Total Synthesis of (-)-Lasonolide A

Barry M. Trost ${ }^{1} \dagger$, Craig E. Stivala ${ }^{1}$, Daniel R. Fandrick ${ }^{1}$, Kami L. Hull ${ }^{1}$, Audris Huang ${ }^{1}$, Caroline Poock ${ }^{1}$, Rainer Kalkofen ${ }^{1}$
Department of Chemistry, Stanford University Stanford, CA 94305-5080 (USA)

SUPPORTING INFORMATION

Table S1. Biological Activities of the Lasonolides and Analogs $\mathbf{I C}_{50}$ or $\mathbf{G I}_{50}(\mu \mathrm{M})$

Entry	Structure	A-549	A-549	P388	PANC 1	NCI/ADR-RES	HCT-116	NCI-H460	ref
1	(-)-lasonolide A	0.0086	0.015	0.002	0.089	0.49	<0.003	<0.003	1,2,3,4
2	(+)-lasonolide A	-	6	-	-	-	3	2	3
3	lasonolide B	0.02	-	0.0004	-	-	-	-	5
4	lasonolide C	0.13	-	-	0.38	1.12	-	-	2
5	lasonolide D	4.5	-	-	4.89	>9	-	-	2
6	lasonolide E	0.31	0.007	-	0.57	>8	0.1	0.015	2,4
7	lasonolide F	>9	-	-	15.6	>9	-	-	2
8	lasonolide G	>6	-	-	>6	>6	-	-	2
9	i	-	2	-	-	-	0.04	0.02	3
10	ii	-	0.05	-	-	-	0.009	<0.003	3
11	iii	-	3.2	-	-	-	0.1	0.04	3
12	iv	-	>10	-	-	-	5	5	3
13	v	-	0.8	-	-	-	1.8	1	4
14	vi	-	0.1	-	-	-	0.045	0.065	4
15	vii	-	0.39	-	-	-	0.19	0.17	4

Table 1 summarizes known in vitro data for each analog (i-vii) as well as for lasonolides A-G. ${ }^{5}$ In an effort to understand the structure activity relationships a rough comparison between the compounds can be deduced by analyzing the activities against the human lung carcinoma A-549 cell line. Firstly, the levorotatory and natural lasonolide A were significantly more active than the unnatural dextrorotatory compound (entries 1 and 2). Amongst the natural lasonolides (A-G), lasonolide A and B possessed the greatest cytotoxicity. Interestingly, lasonolide F , containing a carboxylic acid moiety at C28 was essentially inactive (entry 7). Taken together, these results imply that subtle structural differences in this portion of the molecule have dramatic effects on both potency and selectivity. For the synthetic analogs (entries 9-15) a 7 -fold loss in potency was observed upon deleting the C10 methyl group (entry 14). Olefin geometries located at both the C17-C18 and C25-C26 positions had profound effects on activity. In each case where one of these geometries was altered (entries 9,11 , and 12) >100-fold loss of potency was observed. The geometric change at C17-C18 may indicate that a specific macrocyclic conformation may drive potency. Homologation of the C 22 chain also significantly decreased potency by 50 -fold. In this case, this decrease in potency could be the result of a change in small
molecule conformation or due to a disruption of a potential hydrogen bond critical for activity. Replacement of the C 29 ester substituent to a lipophilic $\mathrm{C}_{12} \mathrm{H}_{25}$ chain (entry 15) also reduced activity, reinforcing the aforementioned hypothesis related to this portion of the molecule. Interestingly, it appears that the stereochemistry of the C28 alcohol has little influence on the overall biological activity, as the C28 epimer was only 3 -fold less potent than lasonolide A .

Table S2. Optimization Studies on the Asymmetric Aldol Reaction

Entry $^{\mathrm{a}}$	Conditions	Conv $^{\mathrm{b}}$	$\mathbf{3 0}^{\mathrm{c}}$	ee $^{\mathrm{d}}$	$\mathbf{3 3}^{\mathrm{c}}$
1	$20 \mathrm{~h}, \mathrm{rt}$	ND	30%	ND	44%
2	$20 \mathrm{~h}, 4^{\circ} \mathrm{C}$	ND	56%	ND	27%
3	$72 \mathrm{~h},-20^{\circ} \mathrm{C}$	84%	54%	99%	$<10 \%$
4^{f}	$72 \mathrm{~h},-20^{\circ} \mathrm{C}$	$>90 \%$	$78 \%{ }^{\mathrm{e}}$	99%	ND

${ }^{\mathrm{a}}$ Reactions were conducted using 1 equiv. of 31, 3 equiv. 32, and 1.5 equiv. by mass $4 \AA$ MS, in THF (0.2 M). ${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR using internal standard. ${ }^{\text {d }}$ Determined by Chiral HPLC. ${ }^{\text {e Isolated yield. }}{ }^{\mathrm{f}}$ Work-up - direct filtration through celite. ND = not determined

Table S3. Known Pre-treatment Effects on the Diastereoselectivity of Baker's Yeast Reductions

Entry	R	Cond. $\mathrm{A}^{\text {a,d }}$	Cond. $\mathrm{B}^{\mathrm{b}, \mathrm{d}}$	Cond. $\mathrm{C}^{\mathrm{c}, \mathrm{d}}$
1	Me	13 / 87	7 / 93	$3 / 97$
2	Et	$34 / 66$	20/80	$8 / 92$
3	Pr	$26 / 74$	8/92	7 / 93
4	Allyl	$70 / 30$	$35 / 65$	$4 / 96$
5	Propargyl	$34 / 66$	14 / 86	6 / 94

[^0]Table S4. Reduction with KRED with GDH as the Cofactor
A

Entry a	Enzyme	Time	Conv $^{\mathrm{b}}$	dr $^{\mathrm{c}}$ (anti:syn)	ee (anti)	ee $(\text { syn })^{\mathrm{d}}$
1	KRH-CDX-006	3 h	$\sim 95 \%$	$4: 1$	95%	$>95 \%$
2	KRH-CDX-009	20 h	100%	$1: 2$	-	-
3	KRH-CDX-012	20 h	40%	$1: 1$	-	-
4	KRH-CDX-016	20 h	100%	$2: 1$	-	-
5	KRH-CDX-041	20 h	90%	$1: 1.5$	$>98 \%$	89%

${ }^{\mathrm{a}}$ Reactions were performed with 20 mg keto-ester, 10 mg of enzyme, 5 mg GDH in 1 mL 0.1 M triethanolamine $\mathrm{pH}=7$ aqueous buffer. ${ }^{\mathrm{b}}$ Conversion based on GC analysis of product / product + starting ketoester. ${ }^{\mathrm{C}}$ Based on GC analysis (anti : syn). ${ }^{\mathrm{d}}$ Favored enantiomer determined by conversion to known compounds (vida infra).

Table S5. Reduction with KRED with NADP as the Cofactor

		A					
Entry ${ }^{\text {a }}$	Enzyme	Buffer ${ }^{\text {b }}$	Time	Conv ${ }^{\text {c }}$	dr^{d} (anti:syn)	ee (anti) ${ }^{\text {dfe }}$	ee (syn) ${ }^{\text {e,f }}$
1	CDX-001	A	3h	100\%	1:1.5	>98\%	84\%
2	CDX-003	A	24h	$\sim 64 \%$	2:1	-	-
3	CDX-008	B	4.5h	30\%	1:1.9	-	-
4	CDX-019	A	24h	$\sim 50 \%$	$1.3: 1$	-	-
5	CDX-022	A	24h	100\%	$1.3: 1$	>98\%	89\%
6	CDX-023	A	24h	~90\%	$1.5: 1$	-	-
7	CDX-024	A	24h	100\%	$1: 4$	95\%	>95\%
8	CDX-024	B	68h	75\%	1: 4	>95\%	>95\%
9	CDX-025	A	3 h	~90\%	$1.4: 1$	80\%	>98\%
10	CDX-026	A	3h	~95\%	$1.4: 1$	91\%	>98\%
11	CDX-035	B	4.5h	37\%	1:1.8	-	-
12	CDX-038	A	24h	100\%	$1.6: 1$	-	-
13	CDX-042	B	4.5h	40\%	1:1.6	-	-
14	CDX-043	B	4.5h	37\%	1:2	-	-
15	CDX-045	A	24h	75\%	1:2.3	-	-
16	CDX-046	B	4.5h	8\%	-	-	-
17	CDX-047	B	4.5h	53\%	1:1.2	-	-
18	CDX-051	B	4.5h	9\%	-	-	-
19	CDX-059	B	4.5h	51\%	1:1.2	-	-
20	CDX-061	B	4.5h	39\%	1:2	-	-
21	CDX-064	B	5 h	62\%	1:1.2	-	-
22	CDX-068	B	5.5h	87\%	1:1.6	-	-
23	CDX-073	B	5.5h	75\%	1:1.2	-	-
24	CDX-074	B	5.5h	81\%	1:1.2	-	-
25	CDX-086	B	5.5h	39\%	1:1.4	-	-
26	CDX-088	B	6 h	79\%	1:1.1	-	-
27	CDX-090	B	6 h	56\%	1:2.2	-	-
28	CDX-094	B	6 h	55\%	1:1.8	-	-
29	CDX-096	B	6 h	19\%	-	-	-
30	CDX-097	B	6 h	71\%	1:1.2	-	-

${ }^{\text {a }}$ Reactions were performed with 20 mg keto-ester, 5 mg of enzyme, 1 mg NADP in 0.5 mL IPA and 0.5 mL 0.1 M buffer at ambient temperature. ${ }^{\mathrm{b}} \mathbf{A}$: TEA $=$ triethanolamine; B: Phosphate $(\mathrm{pH}=4.5)$. ${ }^{\mathrm{c}}$ Conversion based on GC analysis of product / product + starting ketoester. ${ }^{\mathrm{d}}$ Based on GC analysis (anti : syn). ${ }^{\mathrm{e}}$ Enantiomeric excess determined by Chiral cyclodex GC analysis. ${ }^{\mathrm{f}}$ Favored enantiomer determined by conversion to known compounds (vida infra).

Table S6. Optimization Studies on the Hiyama Coupling

Entry ${ }^{\text {a }}$	Conditions	72 : 73	Yield
1	$\begin{gathered} \mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(2 \mathrm{~mol} \%), \\ \mathrm{TBAF}(4.2 \text { equiv. }) \mathrm{THF}, 19 \mathrm{~h} \end{gathered}$	1:1	$75 \%{ }^{\text {b }}$
2	$\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}$ ($4 \mathrm{~mol} \%$), TBAF (6.3 equiv.) THF, 3 d	1:1	$44 \%{ }^{\text {b }}$
3	$\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(10 \mathrm{~mol} \%)$, TBAF (6.2 equiv.) THF, 18h	1:0	78\%
$4^{\text {c }}$	$\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(10 \mathrm{~mol} \%)$, TBAF (6.3 equiv.) THF, 22h	1:0	85\%

${ }^{\mathrm{a}}$ All reactions were run using 8.0 equiv. allyl acetate, in THF $(0.1 \mathrm{M})$ at $\mathrm{rt} .{ }^{\mathrm{b}}$ Isolated as a mixture of $\mathbf{7 2}$ and $\mathbf{7 3}$. ${ }^{\mathrm{c}}$ New bottle of TBAF solution.

Table S7. Optimization Studies on the Intermolecular Ru-Catalyzed Alkene-Alkyne Coupling

Entry $^{\mathrm{a}}$	$\mathbf{2 8}$ (equiv.)	$\mathbf{1 1}$ (equiv.)	$\mathrm{Ru}(\mathrm{mol} \%)$	$\mathrm{Temp}\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Conc. (M)	Conv. $^{\mathrm{b}}$	Yield $^{\mathrm{c}}$	$\mathbf{8 0 a : 8 0 b ^ { \mathrm { b } }}$
1	3	1	20	rt	1	0.06	50	$\mathrm{~N} / \mathrm{A}$	$2: 1$
2	3	1	20	$\mathrm{rt} / 50$	$0.5 / 0.5$	0.04	53	$\mathrm{~N} / \mathrm{A}$	$2: 1$
3	3	1	20	$\mathrm{rt} / 50$	$0.25 / 0.75$	0.02	70	$\mathrm{~N} / \mathrm{A}$	$2: 1$
4	3	1	20	$\mathrm{rt} / 50$	$0.25 / 0.75$	0.04	68	$\mathrm{~N} / \mathrm{A}$	$2: 1$
5	3	1	20	$\mathrm{rt} / 50$	$0.25 / 0.75$	0.12	35	31	$2: 1$
6	3	1	60	$\mathrm{rt} / 50$	$0.25 / 0.75$	0.6	15	10	$2: 1$
7	1	4.0	20	50	1	0.05	100	52	$2: 1$
8	1	3.0	10	50	2.5	0.094	100	66	$2: 1$

${ }^{a}$ All reactions were run under an atmosphere of nitrogen or argon using dry and degassed solvents. ${ }^{\text {b }}$ Determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{\mathrm{c}}$ Isolated yield of the combined linear and branched isomers.

Table S7. Biological Testing of (-)-Lasonolide A and Analogs $\mathrm{IC}_{50}(\mathbf{n M})$

Cell Line	$(-)$-lasonolide A	$\mathbf{1 0 6}$	$\mathbf{1 0 4}$	$\mathbf{1 0 5}$	Paclitaxel
A2058	16.6	>1000	>1000	>1000	2.6
Adr-Res	414.1	>1000	>1000	>1000	>100
BXPC3	148.1	>1000	>1000	>1000	10.6
DU145	29.2	>1000	>1000	>1000	6.0
HCT116	9.8	>1000	12.0	10.0	0.14
H460	20.7	>1000	>1000	>1000	6.3
MCF7	47.4	>1000	>1000	>1000	30.0
SK-BR-3	40.2	>1000	>1000	>1000	6.6
KPL-4	39.4	343.9	>1000	>1000	5.9

EXPERIMENTAL PROCEDURES

General methods. All reactions were carried out under an argon (for Pd-catalyzed reactions) or nitrogen atmosphere. All reagents were obtained commercially unless otherwise noted. Reactions were performed using glassware that was flame-dried under vacuum (~ 1 Torr). Air- and moisture-sensitive liquids and solutions were transferred via syringe or stainless steel cannula. Organic solutions were concentrated under reduced pressure (~ 15 Torr) by rotary evaporation. Solvents were purified by passage under 12 psi N_{2} through activated alumina columns. Flash chromatography was performed with $0.040-0.063 \mu \mathrm{~m}$ Silica Gel. Compounds purified by chromatography were typically applied to the adsorbent bed using the indicated solvent conditions with a minimum amount of added dichloromethane as needed for solubility. Thin layer chromatography was performed on Whatman Partisil K6F Silica Gel $60 \AA$ plates $(250 \mu \mathrm{~m})$. Visualization of the developed chromatogram was accomplished by fluorescence quenching or by staining with p-anisaldehyde, ninhydrin, or aqueous potassium permanganate. Nuclear magnetic resonance (NMR) spectra were acquired on either a Varian Mercury - 400 operating at 400 and 100 MHz , Varian Inova - 500 operating at 500 and 125 MHz , or Inova - 600 operating at 600 and 150 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively, and are referenced internally according to residual solvent signals. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity (s , singlet; d, doublet; t , triplet; q, quartet; m, multiplet), coupling constant (Hz), and integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). Infrared spectra were recorded on a Perkin Elmer Paragon 500 FT-IR spectrometer as thin films using NaCl or KBr salt plates and are reported in frequency of absorption. High performance liquid chromatography (HPLC) was performed on an Agilent Technologies 1200 series using Chiralcel columns. Optical rotations were measured on a Jasco DIP-1000 digital polarimeter using 5 cm glass cells with a Na 589 nm filter. High-resolution mass spectra were obtained from the Vincent Coates Foundation Mass Spectrometry Laboratory at Stanford University.

Ester 39. Triethylphosphonoacetate $(3.36 \mathrm{~mL}, 16.95 \mathrm{mmol})$ was added carefully to a suspension of sodium hydride (washed with hexanes, $0.610 \mathrm{~g}, 15.26 \mathrm{mmol}$) in THF $(30 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred for 5 min and then was warmed to rt and stirred for an additional 30 min (reaction should be clear). Lactol 38 (0.465 $\mathrm{g}, 1.69 \mathrm{mmol}$) in THF (12 mL total with rinses) was added and the reaction was then heated at $55^{\circ} \mathrm{C}$ for 15 h . The reaction was cooled to rt and diluted with water and ethyl acetate. The aqueous layer was extracted with ethyl acetate ($4 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, $10 \% \rightarrow 25 \%$ ethyl acetate hexanes) to give the desired product $(0.533 \mathrm{~g}, 1.55 \mathrm{mmol}, 92 \%$ yield $)$. $[\alpha]_{D}^{23}-30\left(c 0.61, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{dd}, \mathrm{J}=8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.65$ $(\mathrm{dt}, \mathrm{J}=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=14.4,1 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 2 \mathrm{H})$, $2.42(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=14.4,12.0,2.8 \mathrm{~Hz}), 1.96(\mathrm{dt}, \mathrm{J}=14.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 171.16,137.90,129.19,128.37,126.23,102.05$, $82.60,78.98,73.08,73.01,72.87,63.46,60.65,35.14,34.49,34.30,14.39,14.17$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 2921$,

2855, 1732, 1463, 1392, 1366, 1343, 1308, 1287, 1264, 1224, 1187, 1145, 1101, 1074, 1028. HRMS: (EI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{+}: 343.1543$, found: 343.1545 .

Triol 93a. Diisobutylaluminum hydride (1.2 M in toluene, $1.45 \mathrm{~mL}, 1.74 \mathrm{mmol}$) was added drop-wise to a solution of the ester $39(0.150 \mathrm{~g}, 0.436 \mathrm{mmol})$ in dichloromethane $(8.7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction was warmed from $-78{ }^{\circ} \mathrm{C}$ to rt over 1 h . Then a saturated aqueous solution of Rochelle's salts was added carefully and reaction was allowed to stir vigorously for 1 h . The reaction was diluted with water and dichloromethane. The aqueous layer was extracted dichloromethane ($4 \times 40 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate, concentrated, and the residue was submitted to the next reaction without further purification

Lithium tetrafluoroborate ($62 \mathrm{mg}, 0.662 \mathrm{mmol}$) was added to a solution of the crude residue in acetonitrile (1.3 $\mathrm{mL})$ and water $(70 \mu \mathrm{~L})$. The reaction was heated at $90^{\circ} \mathrm{C}$ for 2 h . The reaction was cooled to rt and a saturated aqueous solution of sodium bicarbonate was added. The aqueous layer was extracted with dichloromethane (5 x 20 mL). The combined organic layers were dried with sodium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, $50 \% \rightarrow 80 \% \rightarrow 100 \%$ ethyl acetate - hexanes) to give the desired product ($49 \mathrm{mg}, 0.229 \mathrm{mmol}, 52 \%$ yield). $[\alpha]_{D}^{24}-73.8\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): $4.69(\mathrm{bs}, 1 \mathrm{H}), 4.62(\mathrm{ddd}, \mathrm{J}=12.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, \mathrm{J}=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{bs}, 1 \mathrm{H}), 3.84-$ $3.76(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H})$, $1.78-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 83.1,74.6,73.1$, 73.1, 69.6, 62.9, 60.2, 39.7, 36.8, 31.3, 15.1. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3251,2919,2892,2846,1411,1371,1317$, 1024. HRMS: (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 237.1097$, found: 237.1102 .

Lactone 28. Lithium tetrafluoroborate ($0.610 \mathrm{~g}, 6.50 \mathrm{mmol}$) was added to a solution of ester $39(0.160 \mathrm{~g}, 0.465$ $\mathrm{mmol})$ in acetonitrile $(4.65 \mathrm{~mL})$ and water $(0.23 \mathrm{~mL})$. The reaction was heated at $90^{\circ} \mathrm{C}$ for 3 h . The reaction was cooled to rt and a saturated aqueous solution of sodium bicarbonate was added. The aqueous layer was extracted with dichloromethane (5 x 40 mL). The combined organic layers were dried with sodium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, $20 \% \rightarrow 50 \% \rightarrow 80 \% \rightarrow$ 100% ethyl acetate - hexanes) to give the desired product ($93 \mathrm{mg}, 0.446 \mathrm{mmol}, 96 \%$ yield). $[\alpha]_{D}^{27}-78$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 4.66(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{dd}, 1 \mathrm{H}, J=11.2,0.8 \mathrm{~Hz}), 4.18(\mathrm{dd}, 1 \mathrm{H}, J=$ $11.6,6.8 \mathrm{~Hz}), 3.97(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}), 3.87(\mathrm{t}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}), 2.93(\mathrm{ddd}, 1 \mathrm{H}, J=18.0,6.8,0.8 \mathrm{~Hz}), 2.55(\mathrm{dd}$, $1 \mathrm{H}, J=18.4,11.6 \mathrm{~Hz}), 2.53(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 2.28(\mathrm{ddd}, 1 \mathrm{H}, J=14.8,12.4,2.4 \mathrm{~Hz}), 1.82(\mathrm{ddd}, 1 \mathrm{H}, J=14.8$, $3.2,3.2 \mathrm{~Hz}), 1.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 169.4,81.8,73.7,73.1,69.3,68.6,62.6,36.5$, 36.3, 33.6, 13.8. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3418,3294,2919,1715,1380,1338,1247,1090,1060,999$. HRMS: (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 233.0790, found: 233.0787.

Ester 45. The cross coupling procedure developed by Fu et al. ${ }^{6}$ Tridecyne ($5.0 \mathrm{~g}, 6.4 \mathrm{~mL}, 28 \mathrm{mmol}$) and ethyl diazoacetate ($3.2 \mathrm{~g}, 2.9 \mathrm{~mL}, 28 \mathrm{mmol}$) were simultaneously added to a solution of copper iodide ($0.270 \mathrm{~g}, 1.4$ mmol) in anhydrous acetonitrile (40 mL). The resulting gently bubbling mixture was stirred at rt for 22 h . GC analysis shows approximately 60% conversion, which does not improve with time. The reaction was concentrated, and the residue was purified by flash column chromatography (silica, $1 \rightarrow 2.5 \%$ ether in petroleum ether) to provide the desired product (53%) as a $\sim 97.5: 2.5$ ratio of alkyne to allene as determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 4.19(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{tt}, \mathrm{J}=$ $6.9,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{ddd}, \mathrm{J}=15,6.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 20 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 168.99,83.61,71.36,61.37,31.88,29.60,29.50,29.32,29.13,28.83,28.66,26.07$, $22.65,18.74,14.09$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 2926,2855,1747,1466,1405,1368,1330,1302,1260,1178,1032$, 722. HRMS: (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2} 266.2246$ found 266.2247.

Phosphine Catalyst Optimization for the Isomerization of $\boldsymbol{\beta}$-Ynoates to Dienoates

aReactions conducted in benzene (0.2 M) at $60^{\circ} \mathrm{C}$ for 2 days. ${ }^{\text {b }}$ Equivalent to alkyne. ${ }^{\text {C }}$ Conversion determined by GC relative product to staring alkyne. ${ }^{\mathrm{d}}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR of pured dienoate.

			20% PCy $_{3}$ conditions (see table)			
Entry ${ }^{\text {a }}$	Solvent	$E t_{3} N^{\text {b }}$	$\mathrm{AcOH}^{\text {b }}$	Temperature	Time ${ }^{\text {c }}$	Yield ${ }^{\text {d }}$
1	benzene	1 equiv.	20\%	$80^{\circ} \mathrm{C}$	24 h	97\% (88\%) ${ }^{\text {e }}$
2	benzene	40\%	20\%	$80^{\circ} \mathrm{C}$	24 h .	83\%
3	MeCN	40\%	20\%	$80^{\circ} \mathrm{C}$	0.5 h	64\%
4	MeCN	1equiv	20\%	$80^{\circ} \mathrm{C}$	2.5 h	70\%

${ }^{\text {a }}$ Reaction conducted in the indicated solvent (0.2M). ${ }^{\text {b }}$ Equivalent to alkyne. ${ }^{\mathrm{c}}$ Time required for complete consumption of starting alkyne. ${ }^{d}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR of pure dienoate. ${ }^{\mathrm{e}}$ Isolated yield.

Dienoate 46. Tricyclohexylphosphine ($22 \mathrm{mg}, 76 \mu \mathrm{~mol}$) was added to a solution of ester $\mathbf{4 5}(100 \mathrm{mg}, 0.38$ mmol), acetic acid ($4.6 \mu \mathrm{~L}, 76 \mu \mathrm{~mol}$) and triethylamine ($50 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) in anhydrous benzene (2 mL). The reaction was stirred at $80^{\circ} \mathrm{C}$ under nitrogen for 1 d . The reaction was cooled to rt , concentrated and the residue was purified by flash column chromatography (silica, 5% ether in petroleum ether) to provide desired product ($88 \mathrm{mg}, 88 \%$) \%) with NMR Spectra corresponding to literature. ${ }^{7}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.26$ (dd, J = 15.6, 8.0 Hz, 1H), 6.19-6.09 (m, 2H), $5.78(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{q}, \mathrm{J}=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.43-1.26(\mathrm{~m}, 19 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 167.31,145.10$, $144.78,128.28,119.09,60.13,32.98,31.88$, 29.57, 29.54, 29.41, 29.30, 29.15, 28.69, 22.66, 14.29, 14.09. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 2925,2855,1716,1644,1618,1466,1368,1303,1258,1191,1138,1038,1000$. HRMS: (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{2} 266.2246$ found 266.2237 .

Baker's Yeast Reduction of $\boldsymbol{\beta}$-Ketoester

Ester S1. Methylvinyl ketone ($47 \mu \mathrm{~L}$) was added to a suspension of Baker's yeast (11.8 g) in water (125 mL), and the suspension was stirred at $37^{\circ} \mathrm{C}$ for 30 min at which point dextrose $(0.500 \mathrm{~g})$ was added to the reaction. After another 10 min of stirring, keto-ester $41(0.500 \mathrm{~g}, 2.9 \mathrm{mmol})$ was added to the yeast mixture. The gently bubbling mixture was stirred at $37^{\circ} \mathrm{C}$ for 2 d and dextrose $(0.500 \mathrm{~g})$ was added approximately every 12 h . The mixture was diluted with diethyl ether (100 mL) and water (500 mL). The mixture was sonicated for $1-2 \mathrm{~h}$ until the layers separated. The layers were separated, and the aqueous portion was extracted with diethyl ether (3 x 100 mL). The combined organic layers were dried with magnesium sulfate, passed through a plug of silica (eluting with diethyl ether 200 mL), and concentrated to provide the crude β - hydroxyl-ester ($\sim 0.400 \mathrm{~g}$), which was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR analysis shows $10: 1$ diastereoselectivity. Chiral cyclodex GC $\left(105^{\circ} \mathrm{C}\right.$ to $90^{\circ} \mathrm{C}$ by $\left.1^{\circ} \mathrm{C} / \mathrm{min}\right)$ shows $\sim 30 \%$ ee in favor of 17.40 over 17.90 min . ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.95-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{qd}, \mathrm{J}=7.1,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.76$ (ddd, J = 7.5, $6.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(q u i n t e t, \mathrm{~J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$,
tert-Butyldimethylsilyl triflate $(0.680 \mathrm{~mL}, 2.9 \mathrm{mmol})$ was added to a solution of the crude residue and 2,6lutidine $(0.380 \mathrm{~mL}, 3.2 \mathrm{mmol})$ in dichloromethane $(5 \mathrm{~mL})$ under nitrogen at $-78^{\circ} \mathrm{C}$. The reaction was stirred for 30 min allowing the reaction to warm to $-20^{\circ} \mathrm{C}$ at which point all of the starting alcohol was consumed. The reaction was diluted with diethyl ether $(100 \mathrm{~mL})$. The organic layer was washed with phosphate buffer (0.5 M , $\mathrm{pH}=5,3 \times 50 \mathrm{~mL}$), brine ($1 \times 50 \mathrm{~mL}$), dried with magnesium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, 3\% diethyl ether in petroleum ether) to provide the desired product ($0.380 \mathrm{~g}, 45 \%$ over 2 steps $) .[\alpha]_{D}^{25}-19\left(c 0.72, \mathrm{CHCl}_{3,} \sim 30 \%\right.$ ee $) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.89-$ $5.79(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.03(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{dt}, \mathrm{J}=7.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60$ (quintet, $\mathrm{J}=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 174.89,134.15,117.31,73.19,60.14,45.20,38.09,25.71,17.96$, $14.15,12.37,-4.36,-5.03$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): ~ 2956,2936,2858,1738,1475,1464,1376,1257,1179$, 1127, 1084, 1055, 1001, 913, 838, 812. HRMS: (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si} 286.1964$ found $\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$calcd 271.1729 found 271.1731 , $\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}\right]^{+}$calcd 245.1573 found 245.1567 , $\left[\mathrm{M}-\mathrm{OC}_{2} \mathrm{H}_{5}\right]^{+}$calcd 241.1624 found 241.1622, $\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}$calcd 229.1260 found 229.1260 .

Ynone S2. The procedure of Luke et. al. was utilized for the synthesis of Weinreb amide. Trimethylaluminum (2.0 M in heptane, $1.2 \mathrm{~mL}, 2.4 \mathrm{mmol}$) was slowly added to a solution of N, O-Dimethylhydroxylamine hydrochloride $(0.240 \mathrm{~g}, 2.5 \mathrm{mmol})$ in anhydrous benzene $(5 \mathrm{~mL})$ under nitrogen at $0^{\circ} \mathrm{C}$. The gently bubbling solution was allowed to warm to ambient temperature and stirred for 1 h . This solution was cannulated into an anhydrous solution of ester $\mathbf{S} 1(0.175 \mathrm{~g}, 0.61 \mathrm{mmol})$ in benzene $(1 \mathrm{~mL})$ at ambient temperature. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 4 h at which point all of the starting material was consumed by TLC. The reaction was cooled to rt and slowly poured into a stirring mixture of diethyl ether (50 mL) and phosphate buffer (0.5 M , pH $=6,50 \mathrm{~mL}$). After stirring the mixture for 30 min , the layers were separated. The organic layer was washed with 50% brine ($1 \times 15 \mathrm{~mL}$ brine +15 mL water). The combined aqueous layers were back extracted with diethyl ether ($1 \times 50 \mathrm{~mL}$). The combined organic portions were dried with magnesium sulfate, concentrated, and the residue purified by flash column chromatography (silica, 20% diethyl ether in petroleum ether) to provide the desired product $(0.142 \mathrm{~g}, 77 \%)$. $[\alpha]_{D}^{23}-32\left(c 0.69, \mathrm{CHCl}_{3}, \sim 30 \%\right.$ ee). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $5.96-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{dt}, \mathrm{J}=8.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.09(\mathrm{bs}, 1 \mathrm{H})$, $2.37-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 176.02,133.87,117.22,72.93,61.30,39.93,37.89,31.80,25.75,17.99$, 13.14, - 4.74, -4.95. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 2930,2857,1664,1466,1414,1388,1256,1070,1001,912,838$, 777.

Tetra-n-butylammonium fluoride (1 M in THF, $0.67 \mathrm{~mL}, 0.67 \mathrm{mmol}$) was added to a solution of the substrate $(0.100 \mathrm{~g}, 0.33 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$. The reaction was stirred at ambient temperature for 2 h . The reaction was
diluted with ethyl acetate (30 mL). The organic layer was washed with phosphate buffer $(0.5 \mathrm{M}, \mathrm{pH}=5,2 \times 10$ mL), brine ($1 \times 10 \mathrm{~mL}$), dried with magnesium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, 55% ethyl acetate in petroleum ether) to provided the desired product (53 mg , 86%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.88(\mathrm{ddt}, \mathrm{J}=17,10,7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.09(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.70(\mathrm{~m}$, $4 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.0-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Propynylmagnesium bromide (0.5 M in THF, $1.7 \mathrm{~mL}, 0.85 \mathrm{mmol}$) was added to a solution of the substrate (53 mg , $0.28 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under nitrogen. The reaction was allowed to warm to ambient temperature and stirred for 18 h . The reaction was slowly poured into a stirring mixture of diethyl ether (30 mL) and phosphate buffer ($0.5 \mathrm{M}, \mathrm{pH}=7,15 \mathrm{~mL}$). After stirring the mixture for 30 min , the layers were separated. The aqueous layer was extracted with diethyl ether $(2 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine ($1 \times 10 \mathrm{~mL}$), dried with magnesium sulfate, concentrated and the residue was purified by flash column chromatography (silica, 40% ether in petroleum ether) to provide the desired product ($39 \mathrm{mg}, 84 \%$). $[\alpha]_{D}^{24}+0.9$ (c $0.6, \mathrm{CHCl}_{3}, \sim 30 \%$ ee). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.90-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.14(\mathrm{~m}, 2 \mathrm{H}), 3.93-$ $3.88(\mathrm{~m}, 1 \mathrm{H}), 2.71$ (quintet, $\mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{dtt}, \mathrm{J}=14.2,8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s}$, $3 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 191.34,134.01,118.45,91.73,79.63$, $71.84,53.29,38.55,13.19,4.20$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3455,3077,2978,2918,2849,2218,1668,1540$,

Benzylidene Acetal 49. A precooled $-78^{\circ} \mathrm{C}$ solution of diisobutylaluminum hydride (1 M in hexanes, 0.15 mL , $0.15 \mathrm{mmol})$ in THF (2 mL) was added to solution of ynone $\mathbf{S} \mathbf{2}(10 \mathrm{mg}, 61 \mu \mathrm{~mol})$ in anhydrous THF (2 mL) at $78^{\circ} \mathrm{C}$ under nitrogen. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 3 h at which point the reaction was cannulated into a stirring mixture of ethyl acetate (10 mL), saturated Rochelle's salt (2 mL), and phosphate buffer $(0.5 \mathrm{M}, \mathrm{pH}=5$, 2 mL). The mixture was allowed to stir for 18 h at which point the layers were separated. The aqueous layer was extracted with ethyl acetate ($2 \times 3 \mathrm{~mL}$). The combined organic layers were dried with magnesium sulfate, and concentrated. (${ }^{1} \mathrm{H}$ NMR analysis of the crude residue shows a $2.4: 1$ diastereoselectivity favoring the syndiol.) The crude residue was purified by flash column chromatography (silica, 50% diethyl ether in petroleum ether) to provide the desired product. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.92-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, \mathrm{~J}=10$ $\mathrm{Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, \mathrm{~J}=17 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{td}, \mathrm{J}=8.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{bs}, 1 \mathrm{H}), 2.58(\mathrm{bs}, 1 \mathrm{H})$, $2.51-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{dt}, \mathrm{J}=14.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.5$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 134.21,118.87,82.22,78.71,73.95,66.63,44.26,39.54,12.44$, 3.61.
p-Toluenesulfonic acid monohydrate (1 mg) was added to a solution of substrate ($12 \mathrm{mg}, 71 \mu \mathrm{~mol}$) and benzaldehyde dimethylacetal ($16 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$) in chloroform $(0.3 \mathrm{~mL})$. The reaction was stirred at ambient temperature for 6 h , at which point it was diluted with ethyl acetate (5 mL). The organic layer washed with saturated aqueous sodium bicarbonate ($2 \times 2 \mathrm{~mL}$), dried with magnesium sulfate, concentrated and the residue
was purified by flash column chromatography (silica, 5% diethyl ether in petroleum ether) followed by concentration under high vacuum (<1 torr, 18 h) to provide the desired product $(7.7 \mathrm{mg}, 42 \%)$. $[\alpha]_{D}^{24}+6(c 0.3$, $\mathrm{CHCl}_{3}, \sim 30 \%$ ee). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.51(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.98$ (ddt, $\mathrm{J}=17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.14-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{dd}, \mathrm{J}=10.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{ddd}, \mathrm{J}=10.0$, $7.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{dt}, \mathrm{J}=14.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.80(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 138.08,134.21,128.75,128.11,126.32,117.02,100.78,82.36,81.65$, $76.57,73.61,39.11,37.10,12.53,3.73$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 2921,2850,2243,1458,1402,1336,1309$, $1215,1173,1139,1112,1070,1029,1005,917,757,699$. HRMS: (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{2},[\mathrm{M}-\mathrm{H}]^{+} 255.1379$ found 255.1386.

Esters S3-syn and S3-anti. Lithium hydroxide (1 M in water, $1.3 \mathrm{~mL}, 1.3 \mathrm{mmol}$) was added to a solution of esters 48-syn and $\mathbf{4 8}$-anti ($0.222 \mathrm{~g}, 1.30 \mathrm{mmol}, 4: 1$ mixture of syn:anti) in methanol (0.5 mL), and the solution was stirred at rt for 3 h . The reaction was acidified using HCl (1 M in water, $1.4 \mathrm{~mL}, 1.4 \mathrm{mmol}$) and saturated with solid sodium chloride. The aqueous layer was extracted with dichloromethane ($6 \times 3 \mathrm{~mL}$). The combined organic layers were dried with magnesium sulfate, concentrated and the crude residue was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $5.90-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.21-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.02$ (ddd, J = 6.3, 6.3, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78-3.74 (m, 1H), 2.67-2.59 (m, 1H), 2.31-2.26 (m, 2H), 1.26 (minor, d, J=7.2 $\mathrm{Hz}, 0.6 \mathrm{H}$), 1.25 (major, d, J = $7.2 \mathrm{~Hz}, 2.4 \mathrm{H}$).

Trimethylsilyl diazomethane (2.0 M in hexanes, $3 \mathrm{~mL}, 6 \mathrm{mmol}$) was added drop-wise to a solution of the crude residue (from above) in methanol (3 mL) at $0^{\circ} \mathrm{C}$ until a yellow color persisted in the reaction. The reaction was quenched by the addition of acetic acid (2 drops) and concentrated. The crude residue was submitted to the next reaction without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.88-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.11(\mathrm{~m}$, 2 H), 3.97 (major, ddd, J = 6.9, 5.7, 3.9 Hz, 0.8H), 3.81-3.73 (minor, 0.2H), 3.72 (s, 3H), 2.58 (dddd, J = 6.9, 6.9, $6.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-3.19(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

A suspension of the crude residue (from above), $10 \% \mathrm{Pd} / \mathrm{C}(60 \mathrm{mg})$ in methanol (3 mL) was stirred under an atmosphere of hydrogen for 12 h . The reaction was filtered through a pad of celite using diethyl ether, concentrated, and the residue was purified by flash column chromatography (silica, 40% diethyl ether in petroleum ether) to provide the desired anti and syn esters ($1: 4$ ratio by GC). The diastereomers were not separable and spectra analysis was conducted on the mixture. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.91-3.86$ (major, m, 0.8H), 3.70 (s, 3H), 3.7-3.63 (minor, m, 0.2H), 2.54-2.50 (m, 2H), 1.52-1.28 (m, 4H), 1.20-1.16 (m, 3 H), 0.94-0.90 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 176.60,73.05$ (minor), 71.42 (major), 51.77 (major), 51.69 (minor), 45.17 (minor), 44.16 (major), 36.84 (minor), 35.89 (major), 19.15 (major), 18.68 (minor), 14.30 (minor), 13.96 (major), 10.59. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right)$: 3466, 2958, 2875, 1736, 1460, 1436, 1353, 1257, 1200, 1172, 1119, 1055, 1026, 986, 966, 892, 852. $[\alpha]_{D}^{24}-8.1\left(c\right.$ 1.2, $\left.\mathrm{CHCl}_{3}\right), 4$ syn : 1 anti). ${ }^{1} \mathrm{H}$ NMR of the minor anti diastereomer corresponds to literature. ${ }^{8}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of the major syn diastereomer
corresponds to literature. ${ }^{9}$

Ester 50. tert-Butyldimethylsilyl trifluoromethanesulfonate ($3.69 \mathrm{~g}, 14.0 \mathrm{mmol}$) was added to a solution of the β-hydroxy ester $48(1.72 \mathrm{~g}, 10.0 \mathrm{mmol})$ and 2,6 -lutidine $(1.71 \mathrm{~g}, 16.0 \mathrm{mmol})$ in dichloromethane $(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction was allowed to warm to rt over 18 h . Then, phosphate buffer ($\mathrm{pH}=4.5,0.5 \mathrm{M}, 50 \mathrm{~mL}$) was added. The aqueous layer was extracted with dichloromethane ($3 \times 150 \mathrm{~mL}$). The combined organic layers were dried with magnesium sulfate, concentrated and the residue was purified by flash column chromatography (silica, 10% diethyl ether - petroleum ether) to give the desired product ($2.79 \mathrm{~g}, 9.7 \mathrm{mmol}, 97 \%$ yield) as an inseparable mixture of diastereomers. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.81-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.01$ $(\mathrm{m}, 2 \mathrm{H}), 4.15-4.03(\mathrm{~m}, 3 \mathrm{H}), 2.53-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{dd}, \mathrm{J}=7.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 175.2,134.4$, $117.6,72.6,60.4,44.3,40.1,25.9,18.1,14.3,11.1,-4.1,-4.8$.

Ynone 52. Isopropylmagnesium chloride (2 M in THF, $15 \mathrm{~mL}, 30 \mathrm{mmol}$) was added to a solution of the ester $\mathbf{5 0}$ $(2.86 \mathrm{~g}, 10.0 \mathrm{mmol})$ and N, O-Dimethylhydroxylamine hydrochloride $(1.46 \mathrm{~g}, 15.0 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at -30 ${ }^{\circ} \mathrm{C}$. The reaction is allowed to warm to $-20^{\circ} \mathrm{C}$ over 1 h , and then was monitored by TLC until completion. Once complete, saturated aqueous ammonium chloride was added. The aqueous layer was extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with magnesium sulfate, concentrated, and the residue was submitted to the next reaction without further purification.

1-Propynylmagnesium bromide (0.5 M in THF, $26 \mathrm{~mL}, 13.0 \mathrm{mmol}$) was added to a solution of the crude substrate in THF $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 8 h the reaction is warmed to rt and stirred for an additional 1 h . Then 50 mL of phosphate buffer $(\mathrm{pH}=4.5,0.5 \mathrm{M})$ was added. The aqueous layer was extracted with diethyl ether (3 x 25 mL). The combined organic layers were dried with magnesium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, 10% diethyl ether - petroleum ether) to give the desired product ($2.28 \mathrm{~g}, 8.10 \mathrm{mmol}, 82 \%$ yield) as an inseparable $3.4: 1$ mixture of diastereomers. $[\alpha]_{D}^{20} 13$ (c 1.21, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 5.90-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{q}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.79-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} 75 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 190.8,134.2,117.9,90.7,80.2,72.0,52.5,40.3,25.8,18.1,9.2$, 4.2, -4.1, -4.7. IR ($\mathrm{NaCl}-\mathrm{film}$), $v\left(\mathrm{~cm}^{-1}\right): 3078,2930,2887,2857,2218,1677,1641,1472,1463,1382,1361$, 1317, 1255, 1187, 1120, 1088, 1005, 914, 837, 811, 776, 734, 667. HRMS: (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+}$ 239.1476 found 239.1469 .

Propargyl Alcohol 54. (S)-(-)-2-Methyl-CBS-oxazaborolidine (1 M in toluene, $2.80 \mathrm{~mL}, 2.80 \mathrm{mmol}$) was added to a solution of ynone $\mathbf{5 2}(2.24 \mathrm{~g}, 8.0 \mathrm{mmol})$ in nitroethane (freshly distilled from calcium hydride, 40 mL) at rt . After 5 min the reaction was cooled to $-78^{\circ} \mathrm{C}$, and catecholborane (freshly distilled, $4.76 \mathrm{~g}, 40.0$ mmol) was added drop-wise to the reaction over 10 min . After addition, the reaction is allowed to stir at $-78^{\circ} \mathrm{C}$ for 4 h before being quenched carefully with phosphate buffer $(\mathrm{pH}=4.5,0.5 \mathrm{M})$ at the same temperature. After warming to rt , the aqueous layer was extracted with diethyl ether ($3 \times 200 \mathrm{~mL}$). The combined organic layers were dried with magnesium sulfate, concentrated, and the residue was purified by flash column chromatography. At this stage the syn and anti diastereomers become separable. After 2 columns $1.27 \mathrm{~g}(4.5$ $\mathrm{mmol}, 56 \%$ yield) of the desired product was isolated. $[\alpha]_{D}^{20} 17\left(c 0.71, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right)$ $\delta(\mathrm{ppm}): 5.74-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{dd}, \mathrm{J}=6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{ddd}, \mathrm{J}=7.86 .3,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.38(\mathrm{bs}, 1 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.76-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 75 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 134.7,117.3,81.7,74.4,66.4,43.0$, 39.9, 25.9, 18.1, 8.1, 3.7, -3.8, -4.7. IR ($\mathrm{NaCl}-\mathrm{film}$), $v\left(\mathrm{~cm}^{-1}\right): 3374,3077,2956,2929,2857,2361,1641,1472$, $1420,1360,1255,1085,1085,1004,912,861,809,774,670$. HRMS: (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{5}\right]^{+}$ 241.1624 found 241.1625 .

Vinyl Silane 56. $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(66 \mathrm{mg}, 0.13 \mathrm{mmol})$ was added to a solution of propargyl alcohol 54 $(1.23 \mathrm{~g}, 4.37 \mathrm{mmol})$ and benzyldimethylsilane $(0.851 \mathrm{~g}, 5.67 \mathrm{mmol})$ in acetone $(9 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 10 min , the reaction was placed in a $0{ }^{\circ} \mathrm{C}$ ice bath and then was warmed from $0^{\circ} \mathrm{C}$ to rt over 4.5 h . The reaction solution was directly subjected to flash column chromatography (silica, 5% diethyl ether - petroleum ether) to give the desired product ($1.38 \mathrm{~g}, 3.20 \mathrm{mmol}, 73 \%$ yield). $[\alpha]_{D}^{20}-2\left(c 1.01, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 300 \mathrm{MHz}\right) \delta(\mathrm{ppm})$: $7.22-6.94(\mathrm{~m}, 5 \mathrm{H}), 6.14(\mathrm{dd}, \mathrm{J}=9.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.64-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.07-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{dd}, \mathrm{J}=$ $9.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 1 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}$, $3 \mathrm{H}, 1.55-1.52(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 75 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 144.4,140.1,136.5,134.3,128.5,128.4,124.4,117.8,77.7,74.5$, $41.0,39.9,26.4,261,25.3,18.2,5.5,-1.4,-1.7,-3.3,-4.3$. IR ($\mathrm{NaCl}-\mathrm{film}$), $v\left(\mathrm{~cm}^{-1}\right): 3520,3080,3024,2955$, 2858, 1640, 1600, 1493, 1471, 1462, 1388, 1361, 1253, 1206, 1154, 1091, 1002, 938, 912, 835, 776, 698. HRMS: (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{Si}_{2}\left[\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+} 341.2332$ found 341.2332 .

Ester 58. Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst ($48 \mathrm{mg}, 80 \mu \mathrm{~mol}$) was added to a degassed solution of vinyl silane $56(1.33 \mathrm{~g}, 3.10 \mathrm{mmol})$ and ethyl acrylate $(2.45 \mathrm{~g}, 24.5 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{~mL})$ at rt . Additional Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst ($30 \mathrm{mg}, 50 \mu \mathrm{~mol}$) was added at 4.5 h . After an additional 12 h the reaction was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica, $5 \% \rightarrow 10 \%$ diethyl ether - petroleum ether) to give the desired product ($1.09 \mathrm{~g}, 2.22$ mmol, 72%). $[\alpha]_{D}^{20}-26\left(c 0.72, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.05$ $(\mathrm{m}, 1 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.13(\mathrm{dd}, \mathrm{J}=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddd}, \mathrm{J}=15.6,1.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, \mathrm{J}=9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.86(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.23$ (bs, 1H), 2.2- $2.15(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 166.2, 144.5, 143.8, 139.9, 137.0, 128.3, 128.2, 124.3, 123.8, 76.0, 73.2, 60.4, 41.9, 38.0, 26.2, 25.9, $25.1,18.0,14.3,6.4,-1.5,-1.9,-3.7,-4.4$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3517,3060,2955,2858,1723,1657,1600$, 1548, 1493, 1463, 1452, 1390, 1368, 1318, 1256, 1207, 1173, 1092, 836, 775, 699. HRMS: (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{O}_{4} \mathrm{Si}_{2}\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{Ph}\right]^{+} 413.2544$ found 413.2551 .

Alkene 60. Tetra-n-butylammonium fluoride (1 M in THF, $5.25 \mathrm{~mL}, 5.25 \mathrm{mmol}$) was added to a solution of the ester $58(1.05 \mathrm{~g}, 2.10 \mathrm{mmol})$, copper iodide $(0.79 \mathrm{~g}, 4.2 \mathrm{mmol})$ and allyl bromide ($1.01 \mathrm{~g}, 8.40 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$. The reaction was heated at $40^{\circ} \mathrm{C}$ for 12 h . Additional tetra-n-butylammonium fluoride (1 M in THF, $2.10 \mathrm{~mL}, 2.10 \mathrm{mmol}$) was added and the reaction was allowed to stir for an additional 1 h . Then 3.5% ammonium hydroxide solution (25 mL) was added and the reaction was diluted with diethyl ether. The aqueous layer was extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried with magnesium sulfate, concentrated, and the residue was purified by flash column chromatography to give the desired product ($0.51 \mathrm{~g}, 1.8 \mathrm{mmol}, 86 \%$ yield) $.[\alpha]_{D}^{20}-12\left(c 0.71, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 6.91 (ddd, J = 15.6, 7.6, 7.6 Hz, 1H), 5.88 (ddd, J = 15.6, 1.6, 1.6 Hz, 1H), $5.80-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.36(\mathrm{~d}, \mathrm{~J}$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.98(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{dd}, \mathrm{J}=8.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.02-3.97(\mathrm{~m}, 1 \mathrm{H})$, $2.89-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H})$, $1.26(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 166.4,145.4,137.4$, $135.9,127.3,123.7,115.8,64.3,73.0,60.4,42.1,38.0,36.9,23.8,14.3,5.5$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3419,3078$, 2977, 1715, 1652, 1445, 1369, 1268, 1211, 1168, 1044, 977, 913, 861. HRMS: (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{4}$ [M$\left.\mathrm{C}_{2} \mathrm{H}_{5}\right]^{+} 241.1440$ found 241.1459.

Tetrahydropyrans 61 a and $\mathbf{6 1 b}$. Sodium hydride (60% in oil, $1.8 \mathrm{mg}, 45 \mu \mathrm{~mol}$) was added to a solution of the alkene $\mathbf{6 0}(10.5 \mathrm{mg}, 37.2 \mu \mathrm{~mol})$ in THF $(3.0 \mathrm{~mL})$ at rt . After 30 min , phosphate buffer ($\mathrm{pH} 7.0,1.0 \mathrm{M}$) was added and the reaction was further diluted diethyl ether. The aqueous layer was extracted with diethyl ether (3 x 25 mL). The combined organic layers were dried with magnesium sulfate, concentrated, and the residue was purified by flash column chromatography to give the desired product ($9.3 \mathrm{mg}, 33.1 \mu \mathrm{~mol}, 89 \%$) as $1: 1$ mixture of diastereomers.

61a
$[\alpha]_{D}^{20} 32\left(c 1.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.72-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{dd}, \mathrm{J}=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{bs}, 1 \mathrm{H}), 2.83$ (dd, J = 14.5, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=14.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, \mathrm{J}=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, \mathrm{J}=15.5$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.15(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 171.3,136.9,135.9,124.9,115.7,71.3,70.4,68.9,60.5,41.4,39.3,37.1$, 33.3, 23.5, 14.2, 11.3. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3459,3078,2973,2919,2730,1731,1715,1694,1686,1636$, 1463, 1445, 1372, 1296, 1296, 1162, 1055, 1029, 984, 911, 857, 761. HRMS: (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4} 282.1831$ found 282.1817 .

61b
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.70-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.68$ $(\mathrm{dd}, \mathrm{J}=7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dq}, \mathrm{J}=6.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dq}, \mathrm{J}=7.2,2.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 1 \mathrm{H})$, 2.86 (dd, J = 13.6, 4.0 Hz, 1H), 2.74 (dd, J = 15.2, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56 (dd, J = 15.2, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (dd, J = $15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.16(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 171.2,141.8,135.7,120.6,115.8,73.5,69.5,66.4,60.5,41.4,40.8,36.7$, 30.3, 23.8, 14.2, 12.8.

Ester 59. Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst ($62.6 \mathrm{mg}, 0.10 \mathrm{mmol}$) was added to a degassed solution of the
vinyl silane $57(0.950 \mathrm{~g}, 2.0 \mathrm{mmol})$ and ethyl acrylate $(2.13 \mathrm{~mL}, 20.0 \mathrm{mmol})$ in dichloromethane $(29 \mathrm{~mL})$ at rt . After 19 h the reaction was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica, $5 \% \rightarrow 7 \%$ ethyl acetate-hexanes) to give the desired product ($0.933 \mathrm{~g}, 1.71 \mathrm{mmol}, 85 \%$) in greater than 10:1 E:Z selectivity. $[\alpha]_{D}^{20}-21\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.19-7.16$ (m, 2H), 7.06-7.02 (m, 1H), 6.97-6.95 (m, 2H), 6.77-6.71 (m, 1H), 6.12 (dd, J = 8.9, 1.6 Hz, 1H), $5.84(\mathrm{dt}, \mathrm{J}$ $=15.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.12(\mathrm{~m}, 3 \mathrm{H}), 2.69(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.44(\mathrm{~m}, 2 \mathrm{H})$, $2.16(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{dd}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-1.02(\mathrm{~m}$, $21 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): \delta 166.0,143.8$, 143.7, 139.8, 137.0, 128.2, 128.1, 124.1, 123.8, 76.9, 73.9, 60.3, 51.8, 41.4, 37.8, 26.0, 25.0, 18.2, 18.1, 14.2, 13.2, 5.4, -1.7, -2.2. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3079,2927,2856,1715,1644,1618,1463,1367,1301,1257,1191$, 1170, 1137, 1059, 1001, 957, 939, 911, 835, 774, 723, 667.

Allylic Alcohol 69. Diisobutylaluminum hydride (1.0 M in Toluene, $0.80 \mathrm{~mL}, 0.80 \mathrm{mmol}$) was added to a solution of ester $59(105 \mathrm{mg}, 0.192 \mathrm{mmol})$ in dichloromethane $(1.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 2 h , a saturated aqueous solution of sodium/potassium tartrate (5 mL) was added. The resulting solution was stirred for 30 min , and then diluted with ethyl acetate (5 mL). The aqueous layer extracted with ethyl acetate $(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried with sodium sulfate, concentrated and the residue was purified by flash column chromatography (silica, $10 \rightarrow 25 \%$ ethyl acetate - petroleum ether) to give the desired product ($83 \mathrm{mg}, 85 \%$).
$[\alpha]_{D}^{27} 7.0\left(c 0.48, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.20(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.07(\mathrm{t}, 1 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.18(\mathrm{dd}, 1 \mathrm{H}, J=9.2,1.6 \mathrm{~Hz}), 5.70(\mathrm{ddd}, 1 \mathrm{H}, J=15.2,5.6,5.6 \mathrm{~Hz}), 5.51(\mathrm{~m}, 1 \mathrm{H})$, 4.44 (dd, $1 \mathrm{H}, J=8.8,2.0 \mathrm{~Hz}$), 4.11 (ddd, $1 \mathrm{H}, J=8.4,6.4,2.0 \mathrm{~Hz}$), 4.03 (d, $2 \mathrm{H}, J=4.8 \mathrm{~Hz}$), 3.07 (br s, 1H), 2.36 $(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 2.21(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 2.17(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}), 1.74(\mathrm{~d}, 3 \mathrm{H}, J=1.6 \mathrm{~Hz}), 1.63(\mathrm{~m}, 1 \mathrm{H})$, $1.07(\mathrm{~m}, 21 \mathrm{H}), 0.99(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 144.1$, $139.8,136.5,132.2,128.2,127.4,124.2,78.4,74.8,63.4,40.6,37.8,26.2,25.0,18.2,18.1,13.3,4.9,-1.8,-2.1$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3407,2944,2867,1600,1463,1250,1093,1012,829,682$. HRMS: (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 527.3353$, found: 527.3339.

Aldehyde 70. Manganese dioxide ($25.0 \mathrm{mg}, 0.287 \mathrm{mmol}$) was added to a solution of allylic alcohol 69 (14.5 mg , $28.7 \mu \mathrm{~mol})$ in dichloromethane (0.25 mL) at rt . After 1 h , additional manganese dioxide ($12.5 \mathrm{mg}, 0.144 \mathrm{mmol}$) was added. The reaction was stirred for 26 h and then filtered through a pad of Celite using dichloromethane $(25 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography (silica, $5 \% \rightarrow 10 \%$ ethyl acetate - hexanes) to give the desired product ($14 \mathrm{mg}, 27.6 \mu \mathrm{~mol}$, $96 \%)$.

Dienoate S4. Lithium hydroxide ($0.184 \mathrm{~g}, 4.38 \mathrm{mmol}$) was added to a suspension of aldehyde $70(0.760 \mathrm{~g}, 1.51$ mmol) trimethyl 4-phosphonocrotonate ($0.912 \mathrm{~g}, 4.38 \mathrm{mmol}$) and $4 \AA$ molecular sieves (flame dried, 8.4 g) in THF (84 mL). The reaction was heated at $70{ }^{\circ} \mathrm{C}$ for 18 h . After cooling to rt , the reaction was filtered through a plug of celite using ethyl acetate, concentrated, and the residue was purified by flash column chromatography (silica, $5 \% \rightarrow 10 \%$ ethyl acetate - hexanes) to give the desired product ($0.734 \mathrm{~g}, 1.25 \mathrm{mmol}, 83 \%$ yield). $[\alpha]_{D}^{23} 39.8\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: $7.26-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.03$ $-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.26-6.10(\mathrm{~m}, 3 \mathrm{H}), 5.77(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, \mathrm{J}=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.88(\mathrm{~m}$, $2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.73(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.10-1.02(\mathrm{~m}$, $21 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 167.7,145.1$, $141.0,140.4,139.9,138.8,130.4,128.3,128.2,124.1,119.3,73.3,71.5,71.2,51.5,39.9,39.7,34.0,26.2,25.5$, 18.3, 18.2, 12.4, 11.6, -1.8, -2.1. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 2982,2904,2826,1698,1623,1239,1123,1070,1041$, 985, 870, 818. HRMS: (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 607.3609$, found: 607.3604.

Alkene 72. Tetra-n-butylammonium fluoride (1 M in THF (new bottle), $4.04 \mathrm{~mL}, 4.04 \mathrm{mmol}$) was added to a solution of dienoate $71(0.390 \mathrm{~g}, 0.651 \mathrm{mmol})$ in THF $(6.9 \mathrm{~mL})$ followed by the addition of allyl acetate (0.560 $\mathrm{mL}, 5.21 \mathrm{mmol}$) and finally $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(67.4 \mathrm{mg}, 65.1 \mu \mathrm{~mol})$ at rt . After 22 h saturated aqueous ammonium chloride was added and the reaction was diluted with ethyl acetate. The aqueous layer was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, $15 \% \rightarrow 25 \%$ ethyl acetate - hexanes) to give the desired product ($0.185 \mathrm{~g}, 0.553 \mathrm{mmol}, 85 \%$ yield).

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.24(\mathrm{dd}, 1 \mathrm{H}, J=15.6,10.8 \mathrm{~Hz}), 6.23(\mathrm{dd}, 1 \mathrm{H}, J=15.2,11.2 \mathrm{~Hz}), 6.11$ (m, 1H), 5.97 (dd, 1H, $J=6.4,1.6 \mathrm{~Hz}), 5.79(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 4.74(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.2$ Hz), $3.96(\mathrm{~m}, 2 \mathrm{H}), 3.11(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.46(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{t}, 3 \mathrm{H}, J=1.2 \mathrm{~Hz}), 1.65(\mathrm{ddd}, 2 \mathrm{H}, J=14.4$, $12.0,2.8 \mathrm{~Hz}), 1.49(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.95(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 167.2,144.4,140.6,139.0,138.2,130.9,120.1,73.9,71.9,70.3,60.2,39.6$, 39.3, 33.0, 24.3, 14.3, 11.1, 0.5, 0.4. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3385,2919,1713,1643,1446,1370,1304,1255$, 1139, 1048, 1002, 874, 830, 776. HRMS: (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 391.1917$, found: 391.1906.

Abstract

Alkene 11. Tetra-n-butylammonium fluoride (1 M in THF (new bottle), $3.90 \mathrm{~mL}, 3.89 \mathrm{mmol}$) was added to a solution of dienoate $\mathbf{S 4}(0.367 \mathrm{~g}, 0.627 \mathrm{mmol})$ in THF $(6.6 \mathrm{~mL})$ followed by the addition of allyl acetate (0.540 $\mathrm{mL}, 5.02 \mathrm{mmol}$) and finally $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(65 \mathrm{mg}, 62.7 \mu \mathrm{~mol})$ at rt . After 14 h , saturated aqueous ammonium chloride was added and the reaction was diluted with ethyl acetate. The aqueous layer was extracted with ethyl acetate ($4 \times 50 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, $30 \% \rightarrow 50 \%$ ethyl acetate hexanes) to give the desired product $\left(0.165 \mathrm{~g}, 0.515 \mathrm{mmol}, 82 \%\right.$ yield). $[\alpha]_{D}^{24} 59.1\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.25(\mathrm{dd}, \mathrm{J}=15.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25-6.12(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-$ $5.68(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{dd}, \mathrm{J}=8.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 2 \mathrm{H})$, 3.73 (s, 3H), 2.87 (dd, J = 14.8, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.76(\mathrm{dd}, \mathrm{J}=14.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.26$ $(\mathrm{m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.71-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.47(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 167.8,145.1,140.4,136.8,136.0,130.4,125.1,119.3,115.8,71.5,71.3$, $70.6,51.6,39.8,39.7,37.2,33.2,23.6,11.4$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3393,2876,1696,1620,1416,1251,1125$, 1039, 988. HRMS: (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 343.1880$, found: 343.1867 .

TBS Ether 94. tert-Butyldimethylsilyl trifluoromethanesulfonate ($0.140 \mathrm{~mL}, 0.772 \mathrm{mmol}$) was added to a solution of alkene $11(0.165 \mathrm{~g}, 0.515 \mathrm{mmol})$ and 2,6-lutidine ($0.240 \mathrm{~mL}, 2.06 \mathrm{mmol}$) in dichloromethane (5.2 mL) at $0^{\circ} \mathrm{C}$. After 20 min , the reaction was warmed to rt and stirred for an additional 5 min . Saturated aqueous sodium bicarbonate was added and the reaction was diluted with dichloromethane. The aqueous layer was extracted with dichloromethane ($4 \times 40 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, $5 \% \rightarrow 10 \%$ ethyl acetate hexanes) to give the desired product $(0.201 \mathrm{~g}, 0.464 \mathrm{mmol}, 90 \%$ yield $) .[\alpha]_{D}^{23} 55.8\left(c 1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.26(\mathrm{dd}, \mathrm{J}=15.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.10(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.77-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.84(\mathrm{~m}, 1 \mathrm{H})$, 3.81 (bs, 1H), 3.73 (s, 3H), 2.86 (dd, J = 14.5, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, \mathrm{J}=14.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 1 \mathrm{H})$, $2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.58-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ $(\mathrm{s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 167.8,145.2,140.7,136.0,135.8$, $130.2,125.6,119.2,115.6,71.5,71.4,70.9,51.5,40.2,39.7,37.1,33.9,25.8,23.5,18.1,11.3,-4.8,-4.9$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 2910,2889,2817,1698,1622,1415,1240,1123,1044,988,824,764$. HRMS: (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 457.2745$, found: 457.2735.

Ester 76. To a solution of acid $75(6.5 \mathrm{mg}, 15.7 \mu \mathrm{~mol})$ in THF $(0.15 \mathrm{~mL})$ were added triethylamine ($2.6 \mu \mathrm{~L}$, $18.8 \mu \mathrm{~mol})$ and 2,4,6-trichlorobenzoyl chloride ($2.6 \mu \mathrm{~L}, 16.5 \mu \mathrm{~mol}$). The reaction was stirred at rt for 24 h , then filtered through a 2 mL M fritted Büchner funnel covered with a septum and a line of nitrogen flowing through. The filter cake was washed with dry benzene (2 mL), and the solvent was evaporated. The resultant colorless residue (newly formed crude anhydride) was dried under high vacuum for 40 min . In a separate vial containing lactone $28(3.3 \mathrm{mg}, 15.7 \mu \mathrm{~mol})$ was added 4 -dimethylaminopyridine ($5.8 \mathrm{mg}, 47.1 \mu \mathrm{~mol}$) and benzene (0.20 $\mu \mathrm{L})$. This solution was heated to reflux, and a solution of crude anhydride in benzene (0.20 mL) and added to this refluxing solution. The syringe was rinsed with benzene $(2 \times 0.20 \mathrm{~mL})$ into the reaction mixture. After refluxing the solution for 4 h , the reaction was allowed to cool to rt . The reaction was quenched with water (2 $\mathrm{mL})$ and diluted with ethyl acetate $(2 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with ethyl acetate $(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried with sodium sulfate, concentrated and the residue was purified by flash column chromatography (silica, $15 \% \rightarrow 25 \%$ ethyl acetate - petroleum ether) to give the desired product ($5.8 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.29(\mathrm{dd}, 1 \mathrm{H}, J=15.6,12.5 \mathrm{~Hz})$, $6.30-6.20(\mathrm{~m}, 2 \mathrm{H}), 5.78(\mathrm{~d}, 1 \mathrm{H}, J=15.2 \mathrm{~Hz}), 5.73(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.05-4.97(\mathrm{~m}, 3 \mathrm{H}), 4.69$ (dd, 1H, $J=8.0,2.4 \mathrm{~Hz}$), $4.55(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{dd}, 1 \mathrm{H}, J=11.6,6.8 \mathrm{~Hz}), 4.06(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 3.98(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.2 \mathrm{~Hz}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, 1 \mathrm{H}, J=18.4,6.8 \mathrm{~Hz}), 2.87(\mathrm{dd}, 1 \mathrm{H}, J=14.8,6.4 \mathrm{~Hz}), 2.72$ (dd, 1H, $J=14.0,6.4 \mathrm{~Hz}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}), 2.35(\mathrm{~m}, 2 \mathrm{H}), 2.28$ (ddd, 1H, $J=15.2,12.0$, $2.8 \mathrm{~Hz}), 1.99$ (ddd, $1 \mathrm{H}, J=15.2,2.8,2.8 \mathrm{~Hz}), 1.71(\mathrm{~d}, 3 \mathrm{H}, J=0.8 \mathrm{~Hz}), 1.61-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}, 1 \mathrm{H}, J=14.0$ $\mathrm{Hz}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.031(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($105 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: $168.6,165.7,146.8,142.7,136.0,135.8,129.7,125.5,117.8,115.5,81.1,74.2,72.1,71.4,70.8,70.4,69.8$, $63.5,40.1,39.7,37.0,35.9,33.9,33.7,33.0,25.8,23.4,18.0,13.7,11.2,-4.9$ (2). HRMS: (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{7} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 635.3353$, found: 635.3361 .

Alkene 20. Tetra-n-butylammonium fluoride (1 M in THF, $1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added to a solution of the tetrahydropyran $\mathbf{S 5}(512 \mathrm{mg}, 1.5 \mathrm{mmol})$ in THF $(3.7 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After 15 min the reaction was warmed to rt and stirred for an additional 1 h . The reaction was diluted with diethyl ether (50 mL) and water. The organic layer was washed water (2x), brine, dried with magnesium sulfate, concentrated, and the crude residue was purified by column chromatography ($90: 1$ - petroleum ether - diethyl ether). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.12 (dt, $J=11.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.43(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.35(\mathrm{~m}$, 4 H), 2.00 (ddt, $J=13.7,11.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.09(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.13$, $150.69,130.18,129.32,125.08,113.70,82.42,77.57,73.19,73.04,72.55,68.56,55.24,45.62,36.28,0.18$.

Dienes 22 and 23. Alkyne $20^{10}(34 \mathrm{mg}, 0.10 \mathrm{mmol})$, alkene $21(83 \mathrm{mg}, 0.50 \mathrm{mmol})$, and $\left[\mathrm{CpRu}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}$ $(4.3 \mathrm{mg}, 10 \mu \mathrm{~mol})$ were combined in a flame dried microwave vial under argon and dissolved in freshly distilled acetone $(0.83 \mathrm{~mL})$. The reaction is allowed to stir at rt for 4 h then $4^{\circ} \mathrm{C}$ for 12 h . The reaction was concentrated under reduced pressure. The crude residue was purified by flash column chromatography (silica, $5 \rightarrow 20 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum) to provide the desired products ($28 \mathrm{mg}, 56 \%$ yield) as a $4: 1$ mixture of linear and branched regioisomers as determined by ${ }^{1} \mathrm{H}$ NMR.

A small amount of the mixture of isomers was separated by preparative thin layer chromatography.

22
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.27(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.42(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.72(\mathrm{dt}, \mathrm{J}=15.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dd}, \mathrm{J}=15.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{bs}, 2 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.20$ $(\mathrm{t}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.44(\mathrm{~m}, 4 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.44(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.34(\mathrm{~m}, 5 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 173.5,159.1,152.9,134.2,131.4,130.36,130.1,130.0,129.6,129.4,129.3,128.1$, $123.5,113.7,79.3,29.6,77.2,73.7,73.0,72.8,68.2,55.3,45.6,36.6,35.8,32.3,30.3,25.7,23.4,20.5,0.3$.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.27(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.75(\mathrm{dt}, \mathrm{J}=15.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}$, 3 H), 4.21 (ddd, J = 9.0, 8.0, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.98(\mathrm{dq}, \mathrm{J}=9.0,8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.45(\mathrm{~m}, 6 \mathrm{H})$, $3.02-2.85(\mathrm{~m}, 3 \mathrm{H}), 2.47(1 \mathrm{~h}, \mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}), 2.28-2.17(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.35(\mathrm{~m}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 9 \mathrm{H})$.

Vinyl Silane S7. $\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{MeCN})_{3} \mathrm{PF}_{6}\right](12.7 \mathrm{mg}, 30 \mu \mathrm{~mol})$ was added to a solution of alkyne $\mathbf{S 6}(0.40 \mathrm{~mL}, 3.0$ mmol) and benzyldimethylsilane ($0.575 \mathrm{~mL}, 3.6 \mathrm{mmol}$) in degassed acetone (6.0 mL) under an atmosphere of argon in a flame dried microwave vial at $0^{\circ} \mathrm{C}$. After 15 min , the reaction was warmed to rt and allowed to stir for 30 min . The reaction was concentrated under reduced pressure and the crude residue was purified by flash column chromatography (silica, 10% diethyl ether - petroleum ether) to provide the desired product (0.737 g , 90%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.21(\mathrm{t}, \mathrm{J}=7.6,2 \mathrm{H}), 7.08(\mathrm{t}, \mathrm{J}=7.4,1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=8.2,2 \mathrm{H}), 5.99$ $(\mathrm{dd}, \mathrm{J}=8.7,1.6,1 \mathrm{H}), 3.97(\mathrm{ddd}, \mathrm{J}=11.4,4.4,1.8,1 \mathrm{H}), 3.80-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{td}, \mathrm{J}=11.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$
$(\mathrm{d}, \mathrm{J}=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.75(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.63-1.32(\mathrm{~m}, 6 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H})$.

Alkene 21. Tetra-n-butylammonium fluoride (1 M in THF, $15.8 \mathrm{~mL}, 15.8 \mathrm{mmol}$) was added to a solution of vinyl silane $\mathbf{S} 7(0.700 \mathrm{~g}, 2.55 \mathrm{mmol})$ in THF $(25.5 \mathrm{~mL})$ followed by the addition of allyl acetate $(1.11 \mathrm{~mL}, 10.2$ $\mathrm{mmol})$ and finally $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(0.132 \mathrm{~g}, 0.128 \mathrm{mmol})$ at rt . After 18 h , the reaction was filtered through silica gel with ethyl acetate, pentane and diethyl ether. The filtrate was concentrated and the crude residue was purified by flash column chromatography (silica, $0 \% \rightarrow 20 \%$ diethyl ether - petroleum ether) to provide the desired product $(0.280 \mathrm{~g}, 66 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.76-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{dd}, \mathrm{J}=8.2,0.7$, $1 \mathrm{H}), 5.07-4.99(\mathrm{~m}, 2 \mathrm{H}), 4.03-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{td}, \mathrm{J}=11.4,2.3,1 \mathrm{H}), 2.92-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=14.6$, $6.6,1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.35(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 136.5$, 135.9, 127.7, 115.6, 74.5, 68.2, 37.0, 32.4, 25.8, 23.4, 23.3. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 2935,2849,1637,1439$, 1086, 1034.

Vinyl Iodide S8. The iododesilylation procedure was developed by Zakarian et al. ${ }^{11} \mathrm{~N}$-iodosuccinimide (1.23 g , 5.5 mmol) was added to a solution of vinyl silane $\mathbf{S} 7(1.0 \mathrm{~g}, 3.6 \mathrm{mmol})$ in hexafluoroisopropanol $(12 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. After 4 min , the reaction was diluted with dichloromethane $(50 \mathrm{~mL})$ and water. The aqueous layer was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with saturated sodium thiosulfate ($2 \times 10 \mathrm{~mL}$), brine, dried with magnesium sulfate, concentrated, and the crude residue was purified by flash column chromatography (silica, 10% diethyl ether - petroleum ether) to give the desired product (0.731 $\mathrm{g}, 81 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.52(\mathrm{dq}, \mathrm{J}=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{ddd}, \mathrm{J}=10.4$, $7.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{td}, \mathrm{J}=11.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.47$ (m, 3H), 1.41-1.30(m, 1H).

Alkyne 25. Triethylsilylacetylene ($0.55 \mathrm{~mL}, 3.04 \mathrm{mmol}$) was added to a solution of vinyl iodide $\mathbf{S 8}(0.700 \mathrm{~g}$, $2.76 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(19.4 \mathrm{mg}, 28 \mu \mathrm{~mol})$, and copper iodide ($7.9 \mathrm{mg}, 41 \mu \mathrm{~mol}$) in triethylamine (9.2 mL) under an atmosphere of nitrogen at $50^{\circ} \mathrm{C}$. After 1 h , the reaction was concentrated under reduced pressure and the crude residue was purified by flash column chromatography (silica, 10% diethyl ether - petroleum ether) to give the desired product $(0.651 \mathrm{~g}, 89 \%)$. The product was submitted immediately to the next reaction.

Tetra-n-butylammonium fluoride (1 M in THF, $2.5 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added drop-wise to a solution of the substrate $(0.651 \mathrm{~g}, 2.5 \mathrm{mmol})$ in THF $(6.2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 15 min , the reaction was warmed to rt and stirred
for an additional 1 h . The reaction was diluted with diethyl ether and water. The aqueous layer was extracted with diethyl ether ($2 \times 50 \mathrm{~mL}$). The combined organic layer were washed with brine, dried with magnesium sulfate, concentrated, and the crude residue was purified by flash column chromatography (silica, 5% diethyl ether - petroleum ether) to give the desired product ($0.257 \mathrm{~g}, 70 \%$ yield) as a $10: 1$ mixture of olefin isomers, favoring the Z-olefin, as confirmed by nOe analysis. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 5.78(\mathrm{dq}, \mathrm{J}=8.0,0.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.25(\mathrm{ddd}, \mathrm{J}=10.8,8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, \mathrm{J}=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{td}, \mathrm{J}=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.12(\mathrm{~s}, 1 \mathrm{H}), 1.85(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.31(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): 139.8, 118.4, 82.1, 81.7, 76.7, 68.2, 31.2, 25.7, 23.2, 23.0. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3293,2937,2849$, 1204, 1086, 1035, 899.

Diene 27. Alkene 24 ($15.1 \mathrm{mg}, 0.12 \mathrm{mmol}$), alkyne $25(15.0 \mathrm{mg}, 0.10 \mathrm{mmol})$, and $\left[\mathrm{CpRu}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(4.3 \mathrm{mg}$, $10 \mu \mathrm{~mol}$) were combined in a flame dried microwave vial under an atmosphere of argon and dissolved in freshly distilled acetone $(0.2 \mathrm{~mL})$ at rt . After 2 h , the reaction was concentrated under reduced pressure and the crude residue was purified by flash column chromatography (silica, 10% diethyl ether - petroleum ether) to give the branched product ($8.9 \mathrm{mg}, 33 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 5.63(\mathrm{dd}, J=15.5,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.52 (dd, $J=15.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=8.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.04-3.86$ $(\mathrm{m}, 3 \mathrm{H}), 3.82-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.78(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.33$ (m, 12H).

Dienes 95a and 95b. $\left[\mathrm{RuCp}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(4.3 \mathrm{mg}, 9.8 \mu \mathrm{~mol})$ was added to a flame-dried vial and purged with argon. The vial was placed in a $55^{\circ} \mathrm{C}$ bath and immediately a solution of alkene $94(85 \mathrm{mg}, 0.196 \mathrm{mmol})$ and alkyne 93a ($14 \mathrm{mg}, 65 \mu \mathrm{~mol}$) in acetone (degassed, 1.4 mL , total with rinses) was added drop-wise. After 2 h 10 min the reaction was allowed to cool to rt and then filtered through a short plug of silica (ethyl acetate, 25 mL). The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography (silica, $10 \% \rightarrow 30 \% \rightarrow 40 \% \rightarrow 50 \% \rightarrow 80 \%$ ethyl acetate - hexane) to give the desired product (14.5 mg , $21 \mu \mathrm{~mol}, 32 \%$) as a $3.2: 1$ mixture of the linear to branched isomer. Alkene $\mathbf{9 3 c}(1.6 \mathrm{mg}, 5.7 \mu \mathrm{~mol})$ and alkene $94(26.6 \mathrm{mg}, 61.2 \mu \mathrm{~mol})$ were recovered. The mixture of isomers was separated by preparative thin layer chromatography (50% ethyl acetate - hexane) to obtain the linear ($11.0 \mathrm{mg}, 16 \mu \mathrm{~mol}, 25 \%$) and the branched ($1.8 \mathrm{mg}, 2.6 \mu \mathrm{~mol}, 4 \%$) isomer.

$[\alpha]_{D}^{23}+23.0\left(c 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.36(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.23-6.15(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.62(\mathrm{~m}, 2 \mathrm{H}) 5.45(\mathrm{dd}, \mathrm{J}=15.5,6 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}$, $\mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, \mathrm{J}=9.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, \mathrm{J}=10.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-$ $3.86(\mathrm{~m}, 3 \mathrm{H}), 3.83-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.78$ $(\mathrm{m}, 2 \mathrm{H}), 2.41-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.44$ $(\mathrm{s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 168.1,145.5,140.9,132.9,131.4,130.5,129.3,128.64,128.57,119.5,98.9,73.2$, $72.1,71.8,71.3,71.1,66.5,63.2,51.8,40.7,39.9,36.5,34.7,34.1,33.9,30.8,29.8,26.2,20.8,19.1,18.4,15.2$, 11.5, 6.9, 6.1, -4.5, -4.6. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3358,2913,1698,1623,1417,1359,1240,1180,1126,1044$, 825, 764. HRMS: (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{64} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 711.4263$, found: 711.4272.

$[\alpha]_{D}^{23}+32.8\left(c 0.19, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.24-6.15(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.68(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H})$, $4.92(\mathrm{dd}, \mathrm{J}=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{dd}, \mathrm{J}=9.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.78$ (m, 5H), $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.38(\mathrm{~m}$, $1 \mathrm{H}), 2.33-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.45(\mathrm{~m}, 11 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.80(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 167.8,148.5,145.2,140.6$, $132.8,130.3,129.1,128.9,128.3,119.3,110.9,98.7,75.0,72.0,71.6,71.1,71.0,66.2,62.8,51.5,40.5,39.7$, $36.2,34.6,33.9,32.6,30.7,29.8,29.6,25.9,20.6,18.8,18.1,15.0,11.2,-4.7,-4.9$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right)$: 3367, 2911, 2887, 2817, 1697, 1622, 1441, 1415, 1359, 12389, 1179, 1145, 1125, 1044, 990, 958, 824, 764.

$[\alpha]_{D}^{23}-57.2\left(c 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 4.59(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, \mathrm{J}=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}$, $\mathrm{J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 99.0,83.0,76.6,73.2,71.5,66.3,63.3,62.3,34.6,34.4,31.2,29.7,18.9,15.0$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3578,2894,2839,1440,1362,1236,1213,1181,1144,1079,1044$. HRMS: (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 277.1410$, found: 277.1416.

Dienes 95a and 95b. $\left[\mathrm{RuCp}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(3.7 \mathrm{mg}, 8.5 \mu \mathrm{~mol})$ was added to a flame-dried vial and purged with argon. The vial was placed in a $55^{\circ} \mathrm{C}$ bath and immediately a solution of alkene $94(73.6 \mathrm{mg}, 0.170 \mathrm{mmol})$ and alkyne 93a $(12.1 \mathrm{mg}, 56.4 \mu \mathrm{~mol})$ in cyclopentanone (degassed, 1.2 mL , total with rinses) was added drop-wise. After 2 h 10 min the reaction was allowed to cool to rt and then filtered through a short plug of silica (ethyl acetate, 25 mL). The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography (silica, $10 \% \rightarrow 30 \% \rightarrow 40 \% \rightarrow 50 \%$ ethyl acetate - hexane) to give the desired product $(12.5 \mathrm{mg}, 17.5 \mu \mathrm{~mol}, 31 \%)$ and the undesired branched product ($3.3 \mathrm{mg}, 4.6 \mu \mathrm{~mol}, 8.2 \%$) ($3.8: 1 \mathrm{mixture}$ of the linear). Alkene 94 ($53 \mathrm{mg}, 0.122 \mathrm{mmol}, 85 \%$) and alkyne 93a - as its cyclopentanone ketal ($4.1 \mathrm{mg}, 14.6 \mu \mathrm{~mol}$, 26%) were recovered.

$[\alpha]_{D}^{23}+35.0\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.37(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.24-6.15(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.62(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{dd}, \mathrm{J}=15.6 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.31(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, \mathrm{J}=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}, \mathrm{J}=10.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=10.2,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.55$ $(\mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.29(\mathrm{~m}, 1 \mathrm{H})$, $1.82(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.24(\mathrm{~m}, 19 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 167.8,145.2,140.7,132.7,131.2,130.3,130.2,129.1,128.4,128.3,119.2,110.7$, $73.5,72.9,71.6,71.1,70.9,67.7,62.9,51.6,40.5,40.2,39.7,36.3,34.5,33.9,33.8,30.6,30.5,29.8,25.9,24.5$, $22.7,20.6,18.1,15.0,11.2,-4.7,-4.8$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3361,2913,2817,1696,1622,1415,1318,1240$, $1176,1125,1092,1044,990,825$. HRMS: (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 737.4419$, found: 737.4423.

$[\alpha]_{D}^{23}+15.5\left(c 0.10, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.24-6.14(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H})$, $4.92(\mathrm{dd}, \mathrm{J}=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{dd}, \mathrm{J}=12.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-$ $3.72(\mathrm{~m}, 5 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.38$
$(\mathrm{m}, 1 \mathrm{H}), 2.33-2.29(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.60(\mathrm{~m}, 16 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3520,3483,3438,3332,2886,1422,1058$. HRMS: (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{O}_{8} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 737.4419$, found: 737.4413.

$[\alpha]_{D}^{23}-62.2\left(c 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 4.59(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}$, $\mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}$, $\mathrm{J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.76-$ $1.59(\mathrm{~m}, 7 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 110.9,83.0,76.5,73.2,73.1,67.7,63.4,62.2$, $40.3,34.6,34.5,31.2,30.7,24.7,22.8,14.9$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3354,2919,2834,1445,1317,1133,1092$, 1060, 1032. HRMS: (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 303.1567$, found: 303.1567.

Dienes 95a and 95b. $\left[\mathrm{RuCp}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(2.0 \mathrm{mg}, 4.6 \mu \mathrm{~mol})$ was added to a flame-dried vial and purged with argon. The vial was placed in a $55^{\circ} \mathrm{C}$ bath and immediately a solution of alkene $94(40.0 \mathrm{mg}, 92 \mu \mathrm{~mol})$ and alkyne $\mathbf{9 3 c}$ ($7.8 \mathrm{mg}, 30.7 \mu \mathrm{~mol}$) in cyclopentanone (distilled over CaH_{2} and degassed, 0.65 mL , total with rinses) was added drop-wise. After 2 h 10 min the reaction was allowed to cool to rt and then filtered through a short plug of silica (ethyl acetate, 25 mL), the filtrate was concentrated in vacuo and the residue was purified by flash column chromatography (silica, $10 \% \rightarrow 30 \% \rightarrow 50 \%$ ethyl acetate - hexane) to give the desired product $(12.9 \mathrm{mg}, 19 \mu \mathrm{~mol}, 62 \%)$ as a $3: 1$ mixture of the linear to branched isomer. Alkene $94(31.8 \mathrm{mg}, 73 \mu \mathrm{~mol})$ was recovered. The mixture of isomers was separated by preparative thin layer chromatography (50% ethyl acetate hexane) to obtain the linear ($3.5 \mathrm{mg}, 5.1 \mu \mathrm{~mol}, 17 \%$) and the branched ($1 \mathrm{mg}, 1.5 \mu \mathrm{~mol}, 5 \%$) isomers along with a mixed fraction ($4.9 \mathrm{mg}, 7.1 \mu \mathrm{~mol}, 23 \%$).

Dienes 95a and 95b. $\left[\mathrm{RuCp}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(2.1 \mathrm{mg}, 4.8 \mu \mathrm{~mol})$ was added to a flame-dried vial and purged with argon. The vial was placed in a $55^{\circ} \mathrm{C}$ bath and immediately a solution of alkene $94(41.3 \mathrm{mg}, 95 \mu \mathrm{~mol})$ and alkyne 93b ($8.9 \mathrm{mg}, 32 \mu \mathrm{~mol}$) in acetone (degassed, 0.67 mL , total with rinses) was added drop-wise. After 2 h

10 min the reaction was allowed to cool to rt and then filtered through a short plug of silica (ethyl acetate, 25 mL). The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography (silica, $10 \% \rightarrow 30 \% \rightarrow 40 \% \rightarrow 50 \%$ ethyl acetate - hexane) to give the desired product ($9.2 \mathrm{mg}, 13 \mu \mathrm{~mol}, 41 \%$) as a 3.7:1 mixture of the linear to the branched isomer. Alkene $94(26.6 \mathrm{mg}, 61 \mu \mathrm{~mol})$ and alkyne $\mathbf{9 3 b}(1.6 \mathrm{mg}$, $5.7 \mu \mathrm{~mol})$ were both recovered. The mixture of isomers could be separated by preparative thin layer chromatography (50% ethyl acetate - hexane) to obtain the linear ($8.0 \mathrm{mg}, 11 \mu \mathrm{~mol}, 35 \%$) and the branched $(1.0 \mathrm{mg}, 1.4 \mu \mathrm{~mol}, 4 \%)$ isomers.

TBS Ether 93d. tert-Butyldimethylsilyl chloride ($5.4 \mathrm{mg}, 36 \mu \mathrm{~mol}$) was added to a mixture of alcohol $\mathbf{S} 9$ $(10 \mathrm{mg}, 36 \mu \mathrm{~mol})$ and imidazole ($6.1 \mathrm{mg}, 90 \mu \mathrm{~mol}$) in dichloromethane (0.4 mL) at rt. After 45 min , saturated aqueous sodium bicarbonate was added. The aqueous layer was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The combined organic extract were dried with magnesium sulfate, concentrated in vacuo and the residue was purified by flash column chromatography (silica, 30% ethyl acetate - hexane) to give the desired product $(14.4 \mathrm{mg}, 36 \mu \mathrm{~mol}, 100 \%) .[\alpha]_{D}^{23}-64.8\left(c 1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 4.54-4.50(\mathrm{~m}$, $1 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~d}$, $\mathrm{J}=2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.59(\mathrm{~m}, 7 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $0.76(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 110.6,83.4,73.1,72.5,72.2$, $67.6,63.1,59.9,40.1,34.7,34.3,32.2,30.6,26.1,24.6,22.7,18.4,14.7,-5.2,-5.3$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right)$: 3266, 2962, 2890, 2818, 1444, 1317, 1237, 1173, 1136, 1092, 1032, 963, 825, 765. HRMS: (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+}: 417.2432$, found: 417.2429.

Dienes 95a and 95b. $\left[\mathrm{RuCp}(\mathrm{MeCN})_{3}\right] \mathrm{PF}_{6}(2.3 \mathrm{mg}, 5.4 \mu \mathrm{~mol})$ was added to a flame-dried vial and purged with argon. The vial was placed in a $55^{\circ} \mathrm{C}$ bath and immediately a solution of alkene $94(47.4 \mathrm{mg}, 0.109 \mathrm{mmol})$ and alkyne $\mathbf{9 3 d}(14.4 \mathrm{mg}, 36 \mu \mathrm{~mol})$ in cyclopentanone (distilled over CaH_{2} and degassed, 0.77 mL , total with rinses) was added drop-wise. After 2 h 10 min the reaction was allowed to cool to rt and then filtered through a short plug of silica (ethyl acetate, 25 mL). The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography (silica, $10 \% \rightarrow 30 \% \rightarrow 40 \%$ ethyl acetate - hexane) to give the desired product $(9.1 \mathrm{mg}, 13 \mu \mathrm{~mol}, 36 \%)$ as a $3.7: 1$ mixture of the linear to the branched isomer. Alkene $94(40 \mathrm{mg}, 92 \mu \mathrm{~mol})$ was recovered. The mixture of isomers could be separated by preparative thin layer chromatography (50% ethyl acetate - hexane) to obtain the linear ($4.6 \mathrm{mg}, 6.4 \mu \mathrm{~mol}, 18 \%$) and branched ($1 \mathrm{mg}, 1.4 \mu \mathrm{~mol}, 4 \%$) isomers.

TBDPS Ether S10. tert-Butylchlordiphenylsilane ($12 \mu \mathrm{~L}, 46.2 \mu \mathrm{~mol}$) was added to a solution of diene 95a $(10.0 \mathrm{mg}, 14.0 \mu \mathrm{~mol})$, imidazole ($9.4 \mathrm{mg}, 0.138 \mathrm{mmol}$), and 4-dimethylaminopyridine ($0.7 \mathrm{mg}, 6.2 \mu \mathrm{~mol}$) in dichloromethane $(1.1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 30 min , the reaction was warmed to rt and stirred for an additional 30 min. The reaction was diluted with water and dichloromethane. The aqueous layer was extracted with dichloromethane ($4 \times 20 \mathrm{~mL}$). The combined organic layers were dried with sodium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, 100% dichloromethane (to remove silanol), then 10% ethyl acetate - hexane) to give the desired product ($12.1 \mathrm{mg}, 12.7 \mu \mathrm{~mol}, 91 \%$ yield). $[\alpha]_{D}^{23} 30.1$ (c $\left.1.00, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 7.73-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.27(\mathrm{dd}, \mathrm{J}=$ $15.5,10 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.13(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~d}, \mathrm{~J}=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.59(\mathrm{~m}, 2 \mathrm{H})$, $5.46(\mathrm{dd}, \mathrm{J}=15.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ (dd, J = 10.5, 5.0 Hz, 1H), $3.95(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, \mathrm{~J}=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.88-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.25(\mathrm{~m}, 16 \mathrm{H}), 1.06$ $(\mathrm{s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 167.8,145.2,140.6,135.7,135.6,134.4,134.1,132.7,131.7,130.3,129.6,129.4,129.4$, $128.3,128.1,127.7,127.6,119.2,110.6,73.8,72.4,71.6,71.1,71.1,70.9,67.7,60.5,51.6,40.5,40.2,39.7$, $36.5,34.4,33.9,32.1,30.7,27.0,25.9,24.7,22.8,20.6,19.4,18.1,14.9,11.2,-4.7,-4.8$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right)$: 2913, 2889, 2817, 1697, 1622, 1450, 1409, 1240, 1175, 1124, 1094, 989, 953. HRMS: (ESI) calcd for $\mathrm{C}_{57} \mathrm{H}_{85} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 953.5777$, found: 953.5761.

Diol 96. Tetrabutylammonium iodide ($0.9 \mathrm{mg}, 2.44 \mu \mathrm{~mol}$) and camphorsulfonic acid ($0.6 \mathrm{mg}, 2.44 \mu \mathrm{~mol}$) were added sequentially to a solution of ketal $\mathbf{S 1 0}(12.1 \mathrm{mg}, 12.69 \mu \mathrm{~mol})$ and ethylene glycol ($7 \mu \mathrm{~L}, 0.125 \mathrm{mmol}$) in THF (0.6 mL) and dichloromethane (1.2 mL) at rt. After 3 h 30 min , a saturated aqueous solution of sodium bicarbonate was added. The aqueous layer was extracted with ethyl acetate ($5 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, $10 \% \rightarrow 30 \% \rightarrow 50 \%$ ethyl acetate - hexane) to give the desired product (7.5 $\mathrm{mg}, 8.4 \mu \mathrm{~mol}, 67 \%$ yield $)$ and recovered starting material ($3.5 \mathrm{mg}, 3.67 \mu \mathrm{~mol}, 29 \%$ yield) $[\alpha]_{D}^{23} 11.4$ (c 0.75, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.68-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{dd}, \mathrm{J}=15.6,10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.24-6.13(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.61(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{dd}$, $\mathrm{J}=15.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.78(\mathrm{~m}, 5 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~d}, \mathrm{~J}$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{bs}, 1 \mathrm{H}), 2.86-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{bs}, 1 \mathrm{H}), 2.39(\mathrm{ddd}, \mathrm{J}=14.4$, $6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{ddd}, \mathrm{J}=14.4,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 168.0,145.4,140.9,135.8,135.7,133.9,133.7,133.1,131.6,130.4,130.1,129.8,129.8$, $129.4,128.4,128.4,127.90,127.88,119.3,75.1,72.7,71.1,71.4,71.2,71.0,70.3,61.7,51.7,40.5,40.1,39.8$, $36.6,36.4,34.0,32.6,27.1,26.0,20.7,19.4,18.3,15.5,11.4,-4.6,-4.7$. IR (KBr-film) $v\left(\mathrm{~cm}^{-1}\right): 3364,2888$, 1696, 1621, 1410, 1239, 1093, 824, 694. HRMS: (ESI) calcd for $\mathrm{C}_{52} \mathrm{H}_{78} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 909.5127$, found: 909.5133 .

(-)-iso-Lasonolide A 106. Hydrogen fluoride-pyridine (0.150 mL) was added to a solution of (-)-TBS-isolasonolide A S11 (4.4 mg (of a 1.9:1 mixture of isomers) $4.23 \mu \mathrm{~mol}$) in THF (0.25 mL) and pyridine (0.25 mL) in a plastic vial at rt. After 20 h , the reaction was carefully quenched with a saturated aqueous solution of sodium bicarbonate, and the reaction with diluted with ethyl acetate. The aqueous layer was extracted with ethyl acetate ($5 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, $10 \% \rightarrow 50 \% \rightarrow 80 \%$ ethyl acetate - hexanes) and then further purified by preparative HPLC (econosil $250 \times 10 \mathrm{~mm}$; heptane/isopropanol 93:7:0; flow rate $5 \mathrm{~mL} / \mathrm{min}$; detection at 220 nm) to give (-)-iso-lasonolide A (106) ($0.8 \mathrm{mg}, 1.14 \mu \mathrm{~mol}, 41 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 600 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.21(\mathrm{~m}, 2 \mathrm{H})$, $5.76-5.66(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~s}$, $1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{bs}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.28-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~d}$, $\mathrm{J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.16$ (bs, 1H), $3.05(\mathrm{dd}, \mathrm{J}=14.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{dd}, \mathrm{J}$ $=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.08(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.25(\mathrm{~m}$, $7 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} 125 \mathrm{MHz}\right) \delta(\mathrm{ppm}):$ $174.2,168.0,148.7,147.8,145.6,143.8,138.5,131.5,131.1,128.7,128.1,125.3,124.7,117.9,112.7,112.2$, $78.1,75.5,74.1,72.5,70.8,70.3,70.1,67.9,65.6,41.9,40.3,38.8,38.7,36.7,33.8,33.5,32.6,31.1,28.1,27.8$, 22.6, 21.1, 15.3, 11.6. IR ($\mathrm{NaCl}-\mathrm{film}$) $v\left(\mathrm{~cm}^{-1}\right): 3385,2914,2880,2811,1715,1666,1620,1443,1413,1361$, 1241, 1185, 1143, 1034. HRMS: (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 719.4130$ found 719.4124.

Lasonolide Analogs 104 and 105. A "stock solution" of 2,4,6-trichlorobenzoylchloride ($27 \mu \mathrm{~L}, 0.172 \mathrm{mmol}$) and triethylamine ($48 \mu \mathrm{~L}, 0.344 \mathrm{mmol}$) in THF $(4.5 \mathrm{~mL})$ was prepared in a flame-dried vial.

In a separate flask containing the neat secoacids 99a and 99b ($15.4 \mathrm{mg}, 17.7 \mu \mathrm{~mol}, 3: 1$ mixture of 99a:99b) was added the "stock solution" (1.45 mL) at rt. After 3 h , the reaction was filtered through a plug of cotton, using THF, and concentrated. The crude residue was immediately dissolved in benzene (7.9 mL) and added dropwise, over 25 min , to a solution of 4-dimethylaminopyridine ($21.6 \mathrm{mg}, 0.177 \mathrm{mmol}$) in benzene (1.0 mL) at 90 ${ }^{\circ} \mathrm{C}$. After addition of the substrate was complete, the reaction was allowed to stir at $90^{\circ} \mathrm{C}$ for an additional 1 h . The reaction was cooled to rt and directly subjected to flash column chromatography (silica, 5% ethyl acetatehexanes) to deliver the desired compounds ($8.2 \mathrm{mg}, 9.63 \mu \mathrm{~mol}, 54 \%$ yield) as an inseparable mixture ($3: 1$ linear to branched) of isomers which was used directly in the next reaction.

Camphorsulfonic acid ($6.7 \mathrm{mg}, 28.9 \mu \mathrm{~mol}$) was added to a solution of the substrate ($8.2 \mathrm{mg}, 9.63 \mu \mathrm{~mol}$) in methanol (2.14 mL) at rt. After 4 h , the methanol was removed under reduced pressure. The residue was diluted with ethyl acetate and water. The aqueous layer was extracted with ethyl acetate ($4 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was submitted to the next reaction without further purification.

Hydrogen fluoride-pyridine (0.150 mL) was added to a solution of the crude substrate in THF (0.25 mL) and pyridine (0.25 mL) in a plastic vial at rt. After 20 h , the reaction as carefully quenched with a saturated aqueous solution of sodium bicarbonate, and the reaction with diluted with ethyl acetate. The aqueous layer was extracted with ethyl acetate ($5 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried with sodium sulfate, concentrated, and the residue was purified by flash column chromatography (silica, $10 \% \rightarrow 50 \%$ $\rightarrow 80 \%$ ethyl acetate - hexanes) and then further purified by preparative HPLC (econosil $250 \times 10 \mathrm{~mm}$; heptane/isopropanol 93:7:0; flow rate $5 \mathrm{~mL} / \mathrm{min}$; detection at 220 nm) to give the branched isomer ($1.2 \mathrm{mg}, 1.72$ $\mu \mathrm{mol}, 39 \%$ yield) and the linear isomer ($3.3 \mathrm{mg}, 4.74 \mu \mathrm{~mol}, 36 \%$ yield).

$[\alpha]_{D}^{24}+13.2\left(\mathrm{c} 0.33\right.$ in $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 600 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.28(\mathrm{dd}, \mathrm{J}=15.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{ddd}, \mathrm{J}=15.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.85-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.68-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.34(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{dd}, \mathrm{J}=10.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}$, $1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, \mathrm{~J}=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 2 \mathrm{H}), 4.02-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{J}=15.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.74(\mathrm{~m}$, $3 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.19(\mathrm{~m}, 7 \mathrm{H}), 1.04(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.6$ $\mathrm{Hz}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} 125 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 172.0,170.2,149.0,146.2,141.6,131.6,130.8$, 130.1, 129.6, 129.1, 127.6, 127.0, 125.4, 125.0, 118.8, 112.3, 75.6, 75.4, 73.0, 71.9, 71.6, 70.8, 70.1, 70.0, 67.7, $40.5,38.8,38.7,36.7,35.0,34.1,31.0,29.8,29.4,27.8,27.7,22.6,21.1,15.8,11.5 . \mathrm{IR}(\mathrm{NaCl}-\mathrm{film}) v\left(\mathrm{~cm}^{-1}\right):$ 3364, 2914, 2882, 2812, 1693, 1621, 1442, 1359, 1241, 1162, 1116, 1077, 1031. HRMS: (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 719.4130$ found 719.4129.

$[\alpha]_{D}^{24}-41.4\left(\mathrm{c} 0.33 \mathrm{in} \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} 600 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 7.32(\mathrm{dd}, \mathrm{J}=15.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, \mathrm{~J}$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{ddd}, \mathrm{J}=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, \mathrm{J}=15.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.74-5.66(\mathrm{~m}, 3 \mathrm{H}), 5.47(\mathrm{dd}, \mathrm{J}=15.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, \mathrm{J}=$ 9.6, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{dd}, \mathrm{J}=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{AB} \mathrm{J}=18.6,12.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.25$ (dd, J = 12.0, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, \mathrm{J}=10.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 2.84$ (dd, J = 6.0 Hz , $2 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.04(\mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.86(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{ddd}, \mathrm{J}=14.4,12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.17(\mathrm{~m}, 6 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} 125 \mathrm{MHz}\right) \delta(\mathrm{ppm}): 170.3,166.6,146.5,143.8$, $142.8,136.3,130.8,130.5,129.7,129.6,129.3,129.2,126.2,125.5,118.6,112.3,75.3,74.9,73.1,72.1,72.0$, $70.8,70.6,70.1,67.6,40.4,39.4,39.2,36.7,36.6,36.5,34.2,31.0,29.8,27.8,27.6,22.6,20.9,15.6,11.5$. IR $(\mathrm{NaCl}-\mathrm{film}) v\left(\mathrm{~cm}^{-1}\right): 3368,2917,2883,2814,1693,1619,1442,1358,1243,1168,1117,1074,1011,790$. HRMS: (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{9} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 719.4130$ found 719.4129.

Copies of Spectra
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3})

1		1	1	T	1		1	1	1	1	1	1	1			
60	150	140	130	120	110	100	90		70	60	50	40	30	20	10	0

ah-III-32-oc
exp1 std1h

date ${ }_{\text {S }}^{\text {SAMPLE }} \mathbf{S 5} 2007$	$\underset{\mathrm{dfra}}{\text { DEC. } \& \underset{400.114}{V T}}$
date solvent	
$\mathrm{file}_{\text {ACOUISITION }} \mathrm{exp}$	dpwr dof dof
$\mathrm{sfrq}^{\text {a }}$ 400.114	dm nnn
tn at	${ }_{\text {dmm }}^{\text {dmm }}$
np 40000	dimf processing ${ }^{200}$
sw 4997.5	wtfile
$\underset{\text { fb }}{\text { bs }}$ (not used	$\underset{\text { proc }}{\substack{\text { froc }}}{ }^{\text {ft }}$
tpwr 61	
pw ${ }^{\text {d }}$ - ${ }^{8.0}$	werr
tof 0.50	wbs
nt 128	wnt
ct ${ }^{8}$	
alock	
gain flags ${ }^{\text {not }}$	
11	
${ }_{\text {in }}$	
dp display	
sp ${ }_{\text {wp }}$	
vs 69	
sc wc c ce	
$\begin{array}{ll}\text { is } \\ \text { is } \\ \text { rf } & 387.25 \\ \text { frem }\end{array}$	
rf fl	
ins 1.000	
ai cdc ph	

28

\qquad

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) drfocx 1000c13

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) drffxi28ync13

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
drfixxi27majc13

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Stanoard 1h observe
Pulse Sequence: s2pul
Solvent: COCl3
Amblent
t emperature
Muse
Pulse 44.3 degrees
Acq. time 3.749 sec
$W 10$ ith 400000 Hz
16 repetitions

DATA PROCESSING
Line broadenting 0.2 Hz
ST Size 22768
FT size 32768
Total time $1 \mathrm{~min}, 0 \mathrm{sec}$

13c observe

Pulse 31.0 degrees
Acq. time 1.815 s
W1dth 16501.7
368
368 repetitions
OBSEVE CR13, 75.4213636 MHz
DECOUPLE H1, 29.9470487 MHz
cont inuous iy on
cont inuous ly on
WALTZ-16 modulated
DATA PROCESSING
DATA PROCESSING
Line broatening 1.0 Hz
Line broadening 1.0 Hz
FT size 6535 n .
Total time $1 \mathrm{hr}, 2 \mathrm{~min}, 15 \mathrm{sec}$

69

76

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

STANDARD PROTON PARAMETERS

95a

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
ㅇ․

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
ces-2-135
STANDARD PROTON PARAMETERS

96

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

OMe 96

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
ces-3-24-r2-a-c13
ces-3-24-r2-a

${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]${ }^{1}$ Horton, P. A.; Koehn, F. E.; Longley, R. E.; McConnell, O. J. J. Am. Chem. Soc. 1994, 116, 6015-6016.
${ }^{2}$ Wright, A. E.; Chen, Y.; Winder, P. L.; Pitts, T. P.; Pomponi, S. A.; Longley, R. E. J. Nat. Prod. 2004, 67, 1351-1355.
${ }^{3}$ Lee, E.; Song, H. Y.; Joo, J. M.; Kang, J. W.; Kim, D. S.; Jung, C. K.; Hong, C. Y.; Jeong, S. W.; Jeon, K. Bioorg. Med. Chem. Lett. 2002, 12, 3519-3520.
${ }^{4}$ Joo, J. M.; Kwak, H. S.; Park, J. H.; Song, H. Y.; Lee, E. Bioorg. Med. Chem. Lett. 2004, 14, 1905-1908.
${ }^{5}$ Horton, P. A.; Koehn, F.; Longley, R. E.; McConnell, O. J.; Pomponi, S. A. US patent Serial Number 5,684,036, 1997.
${ }^{6}$ Suarez, A.; Fu, G. C. Angew. Chem. Int. Ed. Engl. 2004, 43, 3580-3582.
${ }^{7}$ Fernandes, R.A.; Chowdhury, A.K. Eur. J. Org. Chem. 2011, 1106-1112.
${ }^{8}$ Ghosh, A. K.; Onishi, M. J. Am. Chem. Soc. 1996, 118, 2527-2528.
${ }^{9}$ Yan, T.-H.; Tan, C.-W.; Lee, H.-C.; Lo, H.-C.; Huang, T.-Y. J. Am. Chem. Soc. 1993, 115, 2613-2621.
${ }^{10}$ Trost, B. M.; Yang, H.; Brindle, C. S.; Dong, G. Chem-Eur. J. 2011, 17, 9777-9788.
${ }^{11}$ Ilardi, E. A; Stivala, C. E.; Zakarian, A. Org. Lett. 2008, 10, 1727-1730.

[^0]: ${ }^{\text {a }}$ Cond. A: No Treatment. ${ }^{\mathrm{b}}$ Cond. B: $50{ }^{\circ} \mathrm{C}$ for 30 min . ${ }^{\mathrm{c}}$ Cond. C: $50^{\circ} \mathrm{C}$ for $30 \mathrm{~min}+$ MVK $60 \mathrm{mM} .{ }^{\mathrm{d}}$ ratio of anti (50a) : syn (50b).

[^1]: $\begin{array}{llllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ f 1 & (\mathrm{ppm}) & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

