirred for 1 h at rt . The colorless solution was cooled to $-25^{\circ} \mathrm{C}$ and 1.0 mmol of dienone and 1.5 ml of $\mathrm{R}_{2} \mathrm{Zn}$ (1.1M in toluene) were added. After 16 h , the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5.0 \mathrm{ml})$ and then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$. The combined organic layers were extracted with $2.0 \mathrm{~N} \mathrm{KOH}(30 \mathrm{ml})$ and brine $(30 \mathrm{ml})$ and dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Column chromatography $\left(\mathrm{SiO}_{2}\right.$ (hexane/EtOAc, $\left.5 / 1\right)$) yielded the pure 1,4-adduct. Yields and e.e.'s are given in Tables 1 and 2.

5-ethyl-4,4-dimethoxy-2-cyclohexenone (7)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.80(\mathrm{t}, 3 \mathrm{H}), 1.03(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~m} 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H})$, $3.13(\mathrm{~s} 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 5.88(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=10.3$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.34,18.55,35.82,40.20,45.23,47.18,96.54,128.39,144.55,196.54$. HRMS $\left(\mathrm{M}^{+}\right)$found 184.108, calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3} 184.110$
E.e. determination: GC CP-Cyclodex-B, $115^{\circ} \mathrm{C}$, $\mathrm{rt}(\mathrm{min})$ 18.1, 18.4.

5-ethyl-4,4-diethoxy-2-cyclohexenone (8)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{t}, 3 \mathrm{H}), 1.15(\mathrm{t}, 6 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 4 \mathrm{H})$, $5.94(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.62,14.91,15.22,20.74$, $38.29,43.30,66.19,57.32,98.59,130.23,148.00,199.39$. HRMS $\left(\mathrm{M}^{+}\right)$found 212.142 , calc. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{3} 212.141$.
E.e. determination: GC CP-Cyclodex-B column, $125^{\circ} \mathrm{C}$, $\mathrm{rt}(\mathrm{min}) 51.9,52.8$.

10-ethyl-1,4-dioxaspiro[4,5]dec-6-en-8-one (9)

${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{t}, 3 \mathrm{H}), 1.13(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H})$, $3.93(\mathrm{~m}, 4 \mathrm{H}), 5.95(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.11,20.61$, $39.64,44.31,65.42,65.49,105.87,129.44,146.60,199.15 . \operatorname{HRMS}\left(\mathrm{M}^{+}\right)$found 182.096 , calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}$ 182.094.
E.e. determination: GC GTA column, $140^{\circ} \mathrm{C}$, $\mathrm{rt}(\mathrm{min}) 43.5,46.1$.

11-ethyl-1,5-dioxaspiro[5,5]undec-7-en-9-one (10)
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 3 \mathrm{H}), 1.15(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~m}, 3 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~m}, 4 \mathrm{H})$, $6.00(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.48,20.32,25.07,38.32$, $45.60,60.24,60.47,95.47,129.75,143.86,199.38$. HRMS (M^{+}) found 196.108, calc. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}$ 196.110
E.e. determination: GC GTA column, $160^{\circ} \mathrm{C}$, $\mathrm{rt}(\mathrm{min}) 31.2,32.9$.

11-ethyl-3,3-dimethyl-1,5-dioxaspiro[5,5]undec-7-en-9-one (11)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~m}, 3 \mathrm{H})$, 3.40-3.98 (m, 4H), $6.01(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=11 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}\right) \delta 11.36,20.18$, $21.96,22.62,29.84,38.35,45.69,60.23,70.75,70.99,95.27,129.93,143.52,199.41$. HRMS $\left(\mathrm{M}^{+}\right)$ found 224.137 calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} 224.141$.
E.e. determination: GC CP-cyclodex-B column, $140^{\circ} \mathrm{C}$, $\mathrm{rt}(\mathrm{min}) 110,112$.

5-methyl-4,4-dimethoxy-2-cyclohexenone(12)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.20(\mathrm{~d}, J=7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58,(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.23(\mathrm{~d}, J=3 \mathrm{~Hz}, 6 \mathrm{H}), 6.01(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $14.64,35.28,42.01,47.4,49.59,99.02,130.48,146.45,198.93$. HRMS $\left(\mathrm{M}^{+}\right)$found 170.096 , calc for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3}$ 170.094.
E.e. determination: GC GTA column, $150^{\circ} \mathrm{C}$, $\operatorname{rt}(\mathrm{min}), 15.5,16.3$.

5-ethyl-4-methyl-4-methoxy-2-cyclohexenone (17)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.50$ $(\mathrm{m}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 5.99(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.64$, 20.80, 22.26, 38.28, 45.69, 50.24, 73.09, 129.41, 152.87, 199.78. HRMS (M+1) 168.119, calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} 168.115$. No e.e. determination method could be developed for this compound. However, the e.e. of the hydrogenated product $\mathbf{1 7} \mathrm{A}$ could be determined

NOESY interactions:

3-ethyl-4-methyl-4-methoxy-cyclohexanone (17A)

A spatula of Pd / C was added to a solution of 0.3 mmol of 17 was 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the flask was connected to a balloon filled with H_{2}. After 16 h the reaction mixture was filtered over Celite and the solvent evaporated after which pure $\mathbf{1 7} \mathrm{A}$ was obtained.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{t}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~m}, 5 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.52,21.26,21.85,33.23,36.95,41.26,48.77,73.50$.
E.e. determination: GC Cp Cyclodex B column, $\mathrm{T}=120^{\circ} \mathrm{C}$, rt (min.) 44.8, 45.3, 46.4, 48.3.

4-benzyl-5-ethyl-4-methoxy-2-cyclohexenone (18)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{t}, 3 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H})$, $3.21(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 6.06(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.52,21.26,29.61,38.53,41,53,42.26,51.27,126.67,128.23(2 \mathrm{x}), 130.09(2 \mathrm{x})$, 130.95, 136.16, 150.94, 194.65.

No e.e. determination method could be developed for this compound. However, the e.e. of the hydrogenated product $\mathbf{1 8} \mathrm{A}$ could be determined.

NOESY interactions:

4-benzyl-3-ethyl-4-methoxy-cyclohexanone (18A)

A spatula of Pd / C was added to a solution of 0.3 mmol of $\mathbf{1 8}$ was 10 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the flask was connected to a balloon filled with H_{2}. After 16 h the reaction mixture was filtered over Celite and the solvent evaporated after which pure $\mathbf{1 8} \mathrm{A}$ was obtained.
${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{t}, 3 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 2 \mathrm{H})$, $2.45(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{q}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 7.23(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.15,22.46,29.99,36.65$, 38.70, 41.26, 44.08, 126.44, 128.17, 130.10, 189.14 .
E.e. determination: HPLC AS column, flow rate $1.5 \mathrm{ml} / \mathrm{min}$, hexane $/ \mathrm{ipa}$: 90/10, $\mathrm{rt}(\mathrm{min}) 6.9,8.1$.

10-ethyl-1-oxaspiro[4,5]dec-6-en-8-one (19)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{t}, 3 \mathrm{H}), 1.23(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H})$, $2.48(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~m}, 2 \mathrm{H}), 5.82(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $11.87,21.02,26.06,35.95,39.64,45.50,68.33,82.00,127.40,152.73,199,14$. HRMS $\left.^{(} \mathrm{M}^{+}\right)$found 180.110 , calc. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} 180.115$.
E.e. determination: HPLC AS column, flow rate $1.5 \mathrm{ml} / \mathrm{min}$, hexane $/ \mathrm{ipa}: 95 / 5$, $\mathrm{rt}(\mathrm{min}) 6.2,7.4,9.9$, 15.1.

3

NOESY interactions:

4-benzyloxy-5-ethyl-4-methoxy-2-cyclohexenone (20)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.87(\mathrm{t}, 3 \mathrm{H}), 1.1(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 2.1(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H})$, $3.27(\mathrm{~s}, 3 \mathrm{H}), 4.50(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.63,20.95,38.23,43.08,49.84,64.40,127.34,127.62,128.36,130.85,147.08,196.54$. HRMS $\left(\mathrm{M}^{+}\right)$: found 180.112, calc. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} 180.115$.
E.e. determination: HPLC AS column, flowrate $2.0 \mathrm{ml} / \mathrm{min}$, hexane $/ \mathrm{ipa}$: 80/20, rt (min) 11.3, 15.6 .

