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ABSTRACT 

The paper presents development and application of a thermomechanical static solver based on the 

Finite Element Interconnecting Method (FETI) to be employed in hybrid fire tests. Hybrid fire test 

produces a time-history response of a hybrid model that comprises numerical and physical 

substructures to combined mechanical and thermal excitation. Hybrid fire test is advantageous to 

whole building full-scale fire tests because it allows testing of structural elements that exhibit a highly 

nonlinear fire behaviour in relatively small furnaces under realistic boundary conditions derived from 

a numerically model of the remainder of the structure. On these premises, the paper comprehensively 

describes the proposed static solver by highlighting its ability to guarantee compatibility and 

equilibrium at the interface between the physical substructure (PS) and the numerical substructure 

(NS), both for non-floating and floating subdomains as well as for nonlinear behaviour of the PS. The 

development of the solver has been driven by laboratory practice: an error propagation analysis that 

takes into account errors and uncertainties, such delay and measurement noise, is incorporated. The 

validation carried out in a fully numerical framework, i.e. the PS is also numerically modelled, shows 

promising outcomes for future experimental implementations.  
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1 INTRODUCTION 

Large-scale structural fire tests are rare because they are costly and require specialized 

facilities. According to the state of the art, only a few full-scale tests or large-scale tests have been 

performed [1]. The most of the research regarding the behaviour of structures in fire has been 

carried out on single structural components, exposed to standard fire curves in order to compare the 

fire performance under same testing conditions for regulatory purposes [2,3]. However, they do not 

represent real fires and building elements, such as beams, floors, walls and columns, are usually 

tested in fire without taking into account the actual boundary conditions. Especially for statically 

indeterminate structural assemblies subjected to thermal action, which experience indirect loadings 

due to restrained thermal deformations, tests on single components do not provide insight into the 

thermomechanical interaction with the remainder of the structure. 
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In order to run a fire test in a more realistic fashion, the development of dedicated 

experimental techniques is appealing. Hybrid simulation (HS), extensively investigated in the 

seismic domain, can be profitably extended to thermal loadings, and thus, the thermomechanical 

interaction can be accounted for up to collapse. HS is a very effective testing strategy for simulating 

the dynamic response of structural systems whose dimensions and complexities exceed the capacity 

of typical testing facilities. The hybrid model of the prototype structural system combines numerical 

and physical substructures (NSs and PSs). The PSs of the hybrid model are tested in the laboratory 

because of their strongly nonlinear response and/or lack of a reliable mathematical model, while the 

NSs are instantiated in a structural analysis software. The first attempts of hybrid fire tests (HFT) 

were carried out by Korzen [4], Robert et al. [5] and Mostafaei [6]. Some limitations of these works 

are reported in [7]. In this paper, a numerical partitioned algorithm that provides generality of 

application and suitability for experimental testing is proposed. 

2 THE PARTITIONED ALGORITHM 

Typical civil structures have characteristic heat diffusion times that are much larger than the 

highest vibration period. As a consequence, and in contrast to, purely mechanical dynamic load 

case, the thermal actions owing to fire can be considered equivalent to a mechanical static load of 

long duration. However, dynamic effects, such as those due to load redistribution triggered by local 

or global failure, can still be significant. From this standpoint, this paper offers a novel HFT 

algorithm that relies on the Finite Element Tearing and Interconnecting (FETI) method. The FETI 

approach emerged as an efficient technique for solving large linear static problems [8] and it was 

then extended to dynamic problems. In order to force the continuity of the kinematic quantities, an 

additional force field is defined as a further system unknown and applied at the interfaces of the 

coupled subdomains. The FETI algorithm that is proposed for HFT calculates the real-time 

response of the hybrid model of the emulated structure in the fire development phase by 

considering a pure static force balance of the coupled system. At each simulation step, restoring 

forces are measured on the PS and the overall displacement solution of the coupled system is 

calculated via Newton-Raphson’s iteration because a nonlinear behaviour of the system is assumed. 

Lagrange multipliers, which represent the interface force fields, are calculated as additional system 

unknowns. Finally, the calculated displacements are then applied to the PS. Herein, the static FETI 

algorithm has been implemented both for systems without floating subdomains, i.e. each subdomain 

is well restrained and no singular matrices appear, and for systems with floating subdomains, i.e. 

rigid body motions have been taken into account. 

 

2.1 The basic algorithm for non-floating subdomains 

First, the set of force balance and compatibility equations, which describe the response of the 

partitioned hybrid system, are presented in Eq. (1). For the sake of clarity, subscripts N and S stand 

for numerical and physical subdomains, respectively. 
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where, rN and rP are the restoring force, fN and fP are the external load, uN and uP are the 
displacement fields of the NS and PS, respectively. λ is the Lagrange multiplier vector that 

represents an additional force field which imposes the continuity of the displacement field at the 

interface between the two subdomains. Finally, BN and BP are Boolean matrices that localise the 

interface degrees-of-freedom on each subdomain. A Newton-Raphson’s algorithm is selected for 

the solution of Eq. (1) at each time step of the hybrid simulation. Accordingly, the expression of the 

residual reads, 



3 

 

 

 

 , ,

T

N N N N

T

N P P P P P

N N P P

  
 

   
 

  

r u f B λ

A u u λ r u f B λ

B u B u

. (2) 

 

The entailing minimization problem is solved at each time step. 
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From the modified Newton-Raphson’s method the Jacobian of A is defined as, 
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Where DrN and DrP are the Jacobian of the restoring force vectors of the NS and PS. In the 

linear case, they correspond to the stiffness matrices. DrP is not known a priori because related to 

the specimen properties that may vary during the test. Thus, it was decided to estimate it based on 

the initial tangent stiffness of the PS without updating it during the test. This is crucial from the HS 

perspective. In fact, a reliable estimate of the initial KP can be obtained before the tests but it cannot 

be easily updated online at each time step. 

From the laboratory standpoint, for each time step i, for each iteration j, the displacement 

vector uP is applied to the specimen and the quantity rP(uP)−fP is measured by the actuator load 

cells. Such force enter the expression of the residual of Eq. (2) and the modified Newton-Raphson’s 

algorithm calculates the next correction. As a result, the hybrid simulation can be conducted in 

displacement control. The major limitation of the presented approach is that it cannot handle 

floating subdomains. Therefore, an enhanced version is presented in the following section where 

floating subdomain can be implemented. 

 

2.2 Extension to floating subdomains 

Before introducing the algorithm, it is necessary to define the meaning of floating subdomain. A 

floating subdomain is characterised by a singular stiffness matrix because of insufficient constraint. 

A non-floating structure can be decomposed in floating subdomains, and therefore, it is crucial to 

be able to handle such local singularities. In the case of floating subdomains Eq. (1) becomes, 
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where RP and RN are a column matrices that gather rigid body modes of the PS and the NS, 

respectively. In this case, the displacement field of each subdomain k-th is split into a deformational 

component uk and a rigid body mode αk. The restoring force of the subdomain depends on the 

deformational component only, but the interface compatibility must be imposed in terms of total 
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displacements. The two last equations of Eq. (5) state that the external load cannot produce work 

with respect to rigid body displacement fields. Similarly, to the non-floating case, a minimization 

problem is solved at each time step 
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where the residual A now reads, 
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And the Jacobian of A is yields 
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where in the case of the NS or the PS is a floating subdomain their respective DrN or DrP 

tangent stiffness matrices are singular and consequently DA cannot be inverted. In order to DA be 

non-singular, the subdomain stiffness matrices are modified as follows. First, the null space of each 

stiffness matrix Drk is calculated. 

 

 ,1 , ,, , , , ker
kk k k i k n kD   T T T T r . (9) 

 

where Tk,i is the i-th rigid body mode of the subdomain k-th normalized to unit maximum value 

and nk is the number of its rigid body modes. Then, a complementary stiffness matrix Drk,c that 

operates in the null space of Drk only, is created and summed to Drk  
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The rank of the complementary stiffness matrix Drk,c is nk by construction and the factor 

max(diag(Drk)) ensures a well conditioning of the modified stiffness matrix kDr , which reads, 

 

,k k k cD D D r r r . (11) 

 

By adding contributions that are based on rigid body modes that will not excite the 

deformational field, the singularity is removed without affecting the deformational modes that are, 

conversely, the ones that induce restoring forces. The modified Jacobian DA  results 
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In this case, by implementation of the modified Newton-Raphson’s method, the numerical static 

scheme is given below where it is assumed that the initialization occurs after the application of the 

gravity loads. As for the non-floating subdomain case, a constant Jacobian is used, which is based 

on the initial tangent stiffness matrices of both subdomains. The algorithm scheme is given below. 
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The splitting of the displacement field into a deformational and a rigid body components is 

crucial from the hybrid simulation perspective. The floating subdomain cannot be floating anymore 

once it is tested in the laboratory and some minimal constraint conditions must be introduced. As a 

result, the only deformational displacement component uP is applied to the PS at each iteration. The 

rigid body coordinate αP remains a virtual quantity that enters the solution process but it is not 

applied to the specimen. Since it does not affect the restoring force, it does not influence the force 

balance. 

3 THE EXPERIMENTAL PROCEDURE 

The numerical algorithm was developed to be used in experimental tests that by their nature 

introduce errors and uncertainties. Thus, the numerical scheme must cope, without exhibiting 

instability, with noise coming from the load cells and the displacement transducers as well as with 

delay that inevitably affects the response of the actuators. In addition, the algorithm requires the 

value of the PS stiffness in order to compute the Jacobian in Eq. (12). As mentioned before, this 

value may change with time but it is not practical to proceed with an online updating at each time 

step. Hence, it is kept fixed over the entire duration of the simulation and based on an estimate of 

the initial tangent stiffness. A wrong estimate of the PS stiffness may cause instability in the 

numerical algorithm. Therefore, it is necessary to investigate how the error propagates. On these 

premises, a comprehensive error propagation analysis and a noise analysis that also includes delay 

are carried out during the validation process on a case study. Moreover, a displacement-control 

procedure ensure to follow softening branches and enhance lab safety by avoiding instability of 

actuators at collapse. 

4 VALIDATION ON A CASE STUDY 

Figure 1 shows the moment-resisting steel frame that was selected as case study to conduct 

the validation process of the proposed numerical scheme. The column profiles are HE 200 A and 

the beam profiles IPE 300. The frame was subdivided into a PS and a NS. In detail, the beam at the 

first floor located of the second bay was selected as PS, whereas the remainder of the frame is the 

NS. For simplicity, the frame was not loaded in terms of mechanical loads and only the PS was 

thermally loaded by a linear temperature gradient in the cross section that linearly increases with 

time: the bottom of the beam undergoes a temperature increment of 1000 °C in 1000 s whereas the 

top remains at ambient temperature throughout the simulation. The PS is modelled by means of a 

thermomechanical beam finite element that behaves nonlinearly with respect to temperature 

because the degradation of the steel elastic modulus according to the EN1993-1-2 model [9] is 

taken into account, as depicted in Fig. 2. Conversely, plasticity and second order effects were not 

accounted for. The NS is modelled by means of linear thermomechanical beam elements and 

remains at ambient temperature. 
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Figure 1 - Steel frame and sign convention of displacements 

 

Figure 2 - Reduction factors for the elastic modulus of carbon steel at elevated temperatures [9] 

The simulation was performed with the following parameters: 

 simulation time step equal to 1 s; 

 the number of iterations within each time step set to 10; 

 an overestimate of the PS initial elastic stiffness of 50%; delay applied to the 

displacement application and equal to one sub-iteration, i.e. 100 ms (typically it is less 

than 20 ms); 

 white noise applied to displacements with range ±2×10
-6

 m and to forces with range 
±100 N. 

The analysis was performed both with a monolithic algorithm, that solves the whole structure, 

and with the proposed partitioned algorithm that relies on the FETI method. Fig. 3a-c compare the 

outcomes between the monolithic solution (ML) and the partitioned solutions - NS and PS - in 

terms of the axial compressive force caused by thermal restraint, of axial and vertical displacements 
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as well as of rotations of node 1 and 2 of the heated beam. A good agreement is observed and 

compatibility is satisfied. Moreover, it is possible to observe that, as expected, the vertical 

displacements of the beam are much smaller than the axial displacements. Thus, the former are 

more affected by noise being, in this case, in the same order of magnitude, as illustrated in Fig. 3b 

and 3c. However, the proposed numerical scheme seems to be capable of dealing with noise, delay 

and errors with good robustness. The nonlinear behaviour owing to the elastic modulus degradation 

is clearly observed by looking at Fig. 3a and the deformed shape illustrated in Fig. 3d is consistent 

with the physical problem. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 3 - a) Evolution of the axial force in the PS; b) evolution of the displacements of node 1 of 

the PS; c) evolution of the displacements of node 2 of the PS; d) deformed shape at 1000 s 

magnified by a factor of 75. 

5 CONCLUSION 

The proposed static numerical algorithm based on the FETI method showed good 

performance in tackling issues related to hybrid fire testing. In fact, it is a general 

thermomechanical solver that guarantees compatibility and equilibrium at the end of each time step. 

Moreover, it can handle nonlinear behaviour that appears during the test for both non-floating and 

floating subdomains by implementing Newton-Raphson’s iterations. The numerical algorithm has 

been developed to be used in displacement control of the physical substructure implemented in a 

laboratory to follow possible softening response branches and to avoid actuator instability at 

collapse. The validation carried out on steel frame structure confirmed good agreement between the 

monolithic solution and the partitioned solutions. The proposed numerical algorithm also exhibited 

good robustness with respect to typical sources of errors, such noise and actuator delay, without 
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undergoing instability. Therefore, the proposed static FETI solver for hybrid fire tests will be used 

in upcoming hybrid fire tests that involve real physical substructures. 
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