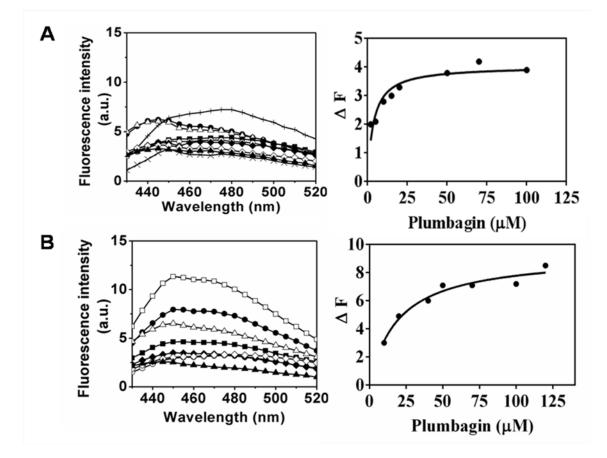
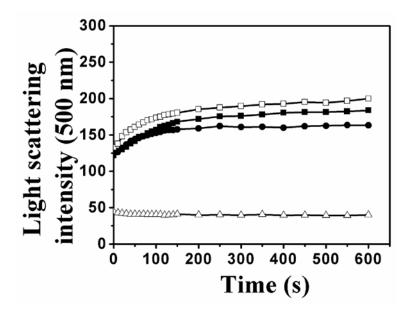
Mutation of the Arg191 in FtsZ impairs cytokinetic abscission of *Bacillus subtilis* cells

Funding source – The work is supported by a grant from Department of Science and Technology (DST, India) to DP.

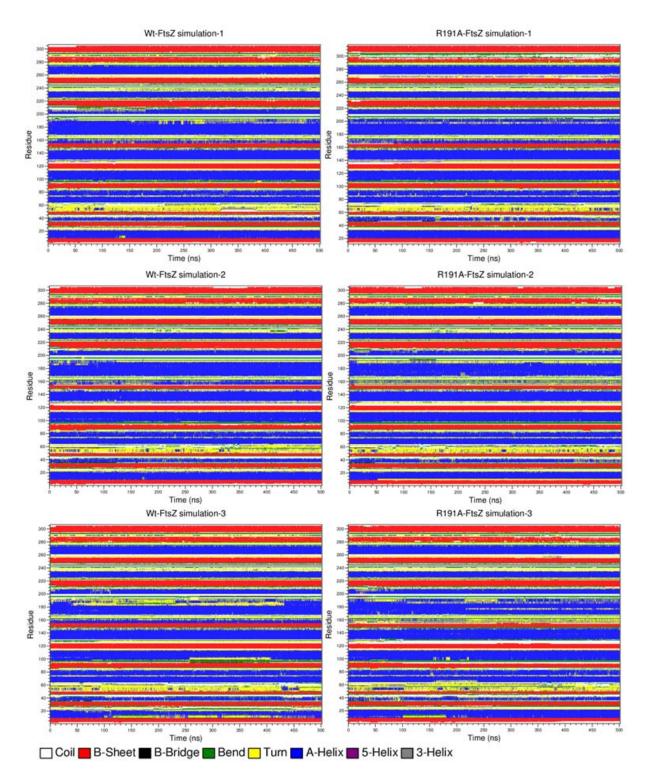
Hemendra Pal Singh Dhaked^{1,+}, Anusri Bhattacharya^{1,+}, Saroj Yadav², Sarath Chandra Dantu¹, Ashutosh Kumar¹, & Dulal Panda^{1,*}

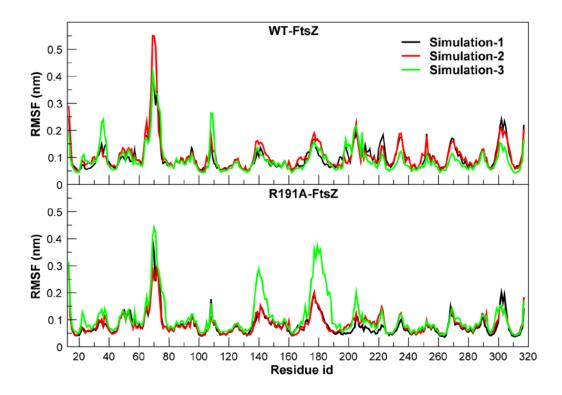

¹Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India

²IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai, 400076, India


⁺ These authors contributed equally to this work

***Corresponding Author** - Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India. Telephone: 91-22-2576-7838. Fax: 91-22-2572-3480. Email: panda@iitb.ac.in.


Supporting Figures


Fig. S1. Effects of plumbagin on the fluorescence intensity of ANS in the presence of WT-FtsZ or with R191A-FtsZ. (A) WT-FtsZ (2 μ M) (+) was incubated with 2 (•), 5 (Δ), 10 (•), 15 (•), 20 (•), 50 (•), 70 (•), and 100 μ M (×) plumbagin at 25 °C for 10 min. (B) R191A-FtsZ (2 μ M) (\Box) was incubated with 10 (•), 20 (Δ), 40 (•), 50 (•), 70 (•), 100 (•) and 120 μ M (•) plumbagin at 25 °C for 10 min. Then, ANS (30 μ M) was added in the samples and incubated for 30 min at 25 °C. The fluorescence spectra were recorded in the range of 430-520 nm using 350 nm as an excitation wavelength. The fluorescence spectra of plumbagin (0-120 μ M) was also recorded as a blank. The change in fluorescence at 475 nm was calculated by subtracting blank from the respective data sets. A dissociation constant of the binding interaction of plumbagin with WT-FtsZ and with R191A-FtsZ was determined from the fluorescence change data as described previously¹.

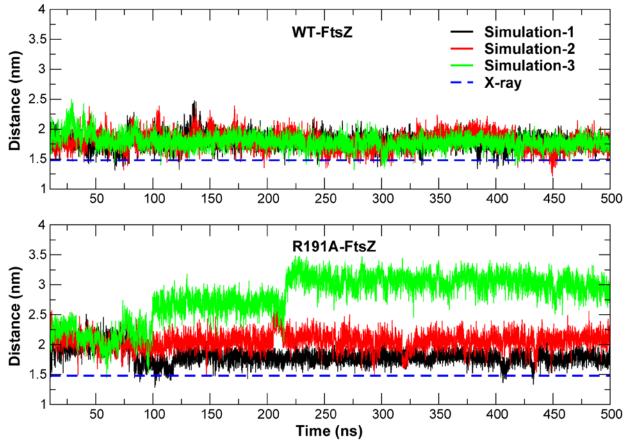

Fig. S2. The effect of plumbagin on the assembly kinetics of R191A-FtsZ. R191A-FtsZ (12 μ M) was incubated without (\Box) or with 20 (\blacksquare) and 40 μ M (\bullet) plumbagin for 15 min on ice and then, the assembly kinetics was monitored by adding 1 mM GTP at 37 °C. The light scattering intensity of buffer (Δ) [25 mM PIPES (pH 6.8), 50 mM KCl and 10 mM MgCl₂] was also monitored as a blank.

Fig. S3: Secondary structures of WT-FtsZ and R191A-FtsZ. Molecular dynamics simulations of WT-FtsZ and R191A-FtsZ generated 20,000 structures in one trajectory. For each structure, secondary structure was calculated using DSSP tool from GROMACS package. On the y-axis secondary structure of each residue is shown and x-axis shows how the secondary structure of each residue evolved during the course of the simulation. H5-helix: residues 179-203 and T7-loop: residues 204 to 210.

Fig. S4: Root mean square fluctuation analysis of WT-FtsZ and R191A-FtsZ simulations. Root mean square fluctuation analysis was performed to identify regions of structural change. Three simulations each for the WT-FtsZ and R191A-FtsZ that were performed are shown in black, red, and green.

Fig. S5: Distance plot between the residue F138 and N176 C-alpha atoms in WT-FtsZ and R191A-FtsZ simulations.

Table S1. The role of different domains of FtsZ.

Domian or residues of FtsZ	Function			
1. N-terminal domain and C-terminal	1. Both domains can fold			
domain of T. maritima FtsZ	independently into functional tertiary			
	structure. ²			
2. Poorly conserved last 6 residues	2. These residues are essentially			
(NRNKRG) of <i>B. subtilis</i> FtsZ	required to promote the high degree of			
	lateral interactions between FtsZ			
	polymers. The change in this region of			
	FtsZ produces significant defect in cell			
	division <i>in vivo</i> . ³			
3. a) N1-FtsZ (1–178 residues) and	3. a) Both N-domains have ability to			
N2-FtsZ (1–204 residues) of <i>B. subtilis</i>	polymerize and form filamentous			
FtsZ	polymers independently. ⁴			
b) C1-FtsZ (205–366 residues), C2-	b) These C-domains cannot form			
FtsZ (176-366 residues) and C3-FtsZ	polymers and also inhibited the			
(176-382 residues) of <i>B. subtilis</i> FtsZ	Polymerization of FL-FtsZ. ⁴			
4) Mutations of Asn207, Asp209, and	4) Severely affected GTP hydrolysis. ⁵			
Asp212 in the T7 loop of EcFtsZ				
5) H7 helix of <i>Methanococcus</i>	5) H7-helix maintains communication			
jannaschi FtsZ	between N-and C-terminal domain,			
	and bending of it can regulate			
	assembly/disassembly of FtsZ. ⁶			

Table S2. Comparison of root mean square deviation of backbone atoms of entireprotein and only helices H4 and H7.

	Simulation-1		Simulation-2		Simulation-3	
	Entire	H5 &	Entire	H5 &	Entire	H5 &
	protein	H7(nm)	protein(nm)	H7(nm)	protein(nm)	H7(nm)
	(nm)					
WT-FtsZ	0.16 ± 0.02	0.19 ± 0.02	0.19 ± 0.04	0.2 ± 0.03	0.17 ± 0.02	0.18 ± 0.03
R191A- FtsZ	0.17 ± 0.02	0.2 ± 0.03	0.17 ± 0.02	0.19 ± 0.02	0.19 ± 0.02	0.27 ± 0.02

Average ± Standard deviation

Movie S1: The MD simulation of R191A-FtsZ and WT-FtsZ.

Movie is attached as FtsZ_HelixTilt.vlc file.

References:

(1) Bhattacharya, A., Jindal, B., Singh, P., Datta, A., and Panda, D. (2013) Plumbagin inhibits cytokinesis in Bacillus subtilis by inhibiting FtsZ assembly--a mechanistic study of its antibacterial activity. *FEBS J. 280*, 4585–4599.

(2) Martín-Galiano, A. J., Buey, R. M., Cabezas, M., and Andreu, J. M. (2010) Mapping flexibility and the assembly switch of cell division protein FtsZ by computational and mutational approaches. *J. Biol. Chem.* 285, 22554–22565.

(3) Scheffers, D.-J., de Wit, J. G., den Blaauwen, T., and Driessen, A. J. M. (2002) GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers. *Biochemistry* 41, 521–529.

(4) Jindal, B., and Panda, D. (2013) Understanding FtsZ assembly: cues from the behavior of its N- and C-terminal domains. *Biochemistry* 52, 7071–7081.

(5) Buske, P. J., and Levin, P. A. (2012) Extreme C terminus of bacterial cytoskeletal protein FtsZ plays fundamental role in assembly independent of modulatory proteins. *J. Biol. Chem.* 287, 10945–10957.

(6) Oliva, M. A., Trambaiolo, D., and Löwe, J. (2007) Structural Insights into the Conformational Variability of FtsZ. *J Mol Biol. 373*, 1229-1242.