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Abstract: The accuracy of spatial disaggregation techniques largely depends on 

their underlying density assumptions and the quality of the data applied. This paper 
presents the results of a comparative investigation of four spatial disaggregation 
methodologies to determine their relative accuracies. These methodologies include 
binary dasymetric, a regression model, a locally fitted regression model and three-
class dasymetric, each of which provides different solutions for explaining spatially 
heterogeneous density when population data is spatially disaggregated. In contrast to 
previous studies, we apply the spatial disaggregation techniques to a comparably 
larger and more varied geographical area which allows the spatial disaggregation 
techniques to be more rigorously tested. Results indicate that the three-class 
dasymetric technique generates higher levels of accuracy compared to the other 
spatial disaggregation techniques and this result is more conclusive than previous 
findings. 

Key words: MAUP, spatial disaggregation, dasymetric mapping, regression model 

 

1.  Introduction  

Socio-economic data are typically collected and reported at a spatially aggregated level (e.g. 
census zones). This inevitably causes bias where the masked distributions of disaggregate, 
spatial data are aggregated to a larger spatial unit. In some cases it can lead to very 
misleading results where the aggregate unit represents an arbitrary regionalisation of space 
that is not well related to the disaggregate data. This is known in the literature as the 
Modifiable Area Unit Problem (MAUP) (Fotheringham & Wong 1991; Fotheringham & 
Rogerson 1993; Dennis & Wu 1996; Moon & Farmer 2001).  

Policy issues often need to focus on variations across geographical space or regional 
details, and so portraying areas with a uniform distribution is distinctly uninformative 
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(Bracken 1989; Landis 1994; Rosenbaum & Koenig 1997; Hunt et al., 2005). This raises the 
need to break up the homogeneous aggregated areas and so make the internal variations 
observable, and this concept is called spatial disaggregation.  

Yet unlike spatial aggregation, which only involves a straight forward statistical summary, 
there is no definitive way to carry out spatial disaggregation. The transfer of data in the 
spatial disaggregation process is complex because of the nature of mismatched boundaries 
between source areas and the boundaries for the target areas, and their heterogeneity in 
terms of density. Different techniques have been developed to solve the problem based 
upon underlying assumptions and the availability of other ancillary data to inform the 
process.  

Inevitably however, all spatial disaggregation techniques generate error, because there are 
always limitations associated with assumptions they use. Some errors are caused by 
assumptions about the spatial distributions of the objects (e.g. homogeneity in density), and 
some errors are caused by the spatial relationship imposed within the spatial disaggregation 
process (e.g. size of target zones) (Lam 1983; Cockings et al. 1997; Sadahiro 1999). 
Basically, the accuracy of estimation primarily depends on the appropriateness of the 
assumptions applied, as well as on the geography of the areas. A summary of the 
assumptions made under different spatial disaggregation techniques is as follows. 

Technique Method Assumption Control Surface 
(ancillary data) 

Complexity 
(1—5) 

Simple Area 
Weighting 

Cartographic 
 

Homogeneous source 
zones 

None 5 

Regression 
Model 

Statistical Source zone composed of 
land classes with global 
uniform density 

Discrete or 
Continuous 

3 

Binary 
Dasymetric 
Mapping 

Cartographic Source zone composed of 
populated and unpopulated 
areas 

Discrete (binary) 2 

Three-Class 
Dasymetric 
Mapping 

Cartographic Homogeneity at different 
land class (at each source 
zone) 

Discrete 1- 2 

EM Algorithm Statistical Source zone composed of 
land classes with global 
uniform density that 
conserve aggregate value 

Discrete or 
Continuous 

1- 2 

Table 1 -  A comparison of different spatial disaggregation techniques in terms of their 
assumptions, methods and data demand. 

The simplest spatial disaggregation technique, known as Simple Area Weighting, assumes 
homogeneity within source zones. Clearly, this is far from the reality of expected spatial 
distributions for socioeconomic data (for example, population counts). Simple cartographic 
processing methods, such as overlay, are used to disaggregate the source zones. Other 
more advanced techniques deal with the more realistic expectation that source zones are 
heterogeneous but with an unknown structure. Note that it is possible to spatially overlay 
land use data, such as mapping from remote sensed data (Langford et al. 1991) or road 
density (Reibel 2005; Reibel and Aditya 2006) over the source zones to provide ancillary 
information to indicate variation in data distributions of the aggregated source data.  

Different approaches have been proposed based upon the assumptions made about the 
spatial structure imposed on the source zones resulting from the overlayed spatial data. 
Regression models (Langford et al. 1991; Yuan et al. 1997) assume that the ancillary land 
use classes define areas of global uniform density. That is, the land classes have a uniform 
area density that is related to the parameter of interest over the whole of the area, but it is 
unknown. Using a combination of the aggregate source values and the ancillary data with 
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unknown densities it is possible to developed regression equations to numerically resolve 
this relationship.  

A drawback of this approach is that the global densities it computes allow for small errors 
between the estimated and the actual source-zone values. The quality of resolved densities 
maintaining the volume of the aggregate data value is called the pycnophylactic property 
(Tobler 1979; Goodchild et al. 1993).  

hence there is another statistical technique for estimating the globally uniform density for 
each land class while satisfying the pycnophylactic property - the EM algorithm (Flowerdew 
& Green 1991; Flowerdew & Green 1992; Gregory & Paul 2005). However, the assumption 
of uniform area density for each land class might be problematic when dealing with many 
areas over a large region where relationships between population and land class are not 
spatially uniform. Langford (2006) argued that global fitted density can be estimated at local 
level by dasymetric mapping which allows for some global variability in density for each land 
class.  

A simple example is binary dasymetric mapping (Eicher & Brewer 2001) which takes a 
binary land classification to control the population allocation. It assumes a non-zero density 
in the populated areas within each source zone and a zero density elsewhere. Hence 
varying assumptions can be made about the density in a functional way. A further refinement 
to this is three-class dasymetric mapping (Mennis 2003), which incorporates a functional 
relationship with area densities so that densities are uniform within a source zone even 
though they may vary across the larger region.  

Overall, the density assumptions of different spatial disaggregation techniques can be 
illustrated by Figure 1, where the vertical bars represent density for each land use class and 
the parallel bar represents the density of the source zones. Comparably, the most relaxed 
assumption of homogeneity used by three-class dasymetric mapping is close to the 
complexity of real world.  

      a        b               c           d 

Figure 1 - Density assumptions of different spatial disaggregation techniques  

The three-class dasymetric mapping is theoretically more appropriate to accommodate the 
spatial heterogeneity of a large geographical area. Langford (2006) evaluated spatial 
disaggregation techniques using UK Census data for the county of Leicestershire. The 
results show that the three-class dasymetric method largely outperforms other spatial 
disaggregation techniques, apart from the comparatively simpler binary dasymetric method.  

One possible reason of this inconclusive result is the more complex three-class dasymetric 
technique is more sensitive to the land classification errors. On the other hand, as Fisher 
and Langford (1995) pointed out, the significance of comparative results is always limited by 
simplicity in the spatial structure of the study area, and a more conclusive result could be 
experimentally validated by broadening the study area to include more spatial 
heterogeneous density.  

Therefore, the task in this study is to fully evaluate the accuracy of three-class dasymetric 
mapping using a larger and more complex geographical area, namely South East 
Queensland (SEQ), Australia, to verify previous findings. In other words, we will conduct a 
comparative investigation to determine the accuracies of four spatial disaggregation 
methodologies, namely binary dasymetric, a regression model, a locally fitted regression 
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model and a three-class dasymetric technique to spatially disaggregate population data. The 
aim is to obtain error estimates on spatial variables that will be used in other predictive 
models. Specifically, models will be developed to predict the future urban growth in SEQ.  

The structure of remainder of this paper is as follows. The study area of SEQ and datasets 
used in the study are introduced in the next section – section 2. We demonstrate that the 
region of SEQ has more variability than areas used in other comparative studies of spatial 
disaggregation methods. In section 3, we describe the spatial disaggregation methods to be 
tested. In section 4, we discuss the results from the spatial disaggregation techniques, by 
examining visualised outputs of spatial disaggregation based on different assumptions, and 
by evaluating the absolute errors and root-mean-square-errors (RMSE) of the results. In the 
final section we summarise our findings and indicate some directions for future work. 

2.  The Study Area and Data 

The SEQ region covers a relatively large geographical area (2,279,903 hectares) and 
houses a population of 2,479,295. Figure 2 depicts the settlement pattern of SEQ, which 
varies greatly, from the city for Brisbane and growing populations in nearby coastal 
settlements of the Sunshine and Gold Coast. The latter forms a metropolitan region which is 
colloquially described as “the 200km city” (Brisbane institute, 2004). By contrast, the 
population drops off dramatically away from the coast, with the exception of the two cities of 
Ipswich and Toowoomba.  

 

Figure 2 - Spatial characteristics of SEQ 

Although, the eastern part of the region is heavily populated and urbanized, it is still mixed 
with other land covers in many small areas (see Figure 3). This makes he region 
substantially spatially unbalanced in terms of land use variations, with the population density 
varying either globally or locally. 
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Figure 3 -  Mixed land use in the local areas 

In short, the degree to which population density varies throughout SEQ is much greater than 
in areas used for previous studies undertaken by Langford & Fisher (1996) and by Langford 
(2006), who used the county of Leicestershire, UK. Table 2 describes the degree of spatially 
heterogeneous density for the two study areas.  

Leicestershire has a relatively uniformly population of 459,772 dispersed across high-, 
medium- and low-density residential areas, and it covers an area of 81,700 hectares. By 
contrast, SEQ exhibits a greater degree of heterogeneity. There are much greater extremes 
of residential density, which is highlighted in the final column (density ratio) of Table 2. The 
density variation for SEQ is due to population concentrations that are distributed unevenly 
across the region and so SEQ is considered a more suitable study area to more rigorously 
evaluate the relative performances of spatial disaggregation techniques. 
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Study 
Area 

Total 
Pop. 
(‘000) 

Total 
Size 
(‘000 
hect.) 

Ave. 
Density 

Ave. 
high 
density 

Ave. 
medium 
density 

Ave. low 
density 

Density 
Ratio 
(high/low) 

Leicest
ershire 

459 82 5.628 
 

37.839 
 

21.114 
 

4.746 
 

7.97 
 

SEQ 2,479 2,280 1.087 
 

6.85 
 

2.99 
 

0.0379 
 

180.8 
 

Table 2 - Population density variations for SEQ in comparison to Leicestershire. 

2.1  Data   

The Australian Bureau of Statistics (ABS) provides census data for statistical collection 
zones and urban areas. We test a single case of error for each spatial disaggregation 
technique using the 2001 census data. We obtained population counts for 298 statistical 
local areas (SLAs) that are used as source zones (see Figure 4. a).  The census data at 
urban centre localities (UCL), classified as low-density urban and high-density urban areas, 
were used as both control zones (79 polygons) and target zones (80 polygons). In this case, 
the target zones are spatially non-contiguous with source zones and congruent with control 
zones (see Figures 4.b and 4.c).  

 

a    b    c 

Figure 4 - Data for the test 

For the purpose of accuracy evaluation, we only spatially disaggregate population data for 
the urban areas in the SEQ region. Hence overall there are less target zones than source 
zones. Most target zones are smaller than source zones except in the central urban areas 
where the reverse is the case (i.e. the target zones are larger than the source zones). 
However, this only represents a small part of the data and such a limitation was deemed 
acceptable for testing each of the spatial disaggregation techniques. 

3.  Methodology  

The principle of spatial disaggregation is to transfer data from one zonation to another in a 
spatially disaggregate manner. The original spatial units, with known data, are called source 
zones, and the final spatial units that accept the refined data are called the target zones 
which describe the same region. There are many techniques to disaggregate different types 
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of spatial variables, but the main focus in this paper is on count measurements, that is, 
disaggregating population or census counts.  

The primary aim of this paper is to compare the relative accuracies of four heterogeneous 
density solutions represented by a binary dasymetric approach, a regression model, a locally 
fitted regression model and a three-class dasymetric technique. It is recognised that more 
spatial disaggregation techniques exist, but this paper includes the most representative 
classes of techniques based on the different density assumptions, as detailed in the 
literature. 

3.1  Simple Area Weighting  

Simple area weighting is based on proportioning the source attribute by area, given the 
geometric intersection of the source zones and target zones. It assumes homogeneity within 
each source zone, and based on this assumption the data for each target zone can be 

estimated as:  

∑
×

=
s s

sst
t

A

PA
P                                                                                                 (1) 

where: tP is the estimated population count at target zone t;  

sP  is the observed population for the source zone s;  

sA  is the area size of source zone s and 

stA  is the area size of intersection of source and target zones.  

The technique is rather easy to implement without any ancillary data demand.  

The problem with this method is that it is incorrect to assume that density of population 
within the source zones is uniform. There have been numerous studies that have shown the 
overall low accuracy of simple area weighting in comparison to other techniques (see for 
example, Langford 2006; Gregory 2005; Reibel & Aditya 2006), we exclude the simple area 
weighting method from the our comparison set in this study. 

3.2  Binary Dasymetric Mapping  

Researchers have attempted to relax the restrictive assumption of homogeneous density by 
adding supplementary knowledge about locality onto the spatial structure of source zones. 
Binary dasymetric mapping (Langford & Unwin 1994; Langford & Fisher 1996) uses a binary 
land use classification (either populated or empty areas) as ancillary data to aid area-based 
data interpolation.  

The purpose of the ancillary information is to allow the internal structure of population 
distribution within source zones to be inferred. Binary dasymetric mapping assumes that the 
population is concentrated,with fixed population density, inside the urban areas that are 
within each source zone. The method is different to simple area weighting as it only 
considers the populated areas in the target zones for allocating population to:  

∑
=

×
=

S

s sp

stsp

t
A

PA
P

1

                                                                                                  (2) 

where:  tP  is estimated population at target zone t;  

 tspA  is the area of overlap between target zone t and source zone s having land 

cover identified as populated;  
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 spA  is the source zone area identified as populated and  

 sP  is the total population in source zone s. 

However, this method is unable to address more complex land uses that have a variety of 
population concentrations. Also, areas with low populations are always arbitrarily ignored 
and this may be a significant problem. 

3.3  The regression model 

The regression model exploits ancillary spatial information to improve estimation accuracy. 
Detailed ancillary information is typically derived from remotely sensed data, or land use 
data, to classify the levels of urbanization on the land which will take higher or lower 
population concentrations. That is, regression methods obtain global estimates for density 
for each land class over the entire study area.  

In other words, they assume that the given source zone population may be expressed in 
terms of a set of densities related to the areas assigned to the different land classes. Other 
ancillary variables may be included for these area densities, but the basic model is: 

)(
1

ssc

C

c

cs AdP ε+⋅=∑
=

                                                                                          (3) 

where:  sP is the total population count for each source zone s;  

 c is the land cover class;   

 scA  is the area size for each land class within each source zone;   

 
cd  is the coefficient of the regression model and  

 sε is the random error.  

The intercept is always set to zero, as an area with size zero should have zero population, 
and although a linear regression equation Is usually used Langford et al. (1991) found that 
increasing the complexity of the equation will improve the accuracy of the interpolation 
results. Accordingly, in this research we take three land classifications (high density urban,; 
low density urban and non-urban) as independent variables for establishing regression 
relationships with population counts.   

However, regression analysis is not supported by current GIS products and so it requires 
additional statistical software (e.g. SPSS) to do the analysis. Another disadvantage is that 
because the densities are derived from a global context, they remain spatially stable within 
each land class throughout the study area. Hence the nature of spatial variation between 
different census reporting zones that have the same land class cannot be addressed 
properly. This is why Langford (2006) argued that the locally fitted approach used by 
dasymetric method will always outperform the global fitting approach used by regression 
models. 

Another statistical approach in the same density-solution class as the regression model is 
the EM algorithm (Flowerdew and Green 1992). Rather than using a regression approach, 
the EM algorithm incorporates an iterative, best-fitting approach to derive the density for 
each land class that satisfies the pycnophylactic property.  

Although the EM algorithm is complex, it is still based on the same assumption that the 
densities for each land class are constant across the space (see Figure 1). The method is 
presumed to have same level of ability to address spatially heterogeneous density as the 
regression model. Therefore, in this study we only implement the regression model . It is 
deemed unnecessary to duplicate of the same type of density solution.  
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3.4  The locally fitted regression model  

The locally fitting approach was introduced by Yuan et al. (1997) and Langford (2006) to 
improve the reliability of estimated densities derived from the regression model. It was 
developed initially to ensure that the populations reported within target zones were 
constrained to match the overall sum of the source zones (the pycnophylactic property). That 
is, the globally estimated density for each land class is locally adjusted within each source 
zone by the ratio of the predicted population and census counts. In this way a variation of the 
absolute value of population densities is achieved by reflecting the differences in terms of 
local population density between source zones.  

The mathematical expression of the density-adjusting approach is: 

c

es

s

cs d
P

P
d ×=                                                                                                        (4) 

where: 
csd is the specific density estimates for class c in zone s;  

sp is the actual population of source zones s;  

esP is the estimated population of source zone s and  

cd is the initial global density estimate of land class c.  

The use of locally fitted regression has modified the assumption of the regression model by 
objectively allowing spatially inconsistent density values within each land class. This 
approach is comparably simple, but based on the relaxed homogeneity assumptions 
regarding density. It is quite desirable for SEQ and well worth being compared with the more 
advanced, three-class dasymetric mapping method. 

3.5  Three-class dasymetric mapping  

The three-class dasymetric mapping (Mennis 2003; Langford 2006) takes advantage of 
binary dasymetric mapping and the regression model with a limited number of ancillary class 
variables (i.e. non-urban, low-density residential and high-density residential) to present a 
range of residential densities within each source zone. The technique is based on the most 
relaxed assumption about homogeneous density for each land class within each source 
zone (same homogeneity level within the locally fitted regression approach, see Figure 1).  

Different variables have been used to define density variability. Langford (2006) requires the 
relative densities for each land class within each source zone to implement three-class 
dasymetic mapping. The equation is given as: 

∑∑∑∑
====

==
C

c

sctsc

S

s

C

c sc

sstc
S

s

t dA
A

PA
P

1111

                                                                        (5) 

where: tP is the estimated population of target zone t;  

stcA is the area of intersection between target zone t and source zone s, and 

identified as land class c;  

sP is the population of source zone s and 

scA is the area of source zone s identified as land class c. 

Alternatively, Mennis (2003) established the relative ratios of density values (density fraction 
given by equation 6) assigned to each land cover to accept certain proportions of the total 
population from each source zone (see equations 6 – 9). Mennis’s work is a modified version 
of the previous simplistic method of dasymetric mapping which applied a fixed proportion of 
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population for each land use type (Eicher & Brewer 2001). Similarly to the regression model, 
Mennis (2003) used an area-based, locally fitting approach to adjust the global density 
fractions within each source zone while allowing spatial inconsistency to exist (see equations 
7 and 8).  

∑
=

=
n

c

ccc ddD
1

                                                                                                (6) 

)/( sscsc aaA =                                                                                                       (7) 









××= ∑

=

n

c

sccsccsc ADADf
1

)(/)(                                                                               (8) 

( ) sctscssc

S

s

t aaPfP /
1

××=∑
=

                                                                                 (9) 

where: in eqn. (7),  scA is the area ratio;  

sca  is the area size for each land class within each source zone and 

sa is the size of each source zone.  

In eqn. (8), scf is the adjusted density fraction which will be an overall score used by the 

target zone when taking population counts. 

The geographic pattern of SEQ is similar to that of the Southeast Pennsylvania (Mennis 
2003). Therefore we adapted the three-class dasymetric technique proposed by Mennis 
(2003) using a density fraction. The technique is expected to well accommodate the spatially 
skewed land use variation. Compared with simpler techniques, this method is complex, and 
modification is required due to different data conditions.  

3.6  Modification of three-class dasymetric mapping - a hybrid model 

Mennis (2003) suggested a sampling approach to assess the relative density fractions for 
each land class. This assumes the original spatial units of population are small enough to be 
contained entirely within each ancillary land class. However, the sizes of source zones in 
SEQ are fairly large, especially in the non-urban areas, and this makes the sampling 
approach unfeasible. 

Instead, we estimated the initial density fractions using a regression model (see equation 10) 
rather than selective sampling. This approach integrates the elements of the regression 
model and the dasymetric method, and so it can be described as a hybrid model (Langford 
2006). 

)(
1

sc

n

c

cs adP ⋅=∑
=

                                                                                                (10)                                    

Overall, the conceptual working process of three-class dasymetric mapping is illustrated as 
follows: 
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Figure 5 - A flowchart of the dasymetric mapping process 

4.  Results and discussion 

As with previous studies, we evaluated errors for spatial disaggregation using actual values 
from independent data sources at the most refined spatial unit of population, namely the 
CCD (census collection district). However, without simulation of target zones the original 
CCDs are spatially contiguous with SLAs, which are not appropriate for testing the selected 
spatial disaggregation techniques.  

As an alternative, we make single comparisons using urban footprints (UCL) as target 
zones. The latter contain true population data at a smaller spatial unit than SLAs and so they 
may be used to check the performance of the different disaggregation methods. As the 
population count for urban footprints are reported at two density levels (high-density urban 
and low-density urban), the errors of each spatial disaggregation technique are only 
identified within urban areas, and error assessment within non-urban areas is not included. 

In Figure 6 (a - d), the absolute errors of the disaggregated values generated by each 
technique are visualized at the target zones. Examination of this visualized error has been 
an efficient method for analysing the results (Eicher & Brewer 2001; Reibel 2005). A visual 
presentation of results provides a comparison against our knowledge of existing 
development and patterns of settlement change (Langford 1991).  

In each case the majority of errors are concentrated in the higher density urban areas, the 
rural areas generally having lower errors due to smaller populations within these zones. By 
comparing the error maps, we can distinguish the degree of errors between each technique 
for the same target locations. The three-class dasymetric mapping presents the lowest 
overall degree of error across the region. The regression model produced the highest error, 
especially in the high density urban area. The binary dasymetric mapping and the locally 
fitted regression approach gave a similar distribution of error.  

Land use 

Source zones  

Density fraction 

Area ratio  

Total density 
fraction  

Land use 

Source zones 

Target zones 

Intersection 
zones with land 
class type  

Intersection 
zones  

Source zone 
population 

Population at 
intersection   
zones 

Population at 
target zones 
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   a. Error distribution of binary dasymetric        b.  Error distribution of the regression model 
       mapping 

 

   c.  Error distribution of three-class                 d.  Error distribution of the locally fitted regression 
        dasymetric mapping    model    

Figure 6 -  The visualized absolute errors of four techniques that disaggregate population 
from SLAs to urban footprint polygons. 
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Table 3 summarizes the outputs and errors for each technique in detail. The errors of the 
results are measured by absolute error for each density category and root mean square 
errors (see equation 11) (Gregory 2002). The italicised figures in the table show the value of 
overestimation and the value of underestimation. 

( )
2/1

2
ˆ1









−= ∑

t

tt

RMS
YY

t
E                                                                                (11) 

Techniques Low density 
urban 

High density 
urban 

Non-urban Sum of 
population 

RMSE 

Binary 
dasymetric 
mapping 

92824 
+ 66017 

2376345 
+ 142400 

-- 2469619 5775.1 

Three-class 
dasymetric 

27152 
+ 345 

2283716 
- 49771 

168290 2479158 2956.3 

Global 
Regression 

37187 
+ 10380 

1721474 
- 512471 

76415 1835076 49744.4 

Locally fitted 
Regression 

40567 
+ 13760 

2353053 
+ 119108 

85639 2479259 5029.5 

UCL (True 
Value) 

26807 2233945 -- 2260752 
 (Target Zones) 

 

SLA    2479295 
(Source Zones) 

 

Table 3 -  A comparison table of the accuracies of different spatial disaggregation 
techniques (by absolute error and RMSE). The italicised figures represent the 
value of overestimation or underestimation. 

From Table 3 we can see that the technique using constant, globally fitted parameters 
(density for each land class) is extremely unreliable for disaggregating population data for 
SEQ with its diverse densities. The overall RMSE (49774.4) of the regression model is 
surprisingly much higher than other techniques. This has not been revealed from previous 
studies based on simpler datasets.  

The result showed significant underestimation of population in the high density urban area (-
512,471), which means the natural bias of population concentration is basically not well 
addressed by the regression model. This result suggests that the regression model, being 
based on the constant density assumption, is an unreliable method for disaggregating spatial 
data within a complex geographical area. 

The binary dasymetric mapping technique was also found unsatisfactory. This is evidenced 
by an overestimation for both low-density residential areas (+66,017) and high-density 
residential areas (+142,400), and there is no population left on the non-urban land. The main 
problem is the limitation of data for testing binary dasymetric mapping, because target zones 
are congruent with control zones and the non-urban polygons do not cross the boundaries of 
any populated areas. Based upon the method of binary dasymetric mapping, there was not 
any population in the populated area that got a chance to be allocated to the non-urban 
area.  

From this case we can see that the application of binary dasymetric mapping will be 
constrained whenever binary land classifications are defined at target zones. Nevertheless, 
the overall accuracy of binary dasymetric mapping at target zones is better than that of the 
regression model that uses absolute classified densities (5775.1 is smaller than 49744.4 
RMSE). These results are consistent with previous findings: a globally fitted regression 
model gives poorer accuracy than the locally fitted dasymetric method (Fisher & Langford 
1995). 
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Also, the locally fitted regression model with variable densities has better accuracy than the 
regression model. Based on the improvement of the high-density population estimation, we 
conclud that calibrating the global density at each source zone is necessary when dealing 
with large areas that have complex density distributions. Also, this technique slightly 
outperforms binary dasymetric mapping (5029 is smaller than 5775 RMSE). This is plausible 
because the technique takes advantages of both a locally fitting approach and a multiple 
population density classification. However, its accuracy did not seem to be competitive with 
three-class dasymetric mapping that uses a more complex rescaling approach.  

Three-class dasymetric mapping produced the least error in all density categories and 
overall RMSE (2956.3) compared to the other techniques. These improvements are 
because:  

(a)  SEQ is more complex than previous study areas;  

(b)  the estimate of initial density fractions, using a regression model, is better than a 
traditional sampling approach; 

(c)  the area-based scaling approach improved the ability of three-class dasymetric 
mapping.  

Note that unlike the three-class dasymetric mapping test by Langford (2006), which used 
constant density fractions, we applied variable density fractions. This is more appropriate for 
addressing the spatial non-stationarity for each land use class over the space. The result is 
reasonable because a technique based on complex density assumptions will always be 
expected to be more accurate.  

On the other hand, we can see that three-class dasymetric mapping produced more error in 
the high-density urban area than in the low-density urban area. This is possibly caused by 
the quality of control zones. The coarse high-density urban polygons did not subdivide the 
urban area into multiple densities, and the latter actually need to be specified because errors 
in land classification might mistakenly inform the disaggregation process. Improvement 
might be possible through refinement of ancillary data. 

5.  Conclusions and future research 

This paper has examined the comparative accuracy of four methods for spatially 
disaggregating data in the context of modelling the population of SEQ. In this study, three-
class dasymetric mapping based on the better assumption of homogeneous density in 
addition to incorporating detailed ancillary data was found to provide the most accurate 
result. The degree to which this technique was found to be superior is attributed to the fact 
that SEQ is a relatively large geographical area with a considerable range of population 
densities. Another finding is that, although based on the same level of density assumptions, 
the three-class dasymetric mapping using an area-based, locally fitted approach outperforms 
a locally fitted regression model that uses a density-based, locally fitting approach.  

However, since the three-class dasymetric mapping is still based on the limited classification 
of residential densities, improvement could be made by incorporating multi-class or spatially 
continuous ancillary information. For example, the land class could be further divided into 
five or eight density categories. In addition, the application of a Monte Carlo simulation 
approach could be employed to randomly simulate different sets of target zones to generate 
multiple RMSEs based on various geographical situations. By evaluating the statistical 
distributions of errors, the hidden relationships between estimation accuracy and spatial 
factors (i.e. MAUP) could be further visualized and analysed. 

Overall, the results indicate that the three-class dasymetric approach is the most appropriate 
technique for spatially disaggregating census-derived population data in SEQ.  The ability to 
reliably generate spatially disaggregated estimates of population is of prime importance for 
inputting into urban modelling and policy development. 
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