Supporting Information for

Mechanically Robust 3D Nanostructure Chitosan-Based Hydrogels with Autonomic Self-Healing Properties

Ali Reza Karimi,*
 † Azam Khodadadi †

[†] Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran

*Corresponding author: a-karimi@araku.ac.ir

1. The synthesis procedure for zinc phthalocyanine tetra-aldehyde (ZnPcTa)

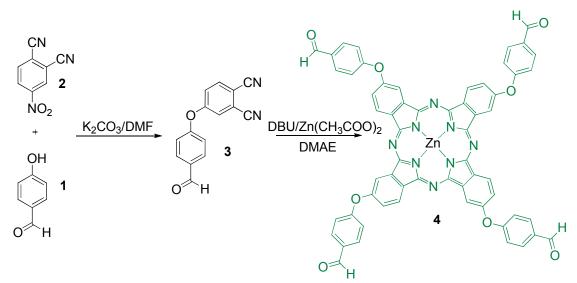
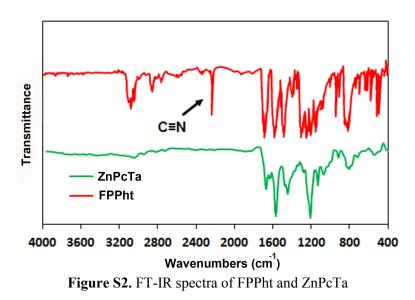



Figure S1. Synthesis of zinc phthalocyanine tetra-aldehyde (ZnPcTa)

2. Additional analyses of cross-linker

The IR spectrum of FPPht clearly indicate the presence of CN band. Figure S2 shows after cyclotetramerization of FPPht, the IR spectrum of phthalocyanine lacked the CN band, completely.

3. Pore-size of hydrogels with different wt% ZnPcTa.

As shown in **Figure S3**, the ZnPcTa concentrations show very strong regulation on the pore size distribution of the hydrogels.

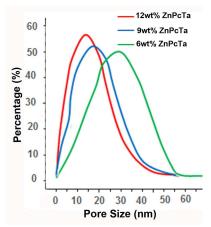


Figure S3. Pore-size distributions of the hydrogels with different wt% ZnPcTa

4. Morphology of the non-functional MWCNT hydrogel nanocomposite.

Scanning electron microscopy (SEM) analysis of the non-functional MWCNT exhibited aggregates of carbon nanotubes associated with hydrogel network.

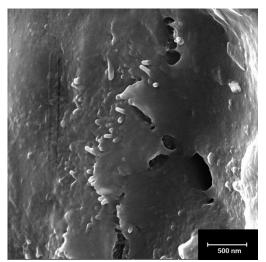
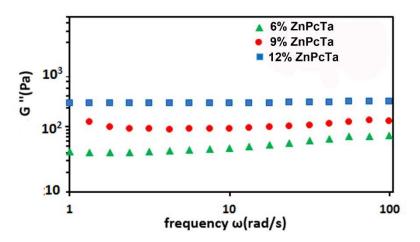



Figure S4. SEM image of hydrogel nanocomposite with 2 wt% non-functionalized MWCNTs

5. Rheological analyses of hydrogels and hydrogel nanocomposites.

The data of loss modulus (G") versus frequency (ω) of hydrogels with different concetrain of ZnPcTa and hydrogel nanocomposites with the same concetrain of ZnPcTa and different MWCNT contents are shown in **Figure S5-S6.**

Figure S5. The loss modulus G" of the hydrogels with different wt% ZnPcTa at a fixed strain, $\gamma = 5.0\%$.

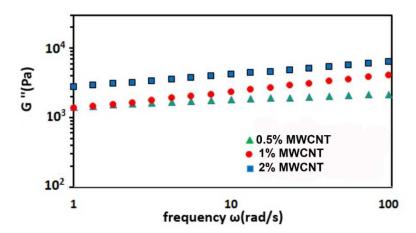


Figure S6. The loss modulus G" of the hydrogel nanocomposites with 12 wt% ZnPcTa and different wt% MWCNTs at a fixed strain, $\gamma = 5.0\%$.

5. The effect of various wt% MWCNTs on the healing rate of self-healing hydrogel nanocomposites.

As shown in **Figure S7**, the hydrogel nanocomposites prepared with 12 wt% ZnPcTa and 0, 0.5, 1, and 2 wt% MWCNT, respectively, show healing time of 15 min (m), 18 m, 20 m and 30 m, respectively. These observations are consistent with the previous report that the hydrogel nanocomposites with high wt% MWCNT resulted in a slight decrease in recovery time.

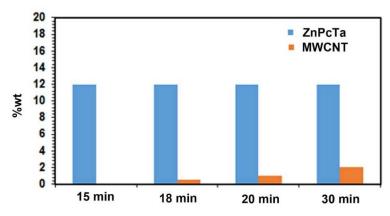


Figure S7. The effect of MWCNTs content on the healing rate of the hydrogel nanocomposites.

6. Self-healing recovery and mechanical properties of some self-healing hydrogels based on dynamic covalent Schiff-base linkage.

We investigate self-healing hydrogels with a focus on methods to test for the efficiencies of self-healing and recovery. This is followed by an explanation of the development of hydrogels that possess both selfhealing and robust mechanical properties.

Polymer/materials	Self-healing	Healing	Self-	Mechanical	Ref
i orymer, materials	mechanisms	test	recovery[%]	properties	itei
	meenamsms	test	recovery[70]	properties	
Telechelic	Schiff base	2 h, RT ^{a)}	100%, <100 s, (2	$\approx 1150 \text{ Pa}^{\text{c}}$	1
difunctional	(imine	2 11, 101	cycles of $\gamma = 20\%$	115010	1
poly(ethylene	linkage)		and 200%, $f = 1$		
glycol)	mikage)		$Hz)^{b)}$		
(PEG), and chitosan			112)		
Telechelic	Schiff base	12 h, RT ^{a)}	100%, < 10 s, (3	~0.8 kPa at	2
difunctional	(imine	12 II, KI	cycles of $\gamma = 1\%$	25 °C and	
poly(ethylene	linkage)		and $300\%, f = 1$	~ 1.5 kPa at	
glycol)	mikage)		$\frac{\text{Hz}}{\text{Hz}}^{\text{b}}$	$37 ^{\circ}\mathrm{C}^{\circ}\mathrm{C}^{\circ}$	
(PEG), and glycol			112)	37 C *	
chitosan					
Chondroitin sulfate	Schiff base	2 h, RT ^{a)}		$\approx 103 \text{ Pa}^{\text{c}}$	3
multiple aldehyde	(imine	2 II, KI		~103 F a	3
· ·			-		
and	linkage)				
N-succinyl-chitosan					
zinc phthalocyanine	Schiff base	15 min,	100%, <100 s, (3	≈2500 Pa at	-
tetra-aldehyde	(imine	RT ^{a)}	cycles of	25 °C °)	
$(ZnPcTa)^{d}$, and	linkage)		γ=1%, 80%,		
chitosan			300%,800%		
			$f = 1 \text{ Hz})^{\text{b}}$		

Table S1. Self-healing recovery and mechanical properties of some self-healing chemical hydrogels.

^{a)} Pieces of cut hydrogel rejoined, ^{b)} alternative step strain deformation, ^{c)} storage modulus G'[Pa], ^{d)} hydrogel with 12 wt% ZnPcTa.

7. The electrical conductance of self-repaired nanocomposites with 12 wt% ZnPcTa and different MWCNT-COOH contents.

I	No.	MWCNT-	Conductivity	Conductivity	Conductivity
		COOH (wt%)	(S/cm) ^b	(S/cm) ^c	$(S/cm)^d$
	1 ^a	-	4.10×10 ⁻⁶	4.06×10 ⁻⁶	3.96×10 ⁻⁶
	2 ^a	0.5	2.95×10 ⁻⁵	2.90×10 ⁻⁵	2.87×10 ⁻⁵
	3 ^a	1	3.19×10 ⁻⁴	3.16×10 ⁻⁴	3.10×10 ⁻⁴
	4 ^a	2	2.92×10 ⁻³	2.87×10 ⁻³	2.85×10 ⁻³

Table S2. Electrical healing for 3 cuts at the same severed location of nanocomposites with different

 MWCNT-COOH contents.

^a 12 wt% ZnPcTa; ^b 1st cutting–healing process; ^c2st cutting–healing process; ^d 3st cutting–healing process.

REFERENCES

- 1. Y. Zhang, L. Tao, S. Li, Y. Wei, Synthesis of Multiresponsive and Dynamic Chitosan-Based Hydrogels for Controlled Release of Bioactive Molecules. *Biomacromolecules* **2011**, 12, 2894.
- 2. T.-C. Tseng, L. Tao, F.-Y. Hsieh, Y. Wei, I.-M. Chiu, S. Hsu. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System. *Adv. Mater.* **2015**, 27, 3518
- 3. S. Lü, C. Gao, X. Xu, X. Bai, H. Duan, N. Gao, C. Feng, Y. Xiong, M. Liu. Injectable and Self-Healing Carbohydrate-Based Hydrogel for Cell Encapsulation. *ACS Appl. Mater. Interfaces* **2015**, *7*, 13029.