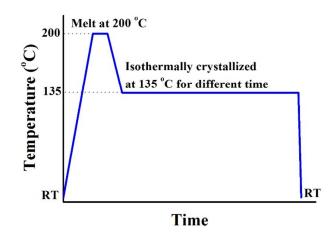
Supporting Information

Highly efficient "composite barrier wall" consisting of concentrated graphene oxide nanosheets and impermeable crystalline structure for poly(lactic acid) nanocomposite films

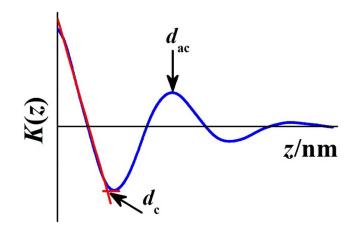
Hua-Dong Huang,^{†,‡} Sheng-Yang Zhou,[†] Dong Zhou,[†] Peng-Gang Ren,[§] Jia-Zhuang Xu,[†] Xu Ji^{*},^{//} Zhong-Ming Li^{*,†}

[†]College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.

^{*}Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent


Materials and Devices, South China University of Technology, Guangzhou 510640, China.

[§]Institute of Printing and Packaging Engineering, Xi'an University of Technology, Xi'an, Shanxi 710048, P. R. China.


¹¹College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.

*Corresponding authors:

E-mail: jxhhpb@163.com (X. Ji); E-mail: zmli@scu.edu.cn (Z.-M. Li)

Figure S1. Temperature protocol of the preparation of PLA nanocomposite films by compression molding.

Figure S2. The plots of one-dimensional electron density correlation function K(z) versus z, in which the long spacing (d_{ac}) and the average thickness of crystalline region (d_c) can be obtained.