Supporting Information

Nitrate Reverses Severe Nitrite Inhibition of Anaerobic Ammonium Oxidation (Anammox) Activity in Continuously-Fed Bioreactors

Guangbin Li^{*1}, Reyes Sierra-Alvarez¹, David Vilcherrez¹, Stefan Weiss¹, Callie Gill¹, Mark J Krzmarzick², Leif Abrell^{3, 4}, Jim A. Field¹

¹ Department of Chemical and Environmental Engineering, University of Arizona

1133 E. James E. Rogers Way, Tucson, AZ 85721-001, USA

² School of Civil and Environmental Engineering, Oklahoma State University

207 Engineering South Stillwater, OK 74078, USA

³ Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0041, USA

⁴ Department of Soil, Water & Environmental Science, University of Arizona, Tucson, AZ 85721-0041, USA

* Corresponding author: Guangbin Li

(Tel: +1 520 332 4617; E-mail: guangbinli@email.arizona.edu)

Number of pages: 11

Number of figures: 9

Number of tables: 0

Figure S1. Reaction stoichiometry (empty bar) and N-balance (cross-hatched bar) calculated according to the data collected in period 4 to 6 in R2. Reported anammox stoichiometry (filled bar) is showed as comparison ¹.

Figure S2. Reaction stoichiometry (empty bar) and N-balance (cross-hatched bar) calculated according to the data collected in period 4 in R8. Reported anammox stoichiometry (filled bar) is showed as comparison ¹.

Figure S4. Concentration of NO_2^- (squares), NH_4^+ (circles), and NO_3^- (triangles) in the influent (close symbols) and effluent (open symbols) of the reactors R1, R2, and R3, during different operation periods (P1-P6).

Figure S5. Concentration of NO_2^- (squares), NH_4^+ (circles), and NO_3^- (triangles) in the influent (close symbols) and effluent (open symbols) of the reactors R4, R5, and R6, during different operation periods (P1-P4).

Figure S6. Concentration of NO_2^- (squares), NH_4^+ (circles), and NO_3^- (triangles) in the influent (close symbols) and effluent (open symbols) of the reactors R7, R8, and R9, during different operation periods (P1-P4). The shaded area indicates the duration of NO_3^- addition (1 day).

Figure S7. The pH of influent (close squares) and effluent (open circles) of the

reactors R1, R2, and R3, during different operation periods (P1-P6).

Figure S8. The pH of influent (close squares) and effluent (open circles) of the reactors R4, R5, and R6, during different operation periods (P1-P4).

Figure S9. The pH of influent (close squares) and effluent (open circles) of the reactors R7, R8, and R9, during different operation periods (P1-P4). The shaded area indicates the duration of NO_3^- addition (1 day).

Reference

 Strous, M.; Heijnen, J. J.; Kuenen, J. G.; Jetten, M. S. M., The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. *Appl. Microbiol. Biotechnol.* 1998, *50*, 589-596.