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This electronic supplementary material provides detailed analytical calcu-
lations for the equilibria and stability analysis for well-mixed populations.
Additionally, it provides the parameters summary with their description and
units.

1 The Jacobian matrix

Here we calculate the eigenvalues of the Jacobian matrix of the discrete
model. If the absolute values of the eigenvalues are smaller than one then
the solution in Section 3.2.1 is stable. If we write the set of equations (10) of
our two-variable model as nD(t+1) = fD(nD, nC) and nC(t+1) = fC(nD, nC),
the Jacobian matrix is defined as

J =

(
∂fD
∂nD

∂fD
∂nC

∂fC
∂nD

∂fC
∂nC

)
.

The Jacobian matrix must be evaluated at the equilibrium of interest, i.e.

n̂C = 0 and n̂D = − αATPD S

ln(1−ν/aD)
. After some algebra, the coefficients of the

matrix at the equilibrium of interest are determined

J =

(
1 + aD(1− ν/aD) ln(1− ν/aD) aD

ε
(1− ν/aD) ln(1− ν/aD)

0 1− ν + aC

[
1− (1− ν/a)

1
∆ATP ε

] )
,

where ∆ATP =
αATPD

αATPC
and ε = AD

AC
. The above matrix is upper diagonal

which means that the eigenvalues of the Jacobian are simply the diagonal
coefficients. Because ν < aD for the referred equilibrium, the element J11
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is always smaller than one and positive regardless the values of ν and aD.
Note that the logarithmic term is always negative. Therefore, the stability
of the solution is uniquely settled by the element J22. Of particular interest
is the point at which the equilibrium becomes unstable which occurs when
J22 equals one. Making J22 equal to one a relation between ΓATP and ∆ATP

is obtained.
The same analysis is done in Section 3.2.2, but instead the solution n̂D = 0

and n̂C = − αATPC S

ln(1−ν/aC)
is considered.

2 Coexistence solution

The system of equations (10) also admits a solution where the two strains
coexist. By rearranging the set of equations we verify that the coexistence
solution obeys the following set of equations:

nDε+ nC = − αATPD Sε

ln(1− ν/aD)
(SI 1)

nDε+ nC = − αATPC S

ln(1− ν/aC)
, (SI 2)

showing that there is an indeterminacy, and the coexistence solution only
exists when ∆ATP = 1

ε
ln(1−ν/aD)
ln(1−ν/aC)

. Actually Eq. (SI 1) describes a family of
solutions. Of course, the range of values at which nD and nC are mean-

ingful are nC ∈ [0,N ] and nD ∈ [0,N ], where N = − αATPC S

ln(1−ν/aC)
with the

constraint that nDε + nC = − αATPC S

ln(1−ν/aC)
. Note that when nC = 0 we recover

the solution nD = − αATPD S

ln(1−ν/aD)
, whereas if nD = 0 we recover the solution

nC = − αATPC S

ln(1−ν/aC)
. By determining the Jacobian of the system at equilib-

rium and hence calculating its corresponding eigenvalues we check whether
the coexistence solution is stable or not. With the help of mathematica,
we performed a numerical computation of the eigenvalues for different set
of parameters by varying all the range of acceptable values of nD (since nC
is written as a function of nD). As expected in this situation, one of the
eigenvalues is equal to one, which means that any disturbance in the same
direction as the line drives the system to the new values of (nD, nC). This is
called marginal stability as found in a simple predator-prey model studied by
Lotka and Volterra (Parker and Kamenev 2010). The stability of the family of
solutions will be dictated by the second eigenvalue. For the set of parameter
values used in our simulations the second eigenvalue is slightly smaller than
one, meaning that any transverse disturbance is damped by the system, thus
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warranting stability of the family of solution in Eq. (SI 1). It is important

to highlight that the coexistence solution only holds for ∆ATP = 1
ε
ln(1−ν/aD)
ln(1−ν/aC)

,
which describes a line in the diagram ∆ATP versus ΓATP .

In addition, from Eq. (10) we also notice that n̂D = 0 and n̂C = 0 are
also equilibrium solutions, where both types go extinct. The solution is only
stable when ν > aD and ν > aC .

The coexistence of the two strains can not be observed in the simulations
as the family of solutions embodies the absorbing states nC = 0 and nD = 0.
As stochasticity plays a key role in finite populations, in a finite time the
system will eventually reach one of these boundaries. Since we always start
from nC = 1, the system will probably evolve to nC = 0 in a short time.

3 Population size at equilibrium

Here we show how the stationary population size of individuals typeD (before
introducing a single strain C), Nst, depends on the set of parameters. From
this we gain some insight about the strength of stochasticity. As intuitively
expected, a linear relation between population size and the influx of resource
into the system is observed (data not shown). The linearity is not followed
when studying the dependence of the population size on the other parameters.

In Figure S1 we show the population size in terms of ΓATP = AATPD /AATPC

and ∆ATP = αATPD /αATPC , for both structured (left panel) and panmictic pop-
ulations (middle panel). The values of ΓATP and ∆ATP are varied by keeping
AATPC = 2 and αATPC = 0.5 and changing AATPD and αATPD , respectively. The
range of values of ΓATP and ∆ATP are, as argued before, those that are mean-
ingful to the problem here addressed. Please note that a logarithmic scale is
adopted for the color gradation in Fig. S1. The range of ∆ATP = αATPD /αATPC

in which population size is shown for the well-mixed populations is much
smaller than the range displayed for structured population. Outside of this
range the population already falls in the regime where the efficient strain is
counter-selected - as can be seen in Fig. 2 (Main Text). The right panel of
Fig. S1 shows the equilibrium solution for the discrete-time model of a well-

mixed population, given by n̂ = − αATPD S

ln(1−ν Emax
AATP
D

)
, as derived in Section 3.1.1.

The grey region denotes the extinction of the population, where the above
solution becomes unstable, while the solution n̂ = 0 becomes stable. The
plot evinces a very good agreement between the theoretical prediction and
simulations. The simulation results for a well-mixed population display a
larger grey area in comparison to the theoretical prediction, which owes to
stochastic effects, which are not captured by the time-discrete model. In the
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right panel, the population size is too small — around five or less individuals
— being prone to extinction.

Especially, in structured populations the stationary population size Nst

of a pure population of strain D can vary from less than 100 individuals
(small ΓATP and ∆ATP ) to nearly 5, 000 individuals (large ΓATP and ∆ATP ).
The wide range of the population size at equilibrium explains why we should
adopt a relative measurement of fixation probability since the strength of
drift, namely 1/Nst, is variable under the change of the parameter values.
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Figure S1: Stationary population size of defectors. The figure is a heat map
of the population size of defectors (just before the introduction of a single
cooperator) in terms of AATPD and αATPD . Left panel: simulation results
for structured populations, middle panel: simulation results for well-mixed

populations and right panel: theoretical prediction, nD = − αATPD S

ln(1−νEmax/AATPD )
.

The other parameter values are influx rate of resource S = 25, death rate ν =
0.01, group carrying capacity Pmax = 10, internal energy for one individual
to split to two individuals Emax = 10, and AD = 10. The simulation data
points correspond to 40 distinct populations and for each population 10, 000
independent runs were performed. The black lines denote isoclines, along
which the population size is a constant (corresponding values indicated). The
grey region denotes a region where the defector population is not sustainable
and goes to extinction (before inserting the cooperator).

4 Parameters summary

For the sake of clarity we summarise the parameters of the model, including
a short description and units. We use as basic units the time step, resource
and energy.
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Parameter Interpretation Units
ν death rate time-step−1

S total available resource resource
AC rate of resource capture of C resource/time-step
AD rate of resource capture of D resource/time-step
AATPC maximum rate of resource processing of C energy/time-step
AATPD maximum rate of resource processing of D energy/time-step
αATPD efficiency of D in resource processing resource−1

αATPC efficiency of C in resource processing resource−1

Emax energy threshold for cell split energy
Pmax threshold size for group split dimensionless
m migration rate (probability of each cell to migrate

to a random group per time-step)
time-step−1

Also we include information about some derived quantities that are im-
portant to analyse the results, despite not being parameters of the model.

Quantity Definition Interpretation Units
SG S/Ngroups resource available per group resource
JSC AC resource uptake of C resource/time-step
JSD AD resource uptake of D resource/time-step
JATPC (see eq. 4) rate of resource processing of C energy/time-step
JATPD (see eq. 4) rate of resource processing of D energy/time-step
ε AD/AC fraction of the resource acquired by D

in a pairwise interaction
dimensionless

∆ATP αD/αC relative efficiency of D and C dimensionless
ΓATP AATPD /AATPC ratio between the maximum rates of re-

source processing of D and C
dimensionless

r JATPD /JATPC relative advantage of D over C in a
pairwise interaction

dimensionless

aD AATPD /Emax maximum growth rate of the D time-step−1

aC AATPC /Emax maximum growth rate of the C time-step−1

∆Eij JATP∆t internal energy increase energy
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