SUPPORTING INFORMATION

Design, characterization, and use of a novel amyloid β-protein control for assembly, neurotoxicity, and gene expression studies

Ghiam Yamin^{a, b}, Giovanni Coppola^{b, c}, and David B. Teplow^{b*}

Table S1. Microsoft Excel file containing: (1) Differential analysis for all the comparisons reported in the main text (Figure 6 and 7A); (2) gene ontology annotation for each of the comparisons (Figure 7B); (3) WGCNA gene list and module membership (Figure S2); and (4) gene ontology annotation of yellow and orange modules (Figures 8 and 9). Raw and normalized gene expression data have been deposited within the Gene Expression Omnibus (GEO) repository (<u>www.ncbi.nlm.nih.gov/geo</u>), accession number: GSE85952.

Table S2. Commercially available scrambled Aβ peptides.

Fig. S1. Phase-contrast microscopy image of primary hippocampal neurons after 7 days in culture.Red scale bar is 91 μm.

Fig. S2. Relationship between module eigengene (first principal component, corresponding to the weighted summation of expression across all the probes included in a given module) and treatment (A β assembly type). The orange and yellow modules, which are independent from one another, showed the greatest correlation with fibrillar A β 40 and A β 42 treatment among the total of 13 modules defined. Cont: control; S40 and S42: sA β 40 and sA β 42; T40 and T42: LMW A β 40 and LMW A β 42, XL40 and XL42: cross-linked A β 40, cross-linked A β 40 and A β 42; F40 and F42: fibrillar A β 40 and fibrillar A β 42, respectively.