Mutation of the Arg191 in FtsZ impairs cytokinetic abscission of Bacillus

 subtilis cellsFunding source - The work is supported by a grant from Department of Science and Technology (DST, India) to DP.

Hemendra Pal Singh Dhaked ${ }^{1,+}$, Anusri Bhattacharya ${ }^{1,+}$, Saroj Yadav 2, Sarath Chandra Dantu ${ }^{1}$, Ashutosh Kumar ${ }^{1}$, \& Dulal Panda ${ }^{1, *}$
${ }^{1}$ Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
${ }^{2}$ IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, 400076, India
${ }^{+}$These authors contributed equally to this work
*Corresponding Author - Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India. Telephone: 91-22-2576-7838. Fax: 91-22-2572-3480. Email: panda@iitb.ac.in.

Supporting Figures

Fig. S1. Effects of plumbagin on the fluorescence intensity of ANS in the presence of WTFtsZ or with R191A-FtsZ. (A) WT-FtsZ $(2 \mu \mathrm{M})(+)$ was incubated with $2(\bullet), 5(\Delta), 10(\mathbf{\square})$, $15(\circ), 20(\diamond), 50(\diamond), 70(\mathbf{\Delta})$, and $100 \mu \mathrm{M}(\times)$ plumbagin at $25^{\circ} \mathrm{C}$ for 10 min . (B) R191AFtsZ $(2 \mu \mathrm{M})(\square)$ was incubated with $10(\bullet), 20(\Delta), 40(■), 50(\circ), 70(\diamond), 100(\diamond)$ and120 $\mu \mathrm{M}(\mathbf{\Delta})$ plumbagin at $25^{\circ} \mathrm{C}$ for 10 min . Then, ANS $(30 \mu \mathrm{M})$ was added in the samples and incubated for 30 min at $25^{\circ} \mathrm{C}$. The fluorescence spectra were recorded in the range of 430520 nm using 350 nm as an excitation wavelength. The fluorescence spectra of plumbagin (0$120 \mu \mathrm{M}$) was also recorded as a blank. The change in fluorescence at 475 nm was calculated by subtracting blank from the respective data sets. A dissociation constant of the binding interaction of plumbagin with WT-FtsZ and with R191A-FtsZ was determined from the fluorescence change data as described previously ${ }^{1}$.

Fig. S2. The effect of plumbagin on the assembly kinetics of R191A-FtsZ. R191A-FtsZ (12 $\mu \mathrm{M}$) was incubated without (ם) or with $20(■)$ and $40 \mu \mathrm{M}(\bullet)$ plumbagin for 15 min on ice and then, the assembly kinetics was monitored by adding 1 mM GTP at $37^{\circ} \mathrm{C}$. The light scattering intensity of buffer (Δ) [25 mM PIPES (pH 6.8), 50 mM KCl and $10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$] was also monitored as a blank.

Fig. S3: Secondary structures of WT-FtsZ and R191A-FtsZ. Molecular dynamics simulations of WT-FtsZ and R191A-FtsZ generated 20,000 structures in one trajectory. For each structure, secondary structure was calculated using DSSP tool from GROMACS package. On the y-axis secondary structure of each residue is shown and x-axis shows how the secondary structure of each residue evolved during the course of the simulation. H5-helix: residues 179203 and T7-loop: residues 204 to 210.

Fig. S4: Root mean square fluctuation analysis of WT-FtsZ and R191A-FtsZ
simulations. Root mean square fluctuation analysis was performed to identify regions of structural change. Three simulations each for the WT-FtsZ and R191A-FtsZ that were performed are shown in black, red, and green.

Fig. S5: Distance plot between the residue F138 and N176 C-alpha atoms in WT-FtsZ and R191A-FtsZ simulations.

Table S1. The role of different domains of FtsZ.
$\left.\begin{array}{|l|l|}\hline \text { Domian or residues of FtsZ } & \text { Function } \\ \hline \begin{array}{l}\text { 1. N-terminal domain and C-terminal } \\ \text { domain of T. maritima FtsZ }\end{array} & \begin{array}{l}\text { 1. Both domains can fold } \\ \text { independently into functional tertiary } \\ \text { structure. }^{2}\end{array} \\ \hline \begin{array}{l}\text { 2. Poorly conserved last 6 residues } \\ \text { (NRNKRG) of B. subtilis FtsZ }\end{array} & \begin{array}{l}\text { 2. These residues are essentially } \\ \text { required to promote the high degree of } \\ \text { lateral interactions between FtsZ } \\ \text { polymers. The change in this region of }\end{array} \\ \text { FtsZ produces significant defect in cell } \\ \text { division in vivo. }\end{array}\right\}$

Table S2. Comparison of root mean square deviation of backbone atoms of entire protein and only helices H 4 and H 7 .

	Simulation-1		Simulation-2		Simulation-3	
	Entire protein (nm)	 H7(nm)	Entire protein(nm)	 H7(nm)	Entire protein(nm)	 H7(nm)
	0.16 ± 0.02	0.19 ± 0.02	0.19 ± 0.04	0.2 ± 0.03	0.17 ± 0.02	0.18 ± 0.03
	0.17 ± 0.02	0.2 ± 0.03	0.17 ± 0.02	0.19 ± 0.02	0.19 ± 0.02	0.27 ± 0.02

Average \pm Standard deviation

Movie S1: The MD simulation of R191A-FtsZ and WT-FtsZ.

Movie is attached as FtsZ_HelixTilt.vlc file.

References:

(1) Bhattacharya, A., Jindal, B., Singh, P., Datta, A., and Panda, D. (2013) Plumbagin inhibits cytokinesis in Bacillus subtilis by inhibiting FtsZ assembly--a mechanistic study of its antibacterial activity. FEBS J. 280, 4585-4599.
(2) Martín-Galiano, A. J., Buey, R. M., Cabezas, M., and Andreu, J. M. (2010) Mapping flexibility and the assembly switch of cell division protein FtsZ by computational and mutational approaches. J. Biol. Chem. 285, 22554-22565.
(3) Scheffers, D.-J., de Wit, J. G., den Blaauwen, T., and Driessen, A. J. M. (2002) GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers. Biochemistry 41, 521-529.
(4) Jindal, B., and Panda, D. (2013) Understanding FtsZ assembly: cues from the behavior of its N- and C-terminal domains. Biochemistry 52, 7071-7081.
(5) Buske, P. J., and Levin, P. A. (2012) Extreme C terminus of bacterial cytoskeletal protein FtsZ plays fundamental role in assembly independent of modulatory proteins. J. Biol. Chem. 287, 10945-10957.
(6) Oliva, M. A., Trambaiolo, D., and Löwe, J. (2007) Structural Insights into the Conformational Variability of FtsZ. J Mol Biol. 373, 1229-1242.

