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This supporting information is divided into three parts. In the first section, we show the

Photluminescent Excitation (PLE) spectra and Transmission Electron Micography for PbS

NCs. We then derive Solution Photon Correlation Fourier Spectroscopy (S-PCFS) and our

approach to fitting spectral linewidths from the spectral correlation measured using S-PCFS.

We then derive and discuss the model used to fit the temperature dependent photolumines-

cence in the main text.

Photoluminescent Emission Spectroscopy

In figure S1a we show photoluminescent excitation spectra (PLE) collected on a NIR sensi-

tive spectrometer (Ocean Optics) using a Fluoromax (Horiba Jobin Yvon) as an excitation

1



source. Transmission electron microscopy was conducted using an FEI Tecnai Electron Mi-

croscope. PLE shows that size heterogeneity contributes at least 30 meV to the observed

linewidth, however even upon size selective excitation, the emission linewidth is still over

150 meV consistent with S-PCFS measurements shown in figure 2d (center spectrum). TEM

demonstrates significant size and shape heterogeneity within the limited resolution available

for imaging sub 2-nm particles.
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Figure S 1: a) The two dimensional excitation-emission spectrum of a PbS quantum dot sam-
ple (plotted in the center of figure 2d). b) Ensemble absorption and emission spectra (black)
plotted with the peak shift from the central energy (red). The peak shift is plotted along
against wavelength of excitation. c) TEM of nanoparticles studied shows size polydispersity,
though contrast is poor for sub-2nm particles.

Solution-Photon Correlation Fourier Spectroscopy

The technique Solution-Photon Correlation Fourier Spectroscopy (S-PCFS) allows us to mea-

sure the spectral correlation of photon pairs arriving from an ensemble of emitters diffusing

through a focal volume.1–4 It accomplishes this by mapping these photons probabilistically

to the outputs of a Michelson interferometer with a variable path length difference (δ) based

on their energies. By measuring the photon stream on each leg of the interferometer (defined
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Figure S 2: Traditional photon correlation Fourier spectroscopy utilizes two detectors on
either end of a Michelson Interferometer. By varying δ over different distances, photons
are mapped to Da and Db with different probabilities. The cross-correlation signal between
detectors can be used to study intraphoton energy gaps as a function of time.

as a and b in figure S2), the second order intensity correlation g2, encodes both single emit-

ter diffusion information as well as spectral information, allowing us to combine fluorescence

correlation spectroscopy (FCS) with Fourier spectroscopy to obtain average single molecule

linewidths.5 Below, we provide a derivation (taken in part from references 4 and 5) of how

to extract an average single molecule spectrum from an S-PCFS interferogram.

In figure S2 we show the setup for a typical PCFS experiment. From reference 5, each

interferometer output (denoted a, b) has an electric field as follows:

Ea (t) = RRE (t) + T T E (t+ δ/c) (1)

Eb (t) = RT E (t) + T RE (t+ δ/c) (2)

Where c is the speed of light and R/T represents reflection or transmission of the electric
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field. The detected intensity Ia(t) is the square of the electric field at detector a

Ia (t) =
1

2
ε0c|Ea (t) |2 =

1

2
ε0c [R∗R∗E∗ (t1) + T ∗T ∗E∗ (t1 + δ/c)] [RRE (t1) + T T E (t1 + δ/c)] =

1

2
ε0c|R|2|T |2

(
|E (t1) |2 + |E (t1 + δ/c) |2 + 2 ∗Re[E∗ (t1)E (t1 + δ/c)]

)
(3)

Taking the time averaged value of Ia(t) and changing δ/c = τg

〈Ia (t)〉 = ε0c|R|2|T |2〈|E (t) |〉2
(

1 +

〈
Re

[E∗ (t1)E (t1 + τg)]

|E (t) |2

〉)
(4)

Here we have utilized the assumption that the fields are stationary. In other words, the time

averaged intensity is identical to the statistical average over an ensemble of emitters. This

allows us to assert that 〈E(t1)〉 = 〈E(t1 + τg)〉 = 〈E(t)〉. We can analyze the response of

the field as a function of time separation τ between photon arrivals. The second term in

equation 4 can be expressed as follows,

〈
Re[E (t1)E

∗ (t1 + τg)]

|E (t) |2

〉
=
Re[〈E∗ (t1)E (t1 + τg)〉]

〈|E (t) |2〉
= g(1)(τg). (5)

Where g(1)(τg) is the degree of first-order temporal coherence of light. The Wiener-Khintchine

theorem maps g(1)(τg) to the frequency spectrum of the emitted light

g(1)(τg) =

∫ ∞
−∞

s(ω)exp(2πωτg)dω = FT [s(ω)]τg (6)

Leaving us with the time averaged intensity relationship

〈Ia(t)〉 =
1

2
〈I(t)〉(1±Re{FT [S(ω)]τg} (7)

Where I(t) = 1/2ε0c|E(t)|2 and |R|2 = |T |2 = 1/2..
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From equation 7 we can now begin to evaluate correlation functions. First, let us assert a

form for S(ω), the spectral function, which represent the distribution of photon frequencies

(energies) from the emissive sample.

S(ω) = δ(ω[t]) (8)

In this equation, δ represents delta function in frequency and ω[t] = ω0 + ∆(t), where ω0 is

a central carrier frequency and ∆(t) is a time varying fluctuation in the central energy of a

single emitter such that 〈∆(t)〉 = 0. Plugging this into equation 7 we get a time averaged

intensity function for path a,

〈Ia/b(t)〉 =
1

2
〈I(t)〉(1± 〈Re{FT [δ(ω[t]]}〉 =

1

2
〈I(t)〉(1± 〈cos(τgω[t]〉) (9)

While the choice of sign is arbitrary, due to conservation of energy, it must be the opposite

for each detector.

Given this, let us evaluate the intensity cross correlation function across detectors

gab =

〈
Ia (t) Ib (t+ τ)

〉
〈Ia (t)

〉〈
Ib (t+ τ)

〉 (10)

g(ab)(τ) =
1
4
〈I(t)(1 + cos(τgω[t])I(t+ τ)(1− cos(τgω[t+ τ ])〉

1
4
〈I(t)〉〈I(t+ τ)〉

(11)

Making the assumption that frequency fluctuations are independent of intensity fluctuations

we can simplify equation 10:

g(ab)(τ) =
〈I(t)I(t+ τ)〉〈(1 + cos(τgω[t])(1− cos(τgω[t+ τ ])〉

〈I(t)〉〈I(t+ τ)〉
. (12)
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Expanding the binomial yields

〈(1 + cos(τgω[t])(1− cos(τgω[t+ τ ])〉 =

〈(1 + cos(τgω[t])− cos(τgω[t+ τ ])− cos(τgω[t])cos(τgω[t+ τ ])〉. (13)

In the implementation of PCFS, we ”dither” (oscillate) a stage over several optical periods

(1/ω0) while measuring the correlation function such that any term which oscillates at an

optical frequency averages to zero, for example

〈cos(τgω[t])〉 =

∫ T

0

cos(τg(ω0 + ∆(t)))dτg ≈ 0 (14)

Therefore, the middle terms of equation 13 are experimentally eliminated using the dither

described by equation 14. The outside term can be expressed using the trigonometric identity

cos(u)cos(v) = 1
2
(cos(u− v) + cos(u+ v)) yielding

〈cos(τgω[t])cos(τgω[t+ τ ])〉 =
1

2
〈cos(τg(ω[t]− ω[t+ τ ])) + cos(τg(ω[t] + ω[t+ τ ]))〉 =

1

2
〈cos(τg(∆(t)−∆(t+ τ))) + cos(τg(2ω0 + ∆(t) + ∆(t+ τ)))〉 =

1

2
〈cos(τg(∆(t)−∆(t+ τ)))〉. (15)

The final expression in (15) comes from eliminating the components that oscillate at twice

the optical frequency. We now express the cross correlation signal as follows:

g(ab)(τ) = g(2)(1− 1

2
〈cos(τg(∆(t)−∆(t+ τ)〉))) (16)

gab (τ) = g(2)(τ)

(
1− 1

2
Re{FT [p (ζ, τ)]}

)
(17)

Re{FT [p (ζ, τ)]} = 2

(
1− gab (τ)

g(2)(τ)

)
(18)

After Fourier transform over the a range of path length distances, δ, we obtain the the auto-

6



correlation of the fluorescence spectrum S(ω) the spectral correlation. Here p(ζ, τ) describes

the relative emission frequencies.

p(ζ, τ) =
1

τ

∫ T

0

∫ ∞
−∞

S∗ (ω, t)S (ω + ζ, t+ τ) dωdt (19)

It is straightforward to extend this result to ensemble spectral correlations in solution.2,3

In this case, we arrive at the governing equation

Re{FT
[
(g2(τ)− 1)psingle (ζ, τ) + pens (ζ, τ)

]
} = 2(g2(τ)− gab(τ)) = g̃2(τ) (20)

Using the fact that an ensemble of emitters will have Poissonian statistics, and that the

single molecule contribution decays to zero after the particle diffuses out of the focal volume

tD, (g2ens(τ) = 1 and g2single(τ > τD) = 0) we arrive at the single molecule contribution to the

spectral correlation.

Re{FT [psingle (ζ, τ)]} =
2(g2(τ)− gab(τ))− g̃2(τ > τD)

(g2(τ)− 1)
(21)

This technique allow us to monitor spectral fluctuations of individual molecules across

a diverse set of correlation time-scales. In this paper we average the signal over the from

10 µs to 1 ms. S-PCFS probes the spectral correlation, or the intraphoton energy gaps,

losing information about the absolute energy. This makes it impossible to directly invert the

spectral correlation to arrive at the time resolved fluorescence spectrum. To arrive at the

spectra plotted in figure 2d we use a spectral model (two displaced Gaussians) to arrive at

a spectral correlation expression. We detail this procedure below.

Spectral correlation from asymmetric lineshapes

In previous S-PCFS implementations, the spectral correlation is fit to a set of symmetric

Gaussian functions, which describes the emission from single quantum dots in solution and
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enables the direct extraction of linewidth.3 In this paper, we assert that PbS nanocyrstals

emit from two states which interchange at room temperature. Given this, we observe a

slightly asymmetric lineshape ensemble lineshape. To fit the S-PCFS data, we have imple-

mented a modified model, which explicity accounts for lineshape asymmetry by fitting to

two Gaussian functions with a displacement a and standard deviations σ.

Gtot(ω;C1, C2, a, σ1, σ2) = C1exp
(ω)2

2σ2
1

+ C2exp
(ω − a)2

2σ2
2

(22)

We then take the autocorrelation of the Gtot, GAC , which can be analytically expressed as

follows

GAC =

∫ −∞
−∞

Gtot(ω) ∗Gtot(ω + ω1)dω1

√
π

C
2
1e

−ω2

4σ21√
1
σ2
1

+

√
2C1C2e

−a2+ω2

σ21+σ
2
2

(
e

(a−ω)2

2(σ21+σ
2
2) + e

(a+ω)2

2(σ21+σ
2
2)

)
√

1
σ2
1

+ 1
σ2
1

+
C2

2e
−ω2

4σ22√
1
σ2
2

 . (23)

The Fourier transform of GAC is a function as follows.

ReFT [GAC ] =
√

2π

(
C1σ

2
1e
σ2
1δ

2

+ C2σ
2
2e
σ2
2δ

2

+ C1C2e
1
2
(σ2

1+σ
2
2)δ

2

(σ2
1σ

2
2)

√
1

σ2
1

+
1

σ2
2

√
1

σ2
1σ

2
2

)
(24)

from this equation we extract a FWHM of the emission profile and plot the two Gaussian

fit for comparison in figure 2e of the main text.

Model of Multi-State PbS Emission

We invoke the model shown in figure 4a-b to explain the emissive properties of PbS nanocrys-

tals. Here state A represents band-edge emission while state B is a defect state. We modulate

the population of each state using temperature. The initial populations of A and B are CA
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and CB respectively. Transitioning from A to B is governed by an activation barrier with

forward and reverse rates k1 and k2. States A and B will also relax irreversibly to the ground

state with rates kA and kB.

A
k1⇀↽
k2
B, A

kA−→ G, B
kB−→ G (25)

The time dependence the populations of A and B are reflected in the following differential

equations,

A′ = −k1A− kAA+ k2B and B′ = −k2B − kBB + k1A. (26)

We recast (26) as a second-order homogeneous differential equation in A,

︸︷︷︸
a

A′′ + (k1 + k2 + kA + kB)︸ ︷︷ ︸
b

A′ + (k1kB + k2kb + kAkB)︸ ︷︷ ︸
c

A = 0, (27)

leading to a characteristic polynomial with the discriminant D = b2 − 4ac

D = (k1 + k2 + kA + kB)2 − 4(k1kB + k2kb + kAkB) = (k1 − k2 + kA − kB)2 + 2k1k2. (28)

In this model, kx > 0, making D > 0 allowing the solution of (27) to be two exponentials,

A(t) = C+e
−r(+)t + C−e

−r(−)t (29)

Where r is the solution to the characteristic polynomial of the differential equation. We fit

to equation 29 in the manuscript. Given the initial conditions A(0) = CA and B(0) = CB
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the time evolution of states A and B is as follows:

Fi,j,k,l = Ck(k1 − k2 + kA − kB)− 2Clkj (30)

A(t) =
1

2
√
D

(
(F1,2,A,B + C1

√
D)e

−1
2
(b+
√
D)t + (−F1,2,A,B + C1

√
D)e

−1
2
(b−
√
D)t
)

(31)

B(t) =
1

2
√
D

(
(F2,1,B,A + C2

√
D)e

−1
2
(b+
√
D)t + (−F2,1,B,A + C2

√
D)e

−1
2
(b−
√
D)t
)

(32)

Our spectroscopic observables are a) The total population dynamics as a function of

temperature C(t;T ) = A(t;T ) + B(t;T ), and b) The relative contribution of states A and

B to the total emission at different temperatures. The total population is as follows,

C(t) =
1

2
√
D

((
CA(−m+ n+

√
D) + CB(−m− n+

√
D)
)
e

−1
2
(b+
√
D)t

+
(
CA(m− n+

√
D) + CB(m+ n+

√
D)
)
e

−1
2
(b−
√
D)t

)
, (33)

with m = k1 + k2 n = kA − kB. We measure equation 33 through time resolved photolumi-

nescence. We assert that transport between states A and B is mediated by a fixed activation

energy Ea and a total energy difference EAB as shown:

k1 = Ape
−βEa k2 = Ape

−β(Ea+EAB). (34)

With β = 1/KboltzT and Ap representing an attempt rate. In figure 3, we fit the total

population dynamics to equation (29), and plot observed rates (in this case r(−)) in figure

4a. That rate can be best fit to the following equation:

r(−) = (b−
√
D)/2 = (kA + kB + Ape

−Eaβ + Ape
−(Ea+EAB)β

−
√

2A2
pe
−(2Ea+EAB)β + (kA − kB + Ap(e−Eaβ − e−(Ea+EAB)β))2). (35)

We fit this rate this equation to the temperature dependence of the slow-rate in figure 5a.
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We also compare the model, to the temperature dependent relative Relqy(T ). We collect

all spectra with equal laser power and only varying the temperature and normalize to the

77 K spectrum. Assuming the radiative and nonradiative rates stay constant we can fit the

normalized QY to

Relqy(T ) =

∫∞
0
C(t; β)dt∫∞

0
C(t; 77K)dt

(36)∫ ∞
0

C(t; β)dt =
4((k1 + k2 + kA)CB + (k1 + k2 + kB)CA)

b2 −D
. (37)

We plot the results in figure 5b. To further confirm the model in supplemental figure S3 a-c

we plot the same data from figure 3a, but normalized to integrated intensity, which shows

the observed change in spectral character as a function of temperature. We fit each spectra

to two Gaussians (equation 1 in the main text), varying the intensity and linewidth as a

function of temperature. In figure S3d, we plot the ratio of State A to the total spectrum.

Using the parameters in table 1 of the main text we overlay the following equation in figure

S3d

∫∞
0
A(t)dt∫∞

0
C(t)dt

=
(b2 −D)(CBk2 + CA(k2 + kB))

(2(k2kA + k2kB + kAkB)(CB(m+ n− b) + CA(m− n− b))
(38)

We observe good agreement to the data, however, the large dots show more spectral character

from the defect at low-temperatures than expected from the model.

Finally, in figure S4a-c we plot emission energy resolved spectra for 3.1 nm QDs. In

S4a, we plot the spectra of QDs at room and 77 K, along with the 5 band pass filters

used to collect spectra 1-5. In S4b-c we plot emission liftimes for all 5 filters, at 300 K

and 77 K. As expected, we observe a significant increase in the lifetime as we scan from

“defect” dominated emission to (blue) to band-edged dominated emission (red). We observe

bi-exponential behavior reflective of two states as discussed in the main text, with slower

dynamics and interchange between states at 77 K (figure S4c).
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Figure S 3: a) Temperature-Dependent PbS NC emission, for 2.2(a), 3.1(b) and 4.1(c) nm
nanocrystals to their total area for temperatures ranging from 77 to 320 K. We fit each
spectra to two Gaussians as discussed in the main text. d) We plot the contribution of
the band-edge Gaussian (A) to the total emission of 2.2 and 3.1 nm QDs. Solid lines are
equation S38 using averaged fit values from table 1. The dashed line represents the solution
of equation S38 shifted down for better comparison to the data. The offset may may be
attributed to a non-interconverting sub-ensemble of NCs.
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Figure S 4: a) The emission of 3.1 nm QDs at room temperature and 77 K, plotted against 5
band-pass emission filters. b-c) Time-resolved PL spectra for each filter at room temperature
(b) and 77 K (c). The biexponential behavior is consistent with two slowly equilibrating
states, where equilibration is slower at 77 K than at room temperature.
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