

Terms & Conditions

Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html

Copyright © 1998 American Chemical Society

X-Ray Structural Analysis of Rh(CO)Cl[P(C₆H₅)₂OCH₂CH₂-n-C₆F₁₃]₂.

A crystalline fragment of $Rh(CO)Cl[P(C_6H_5)_2OCH_2CH_2-n-C_6F_{13}]_2$ was sealed in a capillary tube and then optically aligned on the goniostat of a Siemens P4 automated X-ray diffractometer.¹ The reflections that were used for the determination of the monoclinic unit cell parameters were located and indexed by the automatic peak search routine XSCANS.² The corresponding lattice parameters and orientation matrix were provided from a nonlinear leastsquares fit of the orientation angles of 40 centered reflections $(10^\circ < 2\theta < 25^\circ)$ at 22 °C. The refined lattice parameters and other pertinent crystallographic information are summarized in Table 1.

Intensity data were measured with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) and variable ω scans (4.0-10.0°/min). Background counts were measured at the beginning and at the end of each scan with the crystal and counter kept stationary. The intensities of three standard reflections were measured after every 100 reflections and their combined intensity did not decreased by 2% during data collection. The data were corrected for Lorentz-polarization and the symmetry-equivalent reflections were averaged. No absorption correction was applied.

The initial coordinates for all of the non-hydrogen atoms were determined with a combination of direct methods and difference Fourier calculations performed with algorithms provided by SHELXTL IRIS operating on a Silicon Graphics IRIS Indigo

workstation. Idealized positions for the methylene and phenyl hydrogen atoms were included as fixed contributions using a riding model with isotropic temperature factors set at 1.2 times that of the adjacent carbon. Full-matrix least-squares refinement, based upon the minimization of $\sum w_i |F_o^2 - F_c^2|^2$, with $w_i^{-1} = [\sigma^2(F_o^2) + (0.0976 \text{ P})^2 + 1.37 \text{ P}]$ where P = $(\text{Max}(F_o^2, 0) + 2 F_c^2)/3$, was performed with SHELXL-93.³ After convergence, the final discrepancy indices⁴ were R1 = 0.0625, wR2 = 0.1539 for 5045 reflections with I > 2 $\sigma(I)$ and the overall GOF value was 1.049. Although the molecular structure of Rh(CO)Cl[P(C₆H₅)₂OCH₂CH₂-n-C₆F₁₃]₂ is reasonably well-behaved, carbons C(40) and C(41) and fluorines F(22), F(23), F(24), F(25), and F(26) display large thermal displacements. However, attempts to refine this C₂F₅ fragment as a static two-site disorder were unsuccessful.

The refined positional parameters for $Rh(CO)Cl[P(C_6H_5)_2OCH_2CH_2-n-C_6F_{13}]_2$ with equivalent isotropic displacement parameters are provided in Table 2, Interatomic distances and bond angles are listed in Table 3, anisotropic displacement parameters are tabulated in Table 4, and idealized hydrogen atom coordinates are given in Table 5.

¹J.L.P. acknowledges the financial support provided by the Chemical Instrumentation Program of the National Science Foundation (Grant No. CHE-9120098) for the acquisition of a Siemens P4 X-ray diffractometer by Department of Chemistry at West Virginia University.

²XSCANS (version 2.0) is a diffractometer control system developed by Siemens Analytical X-ray Instruments, Madison, WI.

³SHELXL-93 is a FORTRAN-77 program (Professor G. Sheldrick, Institut fur Anorganische Chemie, University of Gottingen, D-37077, Gottingen, Germany) for single crystal X-ray structural analyses.

⁴The R-factors were calculated from the expressions $R1 = \sum ||F_0| - |F_c||/\sum |F_o||$ and wR2 = $[\sum (w_i (F_o^2 - F_c^2)^2) / \sum (w_i (F_o^2)^2)]^{1/2}$ and the standard deviation of an observation of unit weight (GOF) is equal to $[\sum (w_i (F_o^2 - F_c^2)^2) / (n - p)]^{1/2}$, where n is the number of reflections and p is the number of parameters varied during the last refinement cycle.

Table 1. Crystal data and structure refinement for

 $Rh(CO)C1[PPh_2OCH_2CH_2-n-C_6F_{13}]_2$

Identification code	snolan12
Empirical formula	C ₄₁ H ₂₈ C1F ₂₆ O ₃ P ₂ Rh
Formula weight	1262.93
Temperature	295(2) K
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	P21/c
Unit cell dimensions	$a = 20.430(4) \text{ \AA} \qquad \alpha = 90^{\circ}$ $b = 10.652(1) \text{ \AA} \qquad \beta = 113.24(1)^{\circ}$ $\alpha = 90^{\circ}$
	c = 24.300(2) A 7 50
Volume	4859.3(10) A
Z	4
Density (calculated)	1.726 g/cm -1
Absorption coefficient	6.10 cm
F(000)	2496
Crystal size	$0.20 \times 0.20 \times 0.30$ mm
heta range for data collection	2.12 to 25.00^{-10}
Index ranges	$0 \le h \le 22, \ 0 \le k \le 12, \ -20 \le t \le 20$
Reflections collected	8494
Independent reflections	$8243 (R_{int} = 0.0265)$
Refinement method	Full-matrix least-squares on F
Data / restraints / parameters	7161 / 14 / 667
Goodness-of-fit on F ²	1.049
Final R indices $[I>2\sigma(I)]$	R1 = 0.0625, WR2 = 0.1539
R indices (all data)	R1 = 0.1163, WR2 = 0.1874
Largest diff. peak and hole	0.731 and -0.561 eÅ ⁻³

4

Table 2. Atomic coordinates $[x 10^4]$ and equivalent isotropic

displacement parameters $[\dot{A}^2 \times 10^3]$ for

 $Rh(CO)C1[PPh_2OCH_2CH_2-n-C_6F_{13}]_2$. U(eq) is

defined as one third of the trace of the

orthogonal

1	ized	<i>U</i> ;;	tenso

			and the second se	
	X	у	Z	U(eq)
			705(1)	43(1)
Rh	3516(1)	4452(1)	1159(1)	60(1)
Cl	4719(1)	50/1(1)	1/19(1)	44(1)
P(1)	3261(1)	5517(1) 2007(1)	22(1)	43(1)
P(2)	3737(1)	3207(1)	-474(7)	182(2)
F(1)	1147(2)	/203(0)	181(3)	204(3)
F(2)	1084(3)	800/(4)	173(2)	195(3)
F(3)	-93(2)	7474(7)	-400(2)	168(2)
F(4)	-29(2)	6069(4)	-707(3)	199(3)
F(5)	-65(3)	9213(4)	-1256(2)	179(3)
F(6)	-190(2)	/615(/)	-1230(2)	159(2)
F(7)	-1261(2)	8680(6)	-976(2)	136(2)
F(8)	-1344(2)	6920(4)	- 370(2)	225(3)
F(9)	-1235(3)	9682(5)	-1031(3) 1090(2)	203(3)
F(10)	-1597(3)	/868(8)	-1900(2)	177(3)
F(11)	-2689(3)	9235(5)	-2175(2)	216(3)
F(12)	-2316(3)	10049(5)	-1333(3) 1/59(3)	169(2)
F(13)	-2628(2)	8145(5)	-1430(3)	158(2)
F(14)	2712(2)	6814(6)	-/99(2)	163(2)
F(15)	2358(2)	5098(4)	-1280(2)	149(2)
F(16)	2613(2)	8040(4)	-1/01(2)	144(2)
F(17)	2491(2)	6531(5)	-2253(2)	197(2)
F(18)	1352(2)	7261(5)	-15//(2)	120(2)
F(19)	1245(2)	5892(4)	-2255(2)	102(2)
F(20)	1371(3)	9082(5)	-2310(3)	160(3)
F(21)	1393(2)	7806(5)	-2957(2)	100(2)
F(22)	59(3)	7640(10)	-2470(3)	310(4)
F(22)	188(5)	6949(8)	-3240(4)	319(0)
F(24)	-709(3)	8739(9)	-3453(4)	2/6(4)
F(24) F(25)	91(7)	9682(10)	-2793(6)	550(9)
F(25)	198(4)	9061(9)	-3628(3)	304(4)
r(20)	1990(2)	3839(4)	77(2)	100(2)
O(1)	2426(2)	5853(3)	1239(1)	- 55(1)
0(2)	3698(2)	3898(3)	-582(1)	49(1)
0(3)	2573(3)	4047(5)	324(2)	62(2)
	$\frac{2}{3}$	4588(4)	2079(2)	50(1)
G(2)	2970(3)	4669(5)	2392(2)	70(2)
U(3)	2370(3)	3904(7)	2887(2)	94(2)
G(4)	3665(3)	3083(6)	3079(2)	86(2)
C(5)	2002(3) 2007(3)	3009(6)	2773(2)	79(2)
C(6)	4097(3)	3747(5)	2269(2)	66(2)
C(7)	3203(3)	7023(4)	1682(2)	46(1)
C(8)	3092(2)	/023(4)		1

5

			2266(2)	64(2)
C(9)	3807(3)	7502(5)	2240(2)	77(2)
c(10)	4083(3)	8703(5)	2333(2)	81(2)
C(10)	4233(3)	9432(5)	1997(3)	76(2)
	4119(3)	8957(5)	1441(3)	59(1)
G(12)	3851(3)	7755(5)	12/5(2)	69(2)
C(13)	2102(3)	6701(5)	756(2)	71(2)
C(14)	1306(3)	6509(6)	511(2)	79(2)
C(15)	926(3)	7355(6)	10(3)	23(2)
C(16)	121(3)	7260(7)	-261(3)	03(2)
C(17)	121(5)	8040(6)	-798(3)	33(2)
C(18)	1103(4)	8110(7)	-960(3)	101(3)
C(19)	-1103(-7)	8677(7)	-1541(4)	124(3)
C(20)	-13/1(3)	8998(7)	-1626(4)	133(4)
C(21)	-2322(4)	1959(4)	-301(2)	· 51(1)
C(22)	30/0(2)	966(5)	52(3)	85(2)
C(23)	3033(3)	101(6)	-151(3)	107(3)
C(24)	2551(4)	180(6)	-721(3)	105(2)
C(25)	2031(4)	1162(6)	-1080(3)	94(2)
C(26)	2034(3)	2052(5)	-880(2)	69(2)
C(27)	25/3(3)	2367(4)	289(2)	45(1)
C(28)	45/8(2)	2141(5)	-69(2)	60(1)
C(29)	4950(3)	1426(5)	128(2)	69(2)
C(30)	5559(3)	912(5)	690(2)	68(2)
C(31)	5804(3)	1115(5)	1061(2)	66(2)
C(32)	5449(3)	1956(4)	861(2)	58(1)
C(33)	4841(3)	5100(4)	-565(2)	54(1)
C(34)	3907(3)	5902(5)	-1160(2)	63(2)
C(35)	3484(3)	5002(5)	-1269(2)	72(2)
C(36)	2732(3)	60,50(0)	-1814(2)	77(2)
C(37)	2322(3)	70/6/6)	-2034(3)	85(2)
C(38)	1531(3)	7040(0)	-2536(3)	94(2)
C(39)	1147(4)	7722(1)	-2844(4)	175(5)
C(40)	330(5)	/932(12)	-3240(4)	254(7)
C(41)	-25(5)	9034(13)		

 \bigcirc

Table 3. Interatomic distances [Å] and bond angles $[\circ]$ for

 $Rh(CO)C1[PPh_2OCH_2CH_2-n-C_6F_{13}]_2$

		4	
$Pb_{-}C(1)$	1.829(5)	Rh-P(1)	2.3000(13)
$Rh_P(2)$	2.3036(12)	Rh-Cl	2.3565(13)
P(1) = O(2)	1.624(3)	P(1)-C(2)	1.804(5)
P(1) - C(8)	1.821(5)	P(2)-0(3)	1.616(3)
P(2) = C(28)	1.814(4)	P(2)-C(22)	1.834(5)
F(1) - C(16)	1.305(8)	F(2)-C(16)	1.345(7)
F(3) - C(17)	1.311(8)	F(4)-C(17)	1.317(8)
F(5) = C(18)	1.329(8)	F(6)-C(18)	1.307(9)
F(7) = C(19)	1.347(9)	F(8)-C(19)	1.354(8)
F(9) = C(20)	1.335(10)	F(10)-C(20)	1.355(10)
F(11) = C(21)	1.308(9)	F(12)-C(21)	1.296(9)
F(11) = O(21) F(13) = C(21)	1.257(9)	F(14)-C(36)	1.393(7)
F(15) = O(22)	1.295(7)	F(16)-C(37)	1.365(7)
F(17) = C(37)	1.295(7)	F(18)-C(38)	1.318(8)
F(19) - C(38)	1.376(7)	F(20)-C(39)	1.354(8)
F(21) - C(39)	1.313(8)	F(22)-C(40)	1.280(12)
F(21) = O(32) F(23) = C(40)	1.390(12)	F(24)-C(41)	1.327(12)
F(25) - C(41)	1.22(2)	F(26)-C(41)	1.199(12)
P(23) = O(1) = O(1)	1.123(6)	O(2)-C(14)	1.422(6)
O(3) - C(34)	1.436(5)	C(2)-C(7)	1.377(7)
C(2) - C(3)	1.390(7)	C(3)-C(4)	1.391(8)
C(2) = C(5)	1.377(9)	C(5)-C(6)	1.362(9)
C(4) - C(7)	1.390(7)	C(8)-C(9)	1.392(6)
C(8) - C(13)	1.396(7)	C(9)-C(10)	1.388(7)
C(10) - C(11)	1.375(9)	C(11)-C(12)	1.375(8)
C(12) - C(13)	1.389(7)	C(14)-C(15)	1.509(7)
C(12) = C(16)	1.466(7)	C(16)-C(17)	1.515(8)
C(17) - C(18)	1.503(8)	C(18)-C(19)	1.518(10)
C(17) = C(10)	1.486(10)	C(20)-C(21)	1.506(12)
C(19) - C(20)	1.376(7)	C(22)-C(27)	1.383(6)
C(22) - C(23)	1,346(8)	C(24)-C(25)	1.361(9)
U(23) = U(24)	1 364(9)	C(26)-C(27)	1.388(8)
U(23) - U(20)	1 384(7)	C(28)-C(33)	1.389(6)
6(28)-6(27)			

	C(30) - C(31)	1.369(7)
C(29)-C(30)	1.375(7) $C(32)-C(33)$	1.385(7)
C(31)-C(32)	1.380(8) $C(35)-C(36)$	1.485(8)
C(34)-C(35)	1.509(6) $C(37)-C(38)$	1.502(9)
C(36)-C(37)	1.503(7) $C(39)-C(40)$	1.536(11)
C(38)-C(39)	1.492(9)	•
C(40)-C(41)	1.51(2)	
	c_{1} c_{2} c_{1} p_{1} p_{2}	88.1(2)
C(1)-Rh-P(1)	89.5(2) - C(1) - Rh - C(1)	176.8(2)
P(1)-Rh-P(2)	1/4.32(5) - C(1) - Ki - C(1)	91.90(5)
P(1)-Rh-Cl	90.79(3) P(2) P(1) C(8)	102.2(2)
O(2)-P(1)-C(2)	98.8(2) = 0(2) - F(1) - Bb	115.57(12)
C(2) - P(1) - C(8)	106.4(2) 0(2) - 1(1) - Rb	118.5(2)
C(2)-P(1)-Rh	113.0(2) - C(3) - P(2) - C(22)	100.2(2)
O(3)-P(2)-C(28)	104.5(2) $0(3) - F(2) - S(22)$	116.02(12)
C(28)-P(2)-C(22)	103.1(2) 0(3) - 1(2) - 100	113.9(2)
C(28)-P(2)-Rh	116.98(14)C(22)-F(2)-M	120.1(3)
C(14)-O(2)-P(1)	117.4(3) $C(34)-C(3)-T(2)$	119.0(5)
0(1)-C(1)-Rh	1/7.3(3) = C(7) - C(2) - P(1)	122.1(4)
C(7)-C(2)-P(1)	$\frac{118.9(4)}{(5)-6(4)-6(3)}$	120.7(6)
C(2)-C(3)-C(4)	119.7(5) = C(5) - C(6) - C(7)	120.6(6)
C(6)-C(5)-C(4)	119.4(5) - C(9) - C(8) - C(13)	119.8(4)
C(2)-C(7)-C(6)	120.5(6) - C(3) - C(8) - P(1)	117.4(3)
C(9)-C(8)-P(1)	122.6(4) $C(13) - C(10) - C(9)$	120.7(5)
C(10)-C(9)-C(8)	(11) - C(12) - C(13)	121.3(6)
C(12)-C(11)-C(10)	119.5(5) = 0(2) - C(14) - C(15)	108.5(4)
C(12)-C(13)-C(8)	$\frac{119.0(3)}{50.0(2)-0(10)-F(2)}$	101.8(6)
C(16)-C(15)-C(14)	$\frac{112.2(5)}{112.7(5)} = F(2) - C(16) - C(15)$	110.2(5)
F(1)-C(16)-C(15)	112.7(5) $F(2)-C(16)-C(17)$	106.5(5)
F(1)-C(16)-C(17)	107.8(5) $F(2) - C(17) - F(4)$	104.9(7)
C(15)-C(16)-C(17)	110.0(5) $F(4)-C(17)-C(18)$	108.2(5)
F(3)-C(17)-C(18)	109.3(0) $F(4)-C(17)-C(16)$	106.1(5)
F(3)-C(17)-C(16)	F(6) - C(18) - F(5)	106.7(7)
C(18)-C(17)-C(16)	120,0(6) $F(5)-C(18)-C(17)$	109.0(5)
F(6)-C(18)-C(17)	108.0(6) + 1(5) - C(18) - C(19)	106.7(6)
F(6)-C(18)-C(19)	116 (6) F(7) - C(19) - F(8)	104.5(7)
C(17)-C(18)-C(19)	100.0(0) $F(3) = C(19) = C(20)$	105.3(6)
F(7)-C(19)-C(20)	106.8(7) $F(8)-C(19)-C(18)$	107.6(6)
F(7)-C(19)-C(18)	112.4(6) = r(6) - G(10) = G(10)	104.2(8)
C(20)-C(19)-C(18)	$119.2(7)$ $F(9)^{-}0(20)^{-}1(10)$	

X

				107 5(7)
F(9)-C(20)-C(19)	107.5(6)	F(10) - C(20) - C(19)		107.3(7)
F(9)-C(20)-C(21)	111.0(7)	F(10)-C(20)-C(21)		108.4(7)
C(19)-C(20)-C(21)	117.4(8)	F(13)-C(21)-F(12)		111.0(9)
F(13)-C(21)-F(11)	109.2(7)	F(12)-C(21)-F(11)		104.7(/)
F(13)-C(21)-C(20)	113.7(7)	F(12)-C(21)-C(20)		108.7(7)
F(11)-C(21)-C(20)	108.4(8)	C(23)-C(22)-C(27)	•	119.6(5)
C(23)-C(22)-P(2)	119.5(4)	C(27)-C(22)-P(2)	·	120.7(4)
C(24)-C(23)-C(22)	121.1(6)	C(23)-C(24)-C(25)		119.9(7)
C(24)-C(25)-C(26)	120.5(6)	C(25)-C(26)-C(27)		120.3(6)
C(22)-C(27)-C(26)	118.5(5)	C(29)-C(28)-C(33)		118.0(4)
C(29)-C(28)-P(2)	122.5(3)	C(33)-C(28)-P(2)		119.4(4)
C(30) - C(29) - C(28)	121.5(5)	C(31)-C(30)-C(29)		119.7(5)
C(30)-C(31)-C(32)	120.5(5)	C(31)-C(32)-C(33)		119.3(5)
C(32)-C(33)-C(28)	121.0(5)	O(3)-C(34)-C(35)		109.5(4)
C(36)-C(35)-C(34)	114.9(5)	F(15)-C(36)-F(14)	с. 	105.6(6)
F(15)-C(36)-C(35)	113.1(5)	F(14)-C(36)-C(35)	. ·	109.4(4)
F(15)-C(36)-C(37)	107.7(5)	F(14)-C(36)-C(37)		103.4(5)
C(35)-C(36)-C(37)	116.7(5)	F(17)-C(37)-F(16)		100.4(5)
F(17)-C(37)-C(38)	110.0(5)	F(16)-C(37)-C(38)	•	106.1(5)
F(17)-C(37)-C(36)	109.7(5)	F(16)-C(37)-C(36)		106.3(5)
C(38)-C(37)-C(36)	122.1(6)	F(18)-C(38)-F(19)		105.6(6)
F(18)-C(38)-C(39)	110.4(6)	F(19)-C(38)-C(39)		103.6(5)
F(18)-C(38)-C(37)	109.9(5)	F(19)-C(38)-C(37)	•	104.9(5)
C(39) - C(38) - C(37)	121.1(6)	F(21)-C(39)-F(20)	н. Н	103.4(7)
F(21) - C(39) - C(38)	109.7(6)	F(20)-C(39)-C(38)	· ·	104.8(5)
F(21) - C(39) - C(40)	107.4(6)	F(20)-C(39)-C(40)	•	108.0(7)
C(38) - C(39) - C(40)	122.0(8)	F(22)-C(40)-F(23)		105.1(11)
E(22) - C(40) - C(41)	114.9(10) F(23)-C(40)-C(41)		103.8(8)
F(22) = O(40) = O(39)	109.9(7)	F(23)-C(40)-C(39)		102.3(8)
F(22) = O(40) = O(39)	118.8(10) F(26)-C(41)-F(25)		134(2)
E(26) = C(41) = E(24)	111.4(9)	F(25)-C(41)-F(24)		106.9(11)
r(20) = 0(41) = r(24)	105.7(11) F(25)-C(41)-C(40)		88.9(9)
r(20) - 0(41) - 0(40)	102 6(11)	· · ·	
F(24) - G(41) - G(40)	102.0(11	,	· ·	1

9

Table 4. Anisotropic displacement parameters $[Å^2 \times 10^3]$

for
$$Rh(CO)C1[PPh_2OCH_2CH_2-n-C_6F_{13}]_2$$
. The

anisotropic displacement factor exponent takes the form:

$$2\pi^2$$
 [(ha^{*})²U₁₁ + ... + 2hka^{*}b^{*}U₁₂]

					*** 0	
	U11	U22	U33	U23	U13	012
	49(1)	43(1)	41(1)	-3(1)	21(1)	-2(1)
Rh	40(1)	66(1)	64(1)	-11(1)	21(1)	-5(1)
CL	50(1)	49(1)	40(1)	0(1)	19(1)	1(1)
P(1)	43(1) 52(1)	39(1)	42(1)	-1(1)	21(1)	-3(1)
P(2)	52(1)	348(6)	120(2)	125(3)	57(2)	76(3)
F(1)	95(2)	70(3)	290(6)	27(4)	-63(4)	2(3)
F(2)	TTA(2)	384(8)	107(3)	80(4)	45(2)	94(4)
F(3)	98(3)	77(2)	214(5)	50(3)	-37(3)	-18(2)
F(4)	116(3)	95(3)	271(6)	86(3)	-46(4)	-29(3)
F()	10(3)	322(7)	86(2)	60(4)	38(2)	77(4)
F(6)	117(3)	223(5)	118(3)	-22(3)	27(3)	61(3)
f(/)	11/(3)	97(3)	182(4)	44(3)	23(3)	-19(2)
F(8)	90(3)	212(4)	271(5)	178(4)	-8(4)	-33(3)
F(9)	169(5)	290(8)	128(4)	1(5)	33(4)	48(5)
F(10)	115(4)	170(5)	178(5)	49(4)	-4(3)	0(4)
F(11)	112(4)	132(4)	289(7)	-57(5)	-11(5)	40(4)
F(12)	139(4)	159(4)	213(5)	56(4)	16(3)	-18(3)
F(13)	93(3)	250(5)	80(2)	16(3)	43(2)	91(3)
F(14)	130(3)	125(3)	269(5)	119(3)	38(3)	-4(2)
F(15)	70(2)	123(3)	198(4)	43(3)	-2(3)	-21(2)
F(16)	99(3)	22(5)	72(2)	39(3)	49(2)	74(3)
F(1/)	132(3)	202(4)	95(2)	21(3)	55(2)	35(3)
F(18)	99(2)	202(4)	175(4)	7(3)	19(3)	-23(2)
F(19) = (20)	172(5)	97(3)	221(6)	16(4)	14(4)	9(3)
F(20)	1/2(3)	225(5)	100(2)	72(3)	60(2)	90(3)
F(21)	100(3)	233(3)	244(5)	230(7)	118(3)	159(6)
F(22)	144(3)	202(13)	417(12)	-133(8)	81(9)	-62(7)
F(23)	2/8(9)	200(7)	203(8)	74(8)	1(5)	50(6)
F(24)	130(5)	320(3)	050(21)	-380(11)	324(13)	-38(10)
F(25)	400(12)	342(10)	221(6)	177(6)	124(5)	220(7)
F(26)	286(/)	102(2)	118(3)	-52(3)	33(2)	-20(2)
0(1)	58(2)	123(3) 57(2)	58(2)	3(2)	23(1)	4(2)
0(2)	52(2)	57(2)	40(1)	2(1)	24(1)	-2(2)
0(3)	6/(2)	44(2)	59(3)	-18(2)	23(2)	-6(3)
C(1)	55(3)	() ()	23(3) (2)	-6(2)	23(2)	-6(2)
C(2)	60(2)	50(5)	42(2)	5(3)	47(2)	0(3)
C(3)	86(3)	100(4)	64(3)	9(3)	50(3)	-26(4)
C(4)	111(4)	122(5)	64(3)	17(3)	9(3)	-36(4)
C(5)	100(4)	90(4)	40(3)	18(3)	8(3)	-3(3)
C(6)	79(4)	/5(4)	04(J) 55(3)	10(3)	20(2)	1(3)
C(7)	62(3)	77(4)	55(3)	_2(2)	18(2)	4(2)
C(8)	44(2)	50(3)	45(2)	-2(2)	35(2)	0(3)
C(9)	69(3)	71(3)	61(3)	-/(3)	22(2)	-11(3)
C(10)	71(3)	76(4)	/6(3)	-20(2)	22(3)	\- /

1 C

					_	
C(11)	83(3)	47(3)	113(4)	-18(3)	40(3)	-10(3)
C(12)	85(4)	55(3)	83(4)	9(3)	29(3)	-7(3)
C(12)	71(3)	49(3)	57(3)	-5(2)	26(2)	-4(2)
O(13)	59/3)	58(3)	83(3)	8(3)	19(3)	6(3)
G(14)	55(3)	86(4)	68(3)	17(3)	18(2)	8(3)
G(15)	55(3)	66(4)	92(4)	15(3)	22(3)	8(3)
0(10)	71(4)	90(5)	77(4)	10(3)	17(3)	5(3)
0(1/)	72(4)	79(4)	96(5)	21(4)	5(4)	3(4)
0(10)	27(4)	88(5)	104(5)	18(4)	14(4)	6(4)
0(19)	120(6)	87(5)	116(6)	19(5)	5(5)	2(5)
0(20)	73(5)	91(5)	179(8)	31(6)	-9(5)	18(4)
G(21)	(J) (J)	42(3)	59(2)	-7(2)	33(2)	-3(2)
0(22)	95(4)	65(3)	91(4)	13(3)	19(3)	-30(3)
0(23)	102(4)	68(4)	148(6)	9(4)	55(4)	-34(4)
0(24)	106(4)	79(4)	138(5)	-37(4)	58(4)	-50(4)
G(25)	100(4)	96(5)	86(4)	-22(4)	28(3)	-34(4)
G(20)	75(3)	70(3)	62(3)	-10(3)	27(3)	-20(3)
G(27)	50(2)	33(2)	51(2)	-6(2)	21(2)	-9(2)
0(20)	55(2)	63(3)	54(3)	-5(2)	24(2)	-9(3)
G(29)	53(3)	74(4)	85(3)	-12(3)	33(2)	4(3)
G(30)	55(3)	53(3)	88(4)	-10(3)	20(3)	7(2)
C(31)	77(3)	43(3)	69(3)	3(2)	18(3)	-4(3)
C(32)	71(3)	46(3)	58(3)	0(2)	27(2)	2(2)
C(3)	63(3)	46(3)	54(2)	3(2)	24(2)	-16(2)
C(34)	71(3)	58(3)	66(3)	8(2)	34(2)	-3(3)
0(35)	84(3)	67(3)	68(3)	12(3)	33(3)	-2(3)
C(30)	96(4)	72(4)	69(3)	-4(3)	39(3)	-14(3)
C(38)	89(4)	83(4)	77(4)	7(3)	25(3)	4(4)
C(30)	101(4)	98(5)	75(4)	-5(4)	25(3)	22(4)
C(40)	120(7)	244(12)	129(7)	-21(8)	16(6)	52(8)
C(40)	145(7)	506(20)	99(6)	124(9)	35(6)	174(10)
- V(41)		200(20)				

Current

Table 5. Hydrogen atom coordinates ($x = 10^4$) and isotropic

displacement parameters ($Å^2 \times 10^3$) for

			-	
	x	У	Z	U(eq)
	2502/3)	5232(5)	2270(2)	84
H(3A)	2392(3)	3948(7)	3092(2)	113
H(4A)	2/33(3)	2582(6)	3414(2)	103
H(5A)	3/31(3)	2562(6)	2903(2)	95
H(6A)	4482(3)	2401(0)	2059(2)	79
H(7A)	4260(3)	7010(5)	2519(2)	77
H(9A)	3/01(3)	/015(5)	2778(2)	92
H(10A)	4167(3)	9017(J) 102/1/5)	2101(3)	97
H(11A)	4410(3)	10241(J)	$\frac{2101(3)}{1170(3)}$	91
H(12A)	4224(3)	9450(5)		70
H(13A)	3779(3)	7442(5)	070(2)	83
H(14A)	2277(3)	6547(5)	444(2)	83
H(14B)	2218(3)	7559(5)	894(Z) 270(2)	86
H(15A)	1198(3)	5647(6)	3/0(2)	-96
H(15B)	1139(3)	6650(6)	828(2)	102
H(23A)	3402(3)	891(5)	438(3)	102
H(24A)	2513(4)	-549(6)	98(3)	120
H(25A)	1685(4)	-441(6)	-866(3)	120
H(26A)	1673(3)	1235(6)	-1460(3)	112
H(27A)	2594(3)	2697(5)	-1131(2)	83
H(29A)	4783(3)	2481(5)	-453(2)	72
H(30A)	5804(3)	1294(5)	-118(2)	83
H(31A)	6214(3)	420(5)	822(2)	82
$H(32\Delta)$	5615(3)	760(5)	1441(2)	79
H(JZA) H(33A)	4607(3)	2008(4)	1113(2)	69
u(3/A)	4412(3)	5242(4)	-479(2)	65
n(J4A) 1/2/2)	3821(3)	5626(4)	-249(2)	65
П(J4D) 11/25A)	3720(3)	6576(5)	-1186(2)	76
H(35B)	3490(3)	5252(5)	-1476(2)	76

 $Rh(CO)C1[PPh_2OCH_2CH_2-n-C_6F_{13}]_2$