Supporting Information

Nitrate Reverses Severe Nitrite Inhibition of Anaerobic Ammonium Oxidation

 (Anammox) Activity in Continuously-Fed BioreactorsGuangbin Li* ${ }^{1}$, Reyes Sierra-Alvarez ${ }^{1}$, David Vilcherrez ${ }^{1}$, Stefan Weiss ${ }^{1}$, Callie Gill ${ }^{1}$, Mark J Krzmarzick ${ }^{2}$, Leif Abrell ${ }^{3,4}$, Jim A. Field ${ }^{1}$
${ }^{1}$ Department of Chemical and Environmental Engineering, University of Arizona 1133 E. James E. Rogers Way, Tucson, AZ 85721-001, USA
${ }^{2}$ School of Civil and Environmental Engineering, Oklahoma State University 207 Engineering South Stillwater, OK 74078, USA
${ }^{3}$ Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0041, USA
${ }^{4}$ Department of Soil, Water \& Environmental Science, University of Arizona, Tucson, AZ 85721-0041, USA
* Corresponding author: Guangbin Li
(Tel: +1 520332 4617; E-mail: guangbinli@email.arizona.edu)
Number of pages: 11
Number of figures: 9
Number of tables: 0

Figure S1. Reaction stoichiometry (empty bar) and N-balance (cross-hatched bar) calculated according to the data collected in period 4 to 6 in R2. Reported anammox stoichiometry (filled bar) is showed as comparison ${ }^{1}$.

Figure S2. Reaction stoichiometry (empty bar) and N-balance (cross-hatched bar) calculated according to the data collected in period 4 in R8. Reported anammox stoichiometry (filled bar) is showed as comparison ${ }^{1}$.

Figure S3. Phylogenetic analysis of anammox bacteria identified in the culture show that all analyzed sequences from the clone libraries were closely related to each other and to Candidatus Brocadia caroliniensis strain NRRL B-50286. A total of 18 clones were recovered and sequenced.

Figure S4. Concentration of $\mathrm{NO}_{2}{ }^{-}$(squares), $\mathrm{NH}_{4}{ }^{+}$(circles), and $\mathrm{NO}_{3}{ }^{-}$(triangles) in the influent (close symbols) and effluent (open symbols) of the reactors R1, R2, and R 3 , during different operation periods (P1-P6).

Figure S5. Concentration of NO_{2}^{-}(squares), $\mathrm{NH}_{4}{ }^{+}$(circles), and $\mathrm{NO}_{3}{ }^{-}$(triangles) in the influent (close symbols) and effluent (open symbols) of the reactors R4, R5, and R6, during different operation periods (P1-P4).

Figure S6. Concentration of NO_{2}^{-}(squares), NH_{4}^{+}(circles), and NO_{3}^{-}(triangles) in the influent (close symbols) and effluent (open symbols) of the reactors R7, R8, and R9, during different operation periods (P1-P4). The shaded area indicates the duration of $\mathrm{NO}_{3}{ }^{-}$addition (1 day).

Figure S7. The pH of influent (close squares) and effluent (open circles) of the reactors $\mathrm{R} 1, \mathrm{R} 2$, and R 3 , during different operation periods (P1-P6).

Figure S8. The pH of influent (close squares) and effluent (open circles) of the reactors $\mathrm{R} 4, \mathrm{R} 5$, and R 6 , during different operation periods (P1-P4).

Figure S9. The pH of influent (close squares) and effluent (open circles) of the reactors R7, R8, and R9, during different operation periods (P1-P4). The shaded area indicates the duration of $\mathrm{NO}_{3}{ }^{-}$addition (1 day).

Reference

1. Strous, M.; Heijnen, J. J.; Kuenen, J. G.; Jetten, M. S. M., The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl. Microbiol. Biotechnol. 1998, 50, 589-596.
