

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1998 American Chemical Society

compound No.		2	3
empirical formula		$\mathrm{C_{12}H_{33}B_8IrOP_2}$	$C_{12}H_{35}B_8IrOP_2$
fw		534.00	536.02
temp/K		193(2)	183(2)
crystal system		orthorhombic	monoclinic
space group		Pbca	$P2_{1}/c$
<i>a</i> /Å		13.3600(10)	16.08920(10)
<i>b</i> /Å		10.7029(2)	10.04480(10)
c/Å		30.1704(4)	28.04270(10)
β/°			90.2600(10)
<i>V</i> /Å ⁻³		4307.01(10)	4532.01(6)
Ζ		8	8
D (calcd)/Mg/m ³		1.647	1.571
abs coeff/mm ⁻¹		6.346	6.031
cryst size/mm		0.44x 0.33 x 0.06	0.5x 0.3 x 0.3
<i>F</i> (000)		2080	2096
θ range for data collcn/°		1.35 to 31.00	1.27 to 30.00
index ranges		$-20 \le h \le 19, -15 \le k \le$	$-23 \le h \le 22, -14 \le k \le 14,$
		14	$-37 \le l \le 40$
		$-39 \le l \le 43$	
reflecns collcd		30087	47549
independent reflcns		6844(Rint = 0.0652)	13191(<i>R</i> int = 0.0686)
Data/restraints/parameters		6828/0/349	13080/0/529
Goodness-of-fit on F^2		1.042	1.172
final R indices $[I > 2\sigma(I)]$	R_1	0.0363	0.0427
	wR ₂	0.0906	0.0872
largest diff peak and hole/e	Å-3	3.628 and -2.107	3.058 and -1.930

Table 1. Crystal Data and Structure Refinement for **2** [7-{C(CH₃)CH₂}-9,9,9-(CO)(PMe₃)₂-*nido*-9,7,8-IrC₂B₈H₁₀] and **3** [5,5,5-(CO)(PMe₃)₂-µ-6,7-{CH.C(CH₃)CH₂}-*nido*-5,6-IrCB₈H₁₁].

1 Å 1

, A

·	x	У	Ζ	U(eq)
Ir(9)	4902(1)	6256(1)	8512(1)	10/1)
P(1)	5007(1)	4525(1)	8987(1)	18(1) 22(1)
P(2)	6188(1)	5705(1)	8028(1)	2Z(1)
0(1)	3421(3)	5020(4)	7879(1)	26(I)
B(1)	4755(4)	9463(5)	8626(2)	53(L) 07(1)
B(2)	4539(3)	9425(4)	9206 (2)	27(1)
B(3)	3599(3)	8904 (4)	9206(2)	24(1)
B(4)	4178(4)	8094 (4)	0040 (Z) 9296 (2)	24(1)
B(5)	5538(3)	8185(4)	0390(2)	25(1)
B(6)	5720(3)	8993(4)	0402(2)	25(1)
B(10)	5914(3)	7335(4)	9000(2)	28(1)
B(11)	5157(3)	8063(4)	8973(2)	23(1)
C(1)	3978 (3)	5499(4)	9431(2)	21(1)
C(7)	3933(3)	9014(2)	8112(2)	29(1)
C(8)	3741 (3)	7725(4)	9299(1)	19(1)
C(11)	6246(4)	/323(4) /100(c)	8858(1)	21(1)
C(12)	4534 (5)	4100(6) 2052(5)	9195(2)	43(1)
C(13)	1004 (0) 1076 (1)	3053(5)	8771(2)	42(1)
C(21)	7457(3)	4670(5)	9489(2)	32(1)
C(22)	7457(3) 6004(4)	6020(5)	8207(2)	37(1)
C(22)	6094(4)	6477(6)	7493(2)	45(1)
C(23)	6249(5)	4069(5)	7865(2)	45(1)
	3185(3)	7898(4)	9670(1)	23(1)
	2464(3)	7042(5)	9671(2)	33(1)
	3278(4)	8791(5)	10049(2)	33(1)

.

Table 2.	Atomic coordinates (x10 ⁴) and equivalent isotropic displacement parameters (Å ² x 10 ³) for 2 [7-{C(CH ₃)CH ₂ }-9,9,9-(CO)(PMe ₃) ₂ - <i>nido</i> -9,7,8-IrC ₂ B ₈ H ₁₀].
	for 2 [7-{C(CH ₃)CH ₂ }-9,9,9-(CO)(PMe ₃) ₂ -nido-9,7,8-IrC ₂ B ₈ H ₁₀].

r ~ 1

	x	У	z	U(eq)
Ir(5)	1591(1)	4196(1)	3530(1)	02(1)
P(1)	572(1)	3030(1)	3001(1)	23(1)
P(2)	1220(1)	3516(2)	/3091(1)	25(1)
0(1)	2764(3)	1918(5)	4309(1)	35(1)
B(1)	2434(3)	5463(6)	3113(2)	00(2)
B(2)	1361(4)	5922(6)	3063(2)	25(1) 26(1)
B(3)	2146(4)	7171(6)	3062(2)	20(1) 28(1)
B(4)	3061(4)	6738(6)	3302(2)	28(1) 21(1)
B(7)	1238(4)	7560(5)	3606(2)	31(1)
B(8)	2371(4)	8034(6)	3580(2)	23(1)
B(9)	2923(4)	6983(6)	3003(2)	20(1)
B(10)	2760(4)	5284(6)	3753(2)	30(1)
C(1)	2321(4)	2771(5)	3/13(2)	20(1) 20(1)
C(6)	799(3)	5932(5)	3571(2)	39(1)
C(61)	891(3)	7012(5)	3037(2)	24(1)
C(62)	156(4)	7743(6)	5554(Z) 6198(9)	20(1) 24(1)
C(63)	282(5)	8561(7)	4120(2)	34(I) 55(0)
C(64)	-645(5)	7665(11)	4306(3)	22(Z)
C(11)	904(4)	2748(7)	2681(2)	90(4)
C(12)	298(5)	1357(6)	2401(2)	47(2)
C(13)	-442(3)	3781(6)	3006(3)	23(2)
C(21)	1687(5)	4406(9)	- 6806(2)	57(1)
C(22)	130(4)	3679(8)	4004(2)	0⊥(Z) 51(2)
C(23)	1463(6)	1797(8)	4451(2)	DT(Z)
Ir(5')	3345(1)	8894(1)	1330(1)	09(2)
P(1')	3946(1)	10954(1)	1112(1)	23(1)
P(2′)	4213(1)	8335(1)	1976(1)	$\frac{JZ(1)}{27(1)}$
0(1')	2150(3)	10487(5)	1930(2)	27(1) 68(2)
B(1')	2298(4)	8247(6)	873(2)	22(1)
B(2')	3249(4)	8450(6)	556(2)	20(1) 29(1)
B(3')	2551(4)	7153(6)	· 301(2)	20(1)
B(4′)	1940(4)	6544(6)	874(3)	35(1)
B(7′)	3641(4)	6698(6)	407(2)	31(1)
B(8′)	2720(4)	5551(6)	596(2)	34(1)
B(9′)	2488(4)	5455(6)	1225(2)	35(1)
B(10′)	2427(4)	7207(6)	1416(2)	30(1)
C(l')	2597(3)	9875(6)	1706(2)	36(1)
C(6′)	4122(3)	7864(5)	820(2)	25(1)
C(61′)	4311(3)	6423(5)	841(2)	28(1)
C(62′)	5176(4)	5968(6)	723(2)	36(1)
C(63′)	5556(4)	5072(6)	1007(3)	47(2)
C(64′)	5623(5)	6533(8)	308(3)	$\frac{4}{60}(2)$
C(11')	4870(4)	10968(7)	741(3)	48(2)
C(12')	4241(5)	12055(6)	1601(3)	54(2)
C(13')	3230(4)	12003(6)	782(3)	46(2)
C(21')	4042(4)	9276(6)	2519(2)	39(1)
C(22')	5323(4)	8511(8)	1866(2)	46(2)
C(23′)	4141(4)	6626(6)	2188(2)	37(1)
			(-/	27(1)

······································			
Ir(9)-C(1)	1.910(4)	Tr(9) - C(9)	0.100/11
Ir(9) - B(4)	2.220(5)	$T_{r}(9) = P(5)$	2.192(4)
Ir(9)-B(10)	2.257(5)	Tr(9) - D(2)	2.235(5)
Ir(9) - P(1)	2.3456(11)	P(1) = C(12)	2.3278(11)
P(1)-C(12)	1.818(5)	P(1) = C(11)	1.806(5)
P(2)-C(21)	1.811(5)	P(2) = C(22)	1.827(5)
P(2)-C(23)	1.820(6)	O(1) = O(1)	1.815(6)
B(1)-B(2)	1,769(7)	B(1) = D(E)	1.141(5)
B(1)-B(6)	1.784(8)	B(1) = B(3)	1.776(7)
B(1) - B(4)	1.795(7)	B(2) = C(2)	1.785(7)
B(2) - B(3)	1.751(7)	B(2) = C(7)	1.738(6)
B(2) - B(11)	1,807(6)	B(2) - B(6)	1.758(7)
B(3) - C(7)	1,723(6)	B(3) = C(8)	1.700(6)
B(4) - C(8)	1,729(6)	B(3) - B(4)	1.786(7)
B(5) - B(6)	1 798 (7)	B(4) - B(5)	1.839(7)
B(6) - B(10)	1 795(6)	B(5) - B(10)	1.806(7)
B(10) - B(11)	1 070 (7)	B(6) - B(11)	1.800(7)
C(7) - C(7A)	1 502(5)	B(11) - C(7)	1.685(5)
C(7A) - C(7B)	1,202(5)	C(7) - C(8)	1.541(6)
	1.330(6)	C(7A) -C(7C)	1.494(6)
C(1)-Ir(9)-C(8)	93.8(2)	C(1) = Tr(9) = R(4)	
C(8) - Ir(9) - B(4)	45.8(2)	C(1) = Tr(9) = B(5)	90.0(2)
C(8)-Ir(9)-B(5)	78.8(2)	B(4) = Tr(9) = B(5)	128.2(2)
C(1) - Ir(9) - B(10)	174 5(2)	$C(9) = T_{2}(9) = B(3)$	48.8(2)
B(4) - Ir(9) - B(10)	84.5(2)	B(5) = Tr(9) = B(10)	82.2(2)
C(1) - Ir(9) - P(2)	88 57(13)	C(8) = Tr(9) = B(10)	47.4(2)
B(4) - Ir(9) - P(2)	116 62(14)	$P(5) = T_{2}(0) = P(2)$	162.21(11)
B(10) - Ir(9) - P(2)	94 12(12)	$C(1) = T_{m}(0) = P(2)$	85.89(12)
C(8) - Ir(9) - P(1)	99 47/11	C(1) - Tr(9) - P(1)	94.85(14)
B(5) - Ir(9) - P(1)	136 95(13)	$P(10) = T_{2}(0) = P(1)$	145.27(14)
P(2) - Ir(9) - P(1)	97 99 (1)	B(10) - Ir(9) - P(1)	89.56(12)
C(13) - P(1) - C(11)		C(13) - P(1) - C(12)	100.7(3)
C(13) - P(1) - Tr(9)	114 2(2)	C(12) - P(1) - C(11)	102.9(3)
C(11) - P(1) - Tr(9)	117 A(2)	C(12) - P(1) - Ir(9)	116.4(2)
C(21) - P(2) - C(23)	102 - (2)	C(21) - P(2) - C(22)	104.1(3)
C(21) - P(2) - Tr(9)	102.6(3)	C(22) - P(2) - C(23)	101.6(3)
C(23) = P(2) = Tr(3)	117.3(2)	C(22) - P(2) - Ir(9)	112.8(2)
R(2) - R(1) - R(6)	116.5(2)	B(2) - B(1) - B(5)	108.6(3)
B(2) = B(1) = B(2)	59.3(3)	B(5) - B(1) - B(6)	60.7(3)
3(6) - B(1) - B(3)	59.0(3)	B(5) - B(1) - B(3)	110.0(3)
S(5) = B(1) = B(3)	107.3(3)	B(2) - B(1) - B(4)	107.0(3)
R(3) = R(1) = R(4)	62.0(3)	B(6) - B(1) - B(4)	108.9(3)
(3) - B(1) - B(4)	59.9(3)	C(7) - B(2) - B(3)	59.2(2)
(7) = B(2) = B(0)	104.3(3)	B(3)-B(2)-B(6)	110.0(4)
((1) - D(2) - B(1))	104.8(3)	B(3)-B(2)-B(1)	60.9(3)
(2) P(2) P(11)	60.8(3)	C(7)-B(2)-B(11)	56.7(2)
(1) - B(2) - B(11)	107.6(3)	B(6)-B(2)-B(11)	60.6(3)
(1) - B(2) - B(11)	108.3(3)	C(8)-B(3)-C(7)	53.5(2)
(0) - B(3) - B(2)	102.9(3)	C(7)-B(3)-B(2)	60.0(3)
(0) - B(3) - B(1)	104.1(3)	C(7)-B(3)-B(1)	104.8(3)
(2) - B(3) - B(1)	60.0(3)	C(8)-B(3)-B(4)	59.0(3)
(1) - B(3) - B(4)	102.7(3)	B(2)-B(3)-B(4)	108_2(3)
$(\pm) - B(3) - B(4)$	60.4(3)	C(8)-B(4)-B(3)	
(8) - B(4) - B(1)	102.9(3)	B(3) - B(4) - B(1)	50.0(3)
(8) - B(4) - B(5)	104.3(3)	B(3) - B(4) - B(5)	
(1) - B(4) - B(5)	58.5(3)	C(8) - B(4) - Ir(9)	±01.2(3)
			00.2(2)

Table 4. Interatomic Distances [Å] and Angles [°] for 2 [7-{C(CH₃)CH₂} -9,9,9-(CO)(PMe₃)₂nido-9,7,8-IrC₂B₈H₁₆].

* ~ 1

B(3) - B(4) - Ir(9)	120.0(3)	B(1) - B(4) - Ir(9)	118.4(3)
B(5) - B(4) - Ir(9)	66.1(2)	B(1)-B(5)-B(6)	59.9(3)
B(1)-B(5)-B(10)	110.6(3)	B(6)-B(5)-B(10)	59.8(3)
B(1) - B(5) - B(4)	59.5(3)	B(6)-B(5)-B(4)	106.4(3)

÷.

9 🏯 x

:

B(10)-B(5)-B(4)	111.3(3)	B(1) - B(5) - Ir(9)	118.5(3)
B(6) - B(5) - Ir(9)	117.5(3)	B(10) - B(5) - Ir(9)	66.9(2)
B(4) - B(5) - Ir(9)	65.2(2)	B(2)-B(6)-B(1)	59.9(3)
B(2)-B(6)-B(10)	113.9(3)	B(1)-B(6)-B(10)	110.8(3)
B(2)-B(6)-B(5)	108.1(3)	B(1)-B(6)-B(5)	59.5(3)
B(10)-B(6)-B(5)	60.3(3)	B(2)-B(6)-B(11)	61.1(3)
B(1)-B(6)-B(11)	107.9(3)	B(10)-B(6)-B(11)	63.0(3)
B(5)-B(6)-B(11)	107.6(3)	B(6)-B(10)-B(5)	59.9(3)
B(6)-B(10)-B(11)	58.6(3)	B(5)-B(10)-B(11)	104.0(3)
B(6) - B(10) - Ir(9)	116.6(3)	B(5) - B(10) - Ir(9)	65.7(2)
B(11) - B(10) - Ir(9)	110.0(2)	C(7)-B(11)-B(6)	104.7(3)
C(7)-B(11)-B(2)	59.6(2)	B(6)-B(11)-B(2)	58.3(3)
C(7)-B(11)-B(10)	109.8(3)	B(6)-B(11)-B(10)	58.4(3)
B(2)-B(11)-B(10)	107.8(3)	O(1) - C(1) - Ir(9)	178.9(5)
C(7A)-C(7)-C(8)	119.4(3)	C(7A)-C(7)-B(11)	118.4(3)
C(8)-C(7)-B(11)	112.2(3)	C(7A)-C(7)-B(3)	117.4(3)
C(8)-C(7)-B(3)	62.5(3)	B(11)-C(7)-B(3)	114.8(3)
C(7A)-C(7)-B(2)	120.1(3)	C(8)-C(7)-B(2)	110.7(3)
B(11)-C(7)-B(2)	63.7(3)	B(3)-C(7)-B(2)	60.8(3)
C(7)-C(8)-B(3)	64.0(3)	C(7)-C(8)-B(4)	114.4(3)
B(3)-C(8)-B(4)	63.0(3)	C(7) - C(8) - Ir(9)	122.8(2)
B(3) - C(8) - Ir(9)	126.0(3)	B(4) - C(8) - Ir(9)	67.9(2)
C(7B)-C(7A)-C(7C)	119.9(4)	C(7B)-C(7A)-C(7)	122.8(4)
C(7C)-C(7A)-C(7)	117.3(4)		

Symmetry transformations used to generate equivalent atoms:

e ~ 1

<pre>Ir(5)-C(1) Ir(5)-B(1) Ir(5)-P(1) P(1)-C(11) P(2)-C(22) P(2)-C(23) B(1)-B(3) B(1)-B(4) B(2)-C(6) B(2)-B(7) B(3)-B(4) B(4)-B(9) B(4)-B(10) B(7)-C(6) B(8)-B(9) C(6)-C(61) C(62)-C(63) Ir(5')-B(1') Ir(5')-B(1') Ir(5')-B(1') P(1')-C(11') P(1')-C(11') P(1')-C(11') P(1')-C(11') P(1')-C(22') B(1')-B(2') B(1')-B(2') B(1')-B(4') B(2')-C(6') B(3')-B(4') B(4')-B(10') B(4')-B(10') B(4')-C(6') C(6')-C(61') C(6')-C(61')</pre>	1.886(6) 2.214(6) 2.254(6) 2.3710(14) 1.818(6) 1.807(7) 1.816(8) 1.783(8) 1.783(8) 1.692(8) 1.692(8) 1.789(9) 1.716(9) 1.841(8) 1.826(7) 1.797(9) 1.495(7) 1.359(9) 1.882(5) 2.209(6) 2.262(6) 2.3654(13) 1.817(7) 1.820(6) 1.823(6) 1.785(9) 1.805(8) 1.692(8) 1.785(9) 1.818(8) 1.781(0) 1.818(8) 1.817(10) 1.818(8) 1.807(10) 1.481(7) 1.345(8)	Ir(5) - C(6) $Ir(5) - B(2)$ $Ir(5) - P(2)$ $P(1) - C(13)$ $P(1) - C(12)$ $P(2) - C(21)$ $O(1) - C(1)$ $B(1) - B(2)$ $B(1) - B(10)$ $B(2) - B(3)$ $B(3) - B(3)$ $B(3) - B(3)$ $B(3) - B(7)$ $B(4) - B(8)$ $B(7) - C(61)$ $B(7) - B(8)$ $B(9) - B(10)$ $C(61) - C(62)$ $C(62) - C(64)$ $Ir(5') - C(6')$ $Ir(5') - B(2')$ $Ir(5') - P(2')$ $P(1') - C(13')$ $P(1') - C(12')$ $P(1') - C(12')$ $P(1') - B(3')$ $B(1') - B(3')$ $B(3') - B(3')$ $B(3') - B(7')$ $B(4') - B(8')$ $B(7') - C(61')$ $B(7') - C(61')$ $B(7') - B(8')$ $B(7') - C(61')$ $B(7') - B(10')$ $C(61') - C(62')$ $C(62') - C(64')$	2.162(5) 2.219(6) 2.345(2) 1.812(6) 1.822(6) 1.811(7) 1.140(7) 1.792(8) 1.792(8) 1.790(8) 1.790(8) 1.791(9) 1.675(8) 1.950(9) 1.853(8) 1.498(7) 1.443(10) 2.165(5) 2.221(6) 2.3465(14) 1.813(6) 1.138(7) 1.792(9) 1.856(9) 1.780(9) 1.730(9) 1.813(9) 1.786(10) 1.645(8) 1.953(10) 1.842(8) 1.503(8) 1.484(9)
C(1) - Ir(5) - C(6) $C(6) - Ir(5) - B(1)$ $C(6) - Ir(5) - B(2)$ $C(1) - Ir(5) - B(10)$ $B(1) - Ir(5) - P(2)$ $B(1) - Ir(5) - P(2)$ $B(10) - Ir(5) - P(2)$ $C(6) - Ir(5) - P(1)$ $B(2) - Ir(5) - P(1)$ $P(2) - Ir(5) - P(1)$ $C(13) - P(1) - C(12)$ $C(13) - P(1) - Ir(5)$ $C(22) - P(2) - C(23)$ $C(22) - P(2) - Ir(5)$ $C(23) - P(2) - Ir(5)$ $B(3) - B(1) - B(10)$ $B(4) - B(1) - Ir(5)$ $B(10) - B(1) - Ir(5)$	171.0(2) 85.5(2) 45.4(2) 84.2(2) 49.6(2) 96.5(2) 145.4(2) 90.78(14) 87.4(2) 99.55(5) 101.8(3) 118.9(2) 117.6(2) 104.2(4) 115.3(2) 115.4(3) 59.8(3) 104.0(4) 60.0(3) 66.3(3) 66.3(3)	C(1) - Ir(5) - B(1) $C(1) - Ir(5) - B(2)$ $B(1) - Ir(5) - B(2)$ $C(6) - Ir(5) - B(10)$ $C(6) - Ir(5) - P(2)$ $B(2) - Ir(5) - P(2)$ $B(2) - Ir(5) - P(1)$ $B(1) - Ir(5) - P(1)$ $B(1) - Ir(5) - P(1)$ $C(13) - P(1) - C(11)$ $C(13) - P(1) - C(12)$ $C(11) - P(1) - C(12)$ $C(21) - P(2) - C(23)$ $C(21) - P(2) - C(23)$ $C(21) - P(2) - Ir(5)$ $B(3) - B(1) - B(2)$ $B(2) - B(1) - B(4)$ $B(2) - B(1) - Ir(5)$ $B(4) - B(1) - Ir(5)$ $C(6) - B(2) - B(3)$	$\begin{array}{c} 87.2(2)\\ 125.6(3)\\ 47.7(2)\\ 95.1(2)\\ 85.3(2)\\ 92.55(14)\\ 137.7(2)\\ 87.4(2)\\ 115.0(2)\\ 162.7(2)\\ 102.1(3)\\ 102.3(3)\\ 111.7(2)\\ 100.8(4)\\ 102.1(4)\\ 117.1(2)\\ 59.7(3)\\ 112.8(4)\\ 111.4(4)\\ 115.9(3)\\ 121.0(4)\\ 112.3(4)\\ \end{array}$

Table 5. Interatomic Distances [Å] and Angles [°] for 3 [5,5,5-(CO)(PMe₃)₂- μ -6,7-{CH.C(CH₃)CH₂}-*nido*-5,6-IrCB₈H₁₁].

۲

C(6) - B(2) - B(1)	117 0741	P(2) P(2) P(1)	50 0(2)
C(4) P(2) P(7)	(0, 0, (2))	D(3) - D(2) - D(1)	59.9(3)
G(0) - G(2) - G(7)	60.8(3)	B(3) - B(2) - B(7)	58.2(3)
B(1) - B(2) - B(7)	106.4(4)	C(6) - B(2) - Ir(5)	65.5(2)
B(3)-B(2)-Ir(5)	115.8(3)	B(1)-B(2)-Ir(5)	66.0(3)
B(7) - B(2) - Ir(5)	112.5(3)	B(8) - B(3) - B(2)	119 9(4)
B(8) - B(3) - B(1)	111 2(4)	B(2) = B(3) = B(1)	£0 4(2)
B(0) B(3) B(1)		D(2) - D(3) - D(1)	00.4(3)
D(0) - D(0) - D(4)	01.2(4)	B(2) - B(3) - B(4)	114.2(4)
B(1) - B(3) - B(4)	60.7(3)	B(8)-B(3)-B(7)	67.3(4)
B(2)-B(3)-B(7)	64.2(3)	B(1)-B(3)-B(7)	111.6(4)
B(4)-B(3)-B(7)	116.3(4)	B(9) - B(4) - B(3)	111 4(5)
B(9) - B(4) - B(8)	61 6(4)	B(3) - B(4) - B(8)	57 8(4)
B(9) - B(4) - B(1)	117 0(4)	B(3) = B(4) = B(1)	50 6(2)
P(S) P(A) P(1)			J9.4(J)
D(0) - D(4) - D(1)	107.3(4)	B(9) - B(4) - B(10)	62.7(3)
B(3) - B(4) - B(10)	105.0(4)	B(8) - B(4) - B(10)	104.5(4)
B(1) - B(4) - B(10)	61.8(3)	C(61)-B(7)-B(3)	133.3(4)
C(61)-B(7)-C(6)	50.3(3)	B(3) - B(7) - C(6)	105.8(4)
C(61) - B(7) - B(2)	102.3(4)	B(3) - B(7) - B(2)	57 6(3)
C(6) - B(7) - B(2)	54 0(3)	$C(61) \mathbb{P}(7) \mathbb{P}(9)$	
B(3) = B(7) = B(9)	54.0(3)	O(01) - D(0)	99.0(4)
	34.9(3)	C(6) - B(7) - B(8)	121.5(4)
D(2) - D(7) - D(0)	104.3(4)	B(3) - B(8) - B(4)	61.1(4)
B(3)-B(8)-B(9)	110.3(4)	B(4)-B(8)-B(9)	57.1(3)
B(3)-B(8)-B(7)	57.8(3)	B(4)-B(8)-B(7)	108.7(4)
B(9)-B(8)-B(7)	118.2(4)	B(4) - B(9) - B(8)	61 3(4)
B(4) - B(9) - B(10)	62.0(3)	B(8) - B(9) - B(10)	103 8(4)
B(4) - B(10) - B(9)	55 3(3)	B(h) = B(10) = B(1)	59 2(2)
B(9) - B(10) - B(1)	107 3(4)	P(4) = D(10) = D(1)	
$P(0) P(10) T_{m}(5)$	107.3(4)	D(4) - D(10) - Ir(5)	11/.4(3)
D(3) - D(10) - 11(0)	131.3(4)	B(1) - B(10) - Ir(5)	64.1(2)
U(1) - U(1) - Ir(5)	1/8.9(6)	C(61)-C(6)-B(2)	121.7(4)
C(61)-C(6)-B(7)	59.6(3)	B(2)-C(6)-B(7)	65.1(3)
C(61)-C(6)-Ir(5)	123.8(3)	B(2)-C(6)-Ir(5)	69.1(3)
B(7)-C(6)-Ir(5)	118.3(3)	G(6) - G(61) - G(62)	121 8(5)
C(6) - C(61) - B(7)	70 1 (3)	C(62) = C(61) = B(7)	115 8(4)
C(63) = C(62) = C(64)	121 1(6)	C(62) = C(61) = D(7)	
C(64) C(62) C(61)			11/.8(6)
C(14) = C(02) = C(01)	121.0(6)	U(1') - Ir(5') - U(6')	1/2.8(2)
G(1,) - Ir(3,) - B(1,)	89.5(2)	C(6') - Ir(5') - B(1')	85.3(2)
G(1') - Ir(5') - B(2')	127.6(2)	C(6')-Ir(5')-B(2')	45.4(2)
B(1')-Ir(5')-B(2')	47.5(2)	C(1') - Ir(5') - B(10')	85.0(2)
C(6')-Ir(5')-B(10')	95.3(2)	B(1') - Ir(5') - B(10')	49.0(2)
B(2') - Ir(5') - B(10')	84.9(2)	C(1') - Ir(5') - P(2')	94 3(2)
C(6') - Ir(5') - P(2')	92 86(13)	B(1') = Tr(5') = P(2')	145 6(2)
B(2') - Tr(5') - P(2')	138 0(2)	$B(10!) = T_{-}(5!) = D(2!)$	
C(1') = Tr(5') = P(1')		D(10) = I(0) = I(0)	. 97.2(2)
$P(1/) = T_{r}(5/) = T(1/)$	07.1(2)	U(0') - Ir(0') - P(1')	90.52(14)
D(T, J-TL(2, J-L(T, J))	114.8(2)	B(2') - Ir(5') - P(1')	87.1(2)
B(10,) - Ir(5,) - P(1,)	162.0(2)	P(2') - Ir(5') - P(1')	99.53(5)
C(13') - P(1') - C(11')	102.9(3)	C(13')-P(1')-C(12')	101.2(3)
C(11')-P(1')-C(12')	102.4(4)	C(13') - P(1') - Ir(5')	112.3(2)
C(11') - P(1') - Ir(5')	119.4(2)	C(12') - P(1') - Tr(5')	1162(2)
G(22') - P(2') - G(21')	104 0(3)	C(22') = P(2') = C(23')	1021(2)
C(21') = P(2') = C(23')	101 7(3)	C(22) = C(2) = C(2)	102.1(3)
C(21) = C(23)	115 5(0)	$G(22^{-}) - P(2^{-}) - Ir(5^{-})$	115.5(2)
D(2L) = f(2) = f(3)	113.3(2)	C(23') - P(2') - Ir(5')	116.1(2)
$D(2^{-}) - D(1^{-}) - B(3^{-})$	59.7(4)	B(2') - B(1') - B(4')	112.5(4)
B(3') - B(1') - B(4')	59.6(4)	B(2')-B(1')-B(10')	112.4(4)
B(3')-B(1')-B(10')	104.4(4)	B(4')-B(1')-B(10')	60.0(3)
B(2')-B(1')-Ir(5')	66.6(3)	B(3') - B(1') - Ir(5')	116 3(4)
B(4')-B(1')-Ir(5')	121.4(4)	B(10') - B(1') - Tr(5')	67 0(3)
C(6') - B(2') - B(3')	112 4(4)	$C(6!)_{R(2!)_{R(1!)}}$	116 0765
B(3') - B(2') - B(1')	60 7 (2)	$C(G(X) = D(X = J^{-}D(X = J))$	(0, 7(4))
$B(3!)_B(2!) = B(2!)$		$\frac{1}{1}$	60.1(3)
$D(J) = D(Z) = D(I^{-})$	30.0(3)	p(1,)-R(5,)-R()	106.7(4)
D(O) J - D(Z') - Ir(D')	65.6(3)	B(3')-B(2')-Ir(5')	116.3(4)
D(1') - B(2') - 1r(5')	65.9(3)	B(7')-B(2')-Ir(5')	112.0(3)
B(8')-B(3')-B(2')	119.8(4)	B(8')-B(3')-B(4')	61.0(4)
B(2′)-B(3′)-B(4′)	113,7(4)	B(8') - B(3') - B(1')	110 8(5)
B(2') - B(3') - B(1')	60 0(3)	= (2 - 1) = 2(2 - 1) = 2(2 - 1) = 2(2 - 1) = 2(2 - 1)	
\cdots $(-)$ $-(-)$ $-(-)$ $-(-)$	00.0(0)	コイチ ファロイン ファロイエート	00.0(4)

٢

°∼ ¥

	U11	U22	U33	U23	U 13	U12
Ir(9)	18(1)	18(1)	18(1)	-2(1)	2 (1)	0 (1)
P(1)	24(1)	17(1)	25(1)	2(1)	~2(1)	2(1)
P(2)	26(1)	30(1)	22(1)	-4(1)	-3(1)	1(1)
0(1)	47(2)	58(2)	55(3)	-16(2)	2(1)	7(1)
B(1)	37(2)	19(2)	25(3)	3(2)	-25(2)	-5(2)
B(2)	22(2)	19(2)	33(3)	2(2)	8(2)	2(2)
B(3)	27(2)	22(2)	25(3)	-2(2)	3(2)	2(2)
B(4)	31(2)	21(2)	24(3)	3(2)	-1(2)	8(2)
B(5)	27(2)	22(2)	26(3)	-1(2)	-2(2)	7(2)
B(6)	25(2)	25(2)	35(3)	-2(2)	(2)	0(2)
B(10)	18(2)	25(2)	27(3)	-4(2)	0(2)	-6(2)
B(11)	18(2)	23(2)	22(2)	-1(2)	2(2)	-4(2)
C(1)	33(2)	31(2)	23(2)	-9(2)	-2(2)	1(2)
C(7)	17(2)	18(2)	21(2)	-1(2)	-4(2)	6(2)
C(8)	15(2)	22(2)	26(2)	-1(2)	$\pm (\pm)$	$\perp(1)$
C(11)	29(2)	41(3)	59(4)	17(3)	-2(1)	3(1)
C(12)	64(4)	23(2)	38(4)	-4(2)	-0(2)	9(2)
C(13)	34(2)	31(2)	31 (3)	4(2)	2(3)	-8(2)
C(21)	27(2)	46(4)	38(3)	-2(3)	-3(2)	-5(2)
C(22)	47(3)	59(4)	30(3)	2(3)	o(2)	4(2)
C(23)	46(3)	43(3)	47(4)	-14(3)	7(2)	17(3)
C(7A)	20(2)	23(2)	26(2)	<u>1</u> (2)	10(3)	7(2)
C(7B)	24(2)	35(3)	39(3)	3(2)	Z(Z)	6(1)
C(7C)	42(2)	31(2)	26(2)	0(2)	⊥⊥(Z) 11(2)	-1(2)
			20(2)	0(2)	工工(乙)	4(2)

٠

Table 6. Anisotropic displacement parameters (Å² x 10³) for **2** [7-{C(CH₃)CH₂}-9,9,9-(CO)(PMe₃)₂-*nido*-9,7,8-IrC₂B₈H₁₀].

•

				·	·····	
	U11	U22	U33	U23	U13	U12
<pre>Ir(5) P(1) P(2) 0(1) B(2) B(3) B(2) B(3) B(4) B(7) B(8) B(7) B(8) B(9) B(10) C(1) C(62) C(62) C(62) C(62) C(63) C(12) C(22) C(12) C(23) Ir(5') P(1') C(2') C(</pre>	$18(1) \\ 26(1) \\ 28(1) \\ 40(3) \\ 14(2) \\ 27(3) \\ 27(3) \\ 25(3) \\ 27(3) \\ 29(3) \\ 20(2) \\ 27(3) \\ 20(2) \\ 23(3) \\ 20(3) \\ 20(2) \\ 23(3) \\ 20(3$	22(1) 25(1) 42(1) 32(2) 29(3) 28(2) 26(3) 32(3) 23(2) 21(2) 34(3) 30(3) 27(2) 23(2) 29(2) 39(3) 55(4) 130(9) 51(4) 29(3) 40(3) 90(6) 71(5) 59(5) 21(1) 24(1) 32(1) 59(5) 21(1) 24(1) 32(1) 59(3) 25(2) 26(2) 31(3) 31(3) 31(3) 25(3) 26(3) 22(2) 36(3) 23(2) 27(2) 35(3) 44(3) 69(5) 49(4) 35(3) 30(3) 39(3) 68(4) 36(3)	30(1) 39(1) 39(1) 34(1) 125(5) 32(3) 24(3) 31(3) 38(3) 24(3) 48(4) 36(3) 28(2) 35(3) 62(5) 97(7) 44(4) 69(5) 49(3) 33(3) 44(4) 74(6) 30(1) 43(1) 26(1) 105(5) 38(3) 36(3) 33(3) 47(4) 27(3) 41(3) 40(3) 41(3) 52(3) 32(3) 29(2) 35(3) 53(4) 66(5) 63(4) 34(3) 45(3) 31(3)	$\begin{array}{c} 2(1) \\ -5(1) \\ 13(1) \\ -4(3) \\ -1(2) \\ 1(2) \\ 3(2) \\ 2(2) \\ -1(2) \\ -1(2) \\ -3(2) \\ 3(2) \\ 1(2) \\ 1(2) \\ 0(2) \\ 3(2) \\ -28(3) \\ -68(7) \\ -22(3) \\ 1(2) \\ -28(3) \\ -68(7) \\ -22(3) \\ 1(3) \\ -6(3) \\ 15(3) \\ 12(3) \\ 36(4) \\ -2(1) \\ 5(1) \\ 3(1) \\ -39(3) \\ 1(2) \\ 5(2) \\ -3(2) \\ -5(3) \\ -1(2) \\ -5(2) \\ 0(2) \\ -4(2) \\ 12(3) \\ 22(4) \\ 23(3) \\ -3(3) \\ 5(3) \\ -2(2) \\ 14(3) \\ 8(2) \end{array}$	$\begin{array}{c} -1(1)\\ -2(1)\\ -2(1)\\ -5(1)\\ 6(3)\\ 0(2)\\ -3(2)\\ 1(2)\\ 3(2)\\ -3(2)\\ -1(3)\\ -1(2)\\ -3(2)\\ -1(3)\\ -2(2)\\ -3(2)\\ 1(2)\\ 13(3)\\ -1(4)\\ 0(3)\\ -11(4)\\ 0(3)\\ -11(4)\\ 0(3)\\ -11(4)\\ 0(3)\\ -11(4)\\ 0(3)\\ -11(4)\\ 0(3)\\ -11(4)\\ 0(3)\\ -11(4)\\ 0(3)\\ -11(4)\\ 0(3)\\ -11(2)\\ -3(2)\\ 1(2)\\ -2(2)\\ -1(2)\\ -$	$\begin{array}{c} 0(1) \\ -2(1) \\ -7(1) \\ 12(2) \\ 0(2) \\ -1(2) \\ -5(2) \\ -8(2) \\ 1(2) \\ -8(2) \\ -6(2) \\ -2(2) \\ 2(2) \\ -2(2) \\ 2(2) \\ -2(2) \\ 2(2) \\ -2(2) \\ -2(2) \\ 2(2) \\ -6(3) \\ 11(2) \\ -1(3) \\ 35(5) \\ 5(3) \\ -14(3) \\ -4(2) \\ -29(4) \\ -6(3) \\ 10(4) \\ 1(1) \\ -3(1) \\ -3(1) \\ 2(2) \\ 5(2) \\ -4(2) \\ 8(2) \\ 4(2) \\ -3(2) \\ 5(2) \\ -4(2) \\ 8(2) \\ 4(2) \\ -3(2) \\ -5(2) \\ 2(2) \\ 10(2) $

Table 7. Anisotropic displacemnt parameters (Å² x 10³) for 3 [5,5,5-(CO)(PMe₃)₂- μ -6,7-{CH.C(CH₃)CH₂}-nido-5,6-IrCB₈H₁₁].

.94 ,

B(8') - B(3') - B(7') B(4') - B(3') - B(7') B(3') - B(4') - B(3') B(3') - B(4') - B(1') B(3') - B(4') - B(10') B(9') - B(4') - B(10') C(61') - B(7') - B(3') B(3') - B(7') - C(6') B(3') - B(7') - B(2') C(61') - B(7') - B(8') B(3') - B(8') - B(4') B(4') - B(8') - B(9') B(4') - B(8') - B(10') B(4') - B(10') - B(10') B(4') - B(10') - Ir(5') B(4') - B(10') - Ir(5') C(61') - C(6') - B(7') B(2') -	$\begin{array}{c} 66.9(4)\\ 115.5(4)\\ 111.7(5)\\ 57.9(4)\\ 59.8(4)\\ 62.5(4)\\ 105.5(4)\\ 105.5(4)\\ 133.8(5)\\ 105.3(4)\\ 56.9(3)\\ 101.3(4)\\ 122.0(4)\\ 61.1(4)\\ 57.0(4)\\ 108.9(4)\\ 60.9(4)\\ 104.1(4)\\ 58.6(3)\\ 117.5(4)\\ 64.0(3)\\ 121.8(4)\\ 66.0(3)\\ 121.8(4)\\ 66.0(3)\\ 118.6(5)\\ 119.6(5)\\ 119.6(5)\\ \end{array}$	B(2') - B(3') - B(7') B(1') - B(3') - B(7') B(9') - B(4') - B(8') B(9') - B(4') - B(1') B(3') - B(4') - B(10') B(1') - B(4') - B(10') C(61') - B(7') - C(6') C(61') - B(7') - B(2') C(6') - B(7') - B(2') B(3') - B(7') - B(8') B(3') - B(7') - B(8') B(3') - B(8') - B(7') B(3') - B(8') - B(7') B(3') - B(8') - B(7') B(3') - B(8') - B(7') B(4') - B(9') - B(10') B(4') - B(10') - B(1') B(4') - B(10') - Ir(5') C(61') - C(6') - Ir(5') C(61') - C(6') - Ir(5') C(61') - C(6') - Ir(5') C(61') - C(61') - B(7') C(61') - C(61') - B(7') C(61') - C(61') - C(61') - C(61') B(7') - C(61') - C(61') - C(61') - C(61') - C(61') B(7') - C(61') - C(64.4(3) 111.0(4) 62.2(4) 116.2(5) 107.7(5) 105.7(4) 61.4(3) 50.3(3) 102.1(4) 53.8(3) 54.5(3) 103.4(4) 110.0(4) 58.6(3) 117.1(4) 61.9(4) 55.6(3) 107.8(4) 130.5(4) 178.9(6) 58.7(3) 124.1(4) 118.9(3) 70.9(4) 120.0(6)
C(6')-C(61')-C(62') C(62')-C(61')-B(7') C(63')-C(62')-C(61')	118.6(5) 119.6(5)	B(7')-G(6')-Ir(5') C(6')-C(61')-B(7') C(63')-C(62')-C(64')	118.9(3) 70.9(4) 120.0(6)
(00) = 0(02) = 0(01)	TT3.7(0)	0(04)-0(02)-0(01)	120.3(3)

Symmetry transformations used to generate equivalent atoms:

.

*;**

	x	У	Z	Ū(eq)
H(11A)	6638(41)	3926 (48)	8943 (20)	5E (17)
H(11B)	6173 (37)	3421 (49)	9368 (19)	33(I7)
H(11C)	6471(42)	4748 (57)	9373 (20)	43(10) 61(20)
H(12A)	4790(50)	2922 (77)	8495 (25)	75(20)
H(12B)	3891 (57)	3118(63)	8644 (25)	99 (24)
H(12C)	4463 (48)	2475 (53)	8974 (21)	65(19)
H(13A) ·	4438(35)	5383(44)	9636(16)	33(13)
H(13B)	4432(34)	4053 (42)	9689(16)	21 (12)
H(13C)	3679(39)	4656 (48)	9392 (18)	JI(IZ)
H(21A) ·	7539(34)	6886 (44)	8260(18)	42(10)
H(21B)	7934 (40)	5800(48)	7985 (20)	43(10)
H(21C)	7577(31)	5569(40)	8458 (16)	22(12)
H(22A)	5509(46)	6278 (48)	7352(18)	23(13)
H(22B)	6614(44)	6234 (50)	7301(21)	55(18)
H(22C)	6072(36)	7334 (51)	7525(19)	50(16)
H(23A)	5559(49)	3801 (51)	7736 (19)	50(10)
н(23В)	6328 (42)	3642(50)	8133 (22)	62 (20)
H(23C)	6672(42)	3986 (49)	7682 (19)	51 (17)
H(7B1)	2101(38)	7007(51)	9881(19)	31(17)
H(7B2)	2364(34)	6425 (44)	9427(18)	41(14)
H(7C1)	3906(43)	8889 (48)	10170(18)	59(19)
H(7C2)	2826(39)	8535 (44)	10291(19)	49(15)
H(7C3)	3045(39)	9608 (55)	9951(17)	52(15)
H(1)	4730(34)	10311(50)	8431 (17)	37(14)
H(2)	4450(32)	10278 (39)	9432(15)	31 (12)
H(3)	2836(28)	9312 (35)	8827(14)	19(10)
H(4)	3704(33)	8164 (43)	8089(17)	38(12)
H(5)	6093(34)	8328 (42)	8215(17)	38(14)
H(6)	6381(31)	9607 (38)	9089(15)	30(14)
4(8)	3092(29)	6999 (37)	8857(14)	19(10)
4(10)	6682(30)	7041(37)	9063(14)	24 (11)
H(11)	5424(26)	8164 (33)	9766 (13)	27(71) 8(9)
1(101)	5354(30)	6947 (37)	9276(14)	20(11)

Table 8. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for 2 [7-{C(CH₃)CH₂}-9,9,9-(CO)(PMe₃)₂-*nido*-9,7,8-IrC₂B₈H₁₀].

3 M 🖌

	x	У	z	U(eq)
H(1)	2761(44)	4984(68)	2805(24)	46(19)
H(2)	1026(40)	5810(59)	2756(22)	33(16)
H(4)	2206(37)	7709(56)	2735(20)	26(15)
H(7)	842(37)	6931(70) 8205(56)	3249(25)	50(20)
H(8)	2465(43)	9063(64)	3223(20)	26(15)
H(9)	3440(39)	7241(58)	4253(21)	40(18)
H(89)	2367(46)	7692(70)	4064(25)	50(20)
H(ATO)	2525(37)	6015(55)	4128(20)	27(15)
H(10)	3291(41) 211(26)	4667(62)	3858(22)	36(17)
H(61)	1314(36)	5814(52)	3478(19)	20(13)
H(63A)	-160(5)	9094(7)	4193(20)	24(14)
H(63B)	814(5)	8600(7)	4656(3)	66
H(64A)	-618(5)	. 7029(11)	3632(4)	135
H(64C)	-/99(5)	8544(11)	3773(4)	135
H(11A)	1456(4)	/368(11) 2336(7)	4126(4)	135
H(11B)	928(4)	3600(7)	2402(2)	/1 71
H(11C)	508(4)	2156(7)	2320(2)	71
H(12A)	806(5)	843(6)	3346(3)	79
H(12C)	-35(5)	918(6)	3040(3)	79
H(13A)	-687(3)	1411(6) 3980(6)	3582(3)	79
H(13B)	-804(3)	3162(6)	2832(2)	56
H(13C)	-384(3)	4607(6)	2824(2)	56
H(21A)	2293(5)	4396(9)	4771(2)	91
H(21C)	1032(5)	3975(9)	5104(2)	91
H(22A)	-203(4)	3229(9)	4804(2)	91
H(22B)	-19(4)	4624(8)	4200(2)	: 76 76
H(22C)	23(4)	3271(8)	4762(2)	76
H(23A) H(23B)	2050(6)	1622(8)	4387(3)	104
H(23C)	1356(6)	1202(8)	4262(3)	104
H(1')	1800(49)	8915(71)	4/94(3)	104
H(2')	3314(49)	9322(73)	274(26)	24(Z⊥) 55(22)
H(3')	2266(42)	7197(65)	67(24)	42(18)
H(4')	1285(40)	6363(60)	818(22)	34(16)
H(8')	2596(45)	66/4(65)	72(24)	42(18)
H(9')	2227(43)	4710(09)	358(25)	48(20)
H(89')	3110(36)	5045(55)	992(20)	40(18) 25(14)
H(91')	2875(39)	6177(60)	1485(21)	33(16)
H(10')	2017(40)	7215(61)	1744(22)	34(16)
H(61')	4077(39)	8252(67)	694(24)	41(18)
н(63с)	6109(4)	4802(58)	1145(22) 961(3)	30(16)
H(63D)	5270(4)	4710(6)	1273(3)	56
H(64D)	5260(5)	7165(8)	141(3)	90
にして40) 日(6んで)	5//9(5)	5814(8)	90(3)	90
H(1)D	0123(3) 5303(4)	6995(8)	419(3)	90
(~~~)	5505(4)	10420(7)	890(3)	73

Table 9. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å² x 10³) for 3 [5,5,5-(CO)(PMe₃)₂- μ -6,7-{CH.C(CH₃)CH₂}-*nido*-5,6-IrCB₈H₁₁].

e # 5

H(23D) $3560(4)$ $6415(6)$ $2259(2)$ 55 $H(23E)$ $4478(4)$ $6527(6)$ $2478(2)$ 55 $H(23F)$ $4347(4)$ $6018(6)$ $1942(2)$ 55	H(11F) H(12D) H(12E) H(12F) H(13D) H(13E) H(13F) H(21D) H(21E) H(21F) H(22D) H(22E) H(22F) H(22F) H(23E) H(23F)	4636(5) 3745(5) 4500(5) 2702(4) 3131(4) 3468(4) 3453(4) 4204(4) 4378(4) 5471(4) 5634(4) 5460(4) 3560(4) 4478(4) 4347(4)	10508(7) 11597(6) 12299(6) 12861(6) 12061(6) 11618(6) 12895(6) 9234(6) 10206(6) 8895(6) 8027(8) 8144(8) 9455(8) 6415(6) 6527(6) 6018(6)	425(3) 1811(3) 1783(3) 1473(3) 954(3) 465(3) 747(3) 2604(2) 2469(2) 2777(2) 1575(2) 2137(2) 1828(2) 2259(2) 2478(2) 1942(2)	73 81 81 69 69 59 59 59 59 69 69 69 55 55 55
---	--	---	--	--	--

-·

. .

. . . • ••

.