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ABSTRACT. A novel semi-active control strategy for the effective vibration mitigation of structural
systems of uncertain properties is introduced in this study. The implemented approach emerges through
fusion of the Unscented Kalman filter (UKF), as a nonlinear observer, with the linear-quadratic regulator
(LQR). The UKF is implemented towards the establishment of an adaptive joint state and parameter esti-
mation problem, taking into account that numerical models of structural systems are often inadequate due
to inherent uncertainties, such as noise and modeling errors, unknown system properties and influence of
varying operational conditions. The improved state-space representation is accordingly fed into the LQR
and a semi-active control scheme that utilizes clipping is applied. Since both estimation and control are
executed within the same loop, particular attention is attributed to the derivation of the appropriate LQR
strategy, pertaining to both the selection of optimal weight matrices and the real-time tuning of the con-
trol parameters. A simulated five-story shear-frame subject to earthquake motion serves as a case-study
for validating the proposed methodology. The promising results encourage further investigation of the
developed strategy, especially in regards to its real-time experimental implementation using semi-active
actuators, such as magnetorheological dampers.

KEYWORDS: structural control, uncertain system properties, unscented Kalman Filter, real-time LQR,
semi-active control.

1 INTRODUCTION

Over the last years, semi-active control methods [1, 2, 3] gain increasing attention in structural vibra-
tion mitigation [4, 5], as they interconnect the advantages of their passive [6] and active counterparts [7],
offering the adaptability of the active class without requiring the corresponding power requirements [8].
To this end, many studies have investigated the implementation of semi-active control strategies, both on
a simulation level [9] and through experimental validation [10, 11, 12].

A particular class of semi-active vibration control methods is devoted to uncertain, or time-varying
structural systems [13]. Among other approaches, Guclu and Yazici [14] propose a fuzzy PID type
controller to improve seismic control performance of a nonlinear structural system within the context
however of an active system, namely a tuned mass damper. Bitaraf and Hurlebaus [15] employ a Simple
Adaptive Control Method to control the response of a tall building exhibiting nonlinear behavior, by
means of magnetorheological (MR) dampers. Cetin et al. [16] use Lyapunov-based design techniques
for designing a nonlinear adaptive controller able to compensate parametric uncertainties related to both
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the structural system and the MR damper. The proposed controller, relying on a Bayesian filter-based
design, is experimentally validated on a six-degrees-of-freedom (DOFs) shear-frame structure installed
on a shaking table. For a recent overview in semi-active vibration control the reader is referred to Casciati
et al. [17].

Quite recently, an alternative semi-active control strategy explores the sequential implementation of
the Unscented Kalman Filter (UKF) and the LQR [18] to the vibration mitigation of structural systems
with inherent uncertainties. The UKF is employed for solving a joint state and parameter estimation
problem, during which both the structural states (i.e., displacements and velocities) and the uncertain
properties (i.e., stiffness, damping, strength) are considered as unknowns, inevitably leading to a non-
linear identification problem. Accordingly, the LQR provides the necessary state feedback, while the
semi-active character of the method is realized by means of clipping, in which the active control force
components, i.e., the components that are contra-directional to the velocity of the DOF where the actuator
is located, are eliminated.

The devised methodology has been successfully verified via numerical simulations using an MR
damper [19, 18], taking into account the inherent dynamics of the actuator. Miah et al. [20] have further
experimentally validated the method in hard real-time, i.e., when all required calculations are executed
within the specified sampling period of the control loop. Yet, an important issue that has not thus far been
addressed in this method pertains to the calculation of the LQR gain: in all the aforementioned studies,
the gain is a priori calculated off-line using the currently available initial information for the uncertain
parameters. This is clearly not an optimal strategy as it suppresses the effectiveness of the vibration
mitigation scheme and limits its applicability range.

Under this setting, the aim of this study is to proceed one step forward and integrate an online method
for the calculation of the corresponding state feedback gain matrix, which can be executed in hard real-
time. Conventional LQR gain calculation methods utilize the solution of an eigenvalue problem that
results from an invariant subspace formulation [21]. This strategy is, nevertheless, improper for online
implementation due to the prohibitively high computational cost. To this end, the method described in
Chowdhary and Lorens [22] is herein adopted, which formulates a recursive calculation of the associated
Riccati matrix, under the assumption that the structure undergoes small changes among time steps, which
in turn imply small changes in the optimum solution of the LQR problem. A simulated five-story shear
building subject to harmonic earthquake excitation at the first structural frequency serves as a test case
for validating the novel method.

The paper is organized as follows: Section 2 formulates the combined state and parameter estimation
problem and justifies the use of the UKF, which is briefly reviewed in Section 3. Section 4 explains
the adopted semi-active control strategy, including the online gain calculation and the clipping action.
The numerical test case is presented in Section 5 and, finally, in Section 6 the results are discussed and
suggestions for further research are offered.
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2 PROBLEM FORMULATION

Consider a linear, time-invariant, viscously damped structural system of the form

M(ααα)ẍ(t) + C(ααα)ẋ(t) + K(ααα)x(t) = P1(ααα)f(t) + P2(ααα)d(t) (1)

in which x(t) is the [n× 1] vibration displacement vector and M(ααα), C(ααα), K(ααα) are the [n× n] mass,
viscous damping and stiffness matrices, respectively, herein considered to be symmetric and positive
definite ∀ ααα. It is assumed that the structure is amenable to (i) a set of measured disturbance forces d(t)
that excite certain DOFs, as matrix P2(ααα) indicates; (ii) a set of control forces f(t) that may be applied to
certain DOFs, as matrix P1(ααα) indicates; (iii) that the structural system of Eq. 1 is uncertain, in the sense
that all associated matrices depend on the parameter vector ααα, the values of which are unknown a-priori.

The objective herein is to mitigate the structural vibration induced by the disturbance forces using a
semi-active control strategy that utilizes discrete state feedback in hard real-time. In order to accomplish
this goal, Eq. 1 is firstly transformed to state-space as,

ξ̇ξξ(t) = Ac(ααα)ξξξ(t) + Bc(ααα)f(t) + Lc(ααα)d(t) (2a)

y(t) = Hc(ααα)ξξξ(t) + Dc(ααα)f(t) + Nc(ααα)d(t) (2b)

where the matrices of the state equation (Eq. 2a) are given by

Ac(ααα) =

[
On In

−M−1(ααα)K(ααα) −M−1(ααα)C(ααα)

]
,

Bc(ααα) =

[
0

M−1(ααα)P1(ααα)

]
, and (3)

Lc(ααα) =

[
0

M−1(ααα)P2(ααα)

]
and the matrices of the output equation (Eq. 2b) depend on the type of structural response available. For
the case of vibration acceleration at specific DOFs it follows that

Hc(ααα) = T
[
−M−1(ααα)K(ααα) −M−1(ααα)C(ααα)

]
,

Dc(ααα) = TM−1(ααα)P1(ααα), and (4)

Nc(ααα) = TM−1(ααα)P2(ααα)

for some matrix T that maps the states to the measured DOFs. Discretization of Eq. 2 at a sampling
period Ts (s), assuming constant intersample behaviour of the control inputs and the applied disturbances,
implies

ξξξk+1 = Ad(ααα)ξξξk + Bd(ααα)fk + Ld(ααα)dk (5a)

yk = Hd(ααα)ξξξk + Dd(ααα)fk + Nd(ααα)dk (5b)

3



EACS 2016 – 6th European Conference on Structural Control Sheffield, England: 11-13 July 2016
Paper No. 161

for Hd(ααα) = Hc(ααα), Dd(ααα) = Dc(ααα), Nd(ααα) = Nc(ααα) and

Ad(ααα) = In + TsAc(ααα) + 0.5T 2
s A2

c(ααα),

Bd(ααα) = TsBc(ααα), and (6)

Ld(ααα) = TsLc(ααα)

It can be directly evidenced that the discrete-time representation of the initial structural equation, pro-
vided by Eq. 5, cannot be directly implemented to the solution of the addressed vibration mitigation
problem. This is due to the lack of knowledge of the uncertain parameter vector ααα and the state vector
ξξξ[t], both of which must be estimated in hard real-time, prior to the control action. To this end, the UKF
is used to address the combined state-parameter estimation problem.

3 JOINT STATE AND PARAMETER ESTIMATION

The derivation of the UKF initiates by introducing a fictitious equation for the unknown parameter
vector

αααk+1 = αααk + wa,k (7)

with wa,k denoting a zero mean Gaussian process noise of covariance matrix ΣΣΣaa. Accordingly, an aug-
mented state vector is defined as ξ̄ξξk = [ξξξk αααk]T and a corresponding state-space model is formulated
from Eqs. 5, 7 as

ξ̄ξξk+1 =

[
Ad(ααα) O

O I

]
︸         ︷︷         ︸

A(ααα)

ξ̄ξξk +

[
Bd(ααα)

O

]
︸  ︷︷  ︸

B(ααα)

fk +

[
Ld(ααα)

O

]
︸  ︷︷  ︸

L(ααα)

dk +

[
wξ,k

wa,k

]
︸︷︷︸

pk

(8a)

yk =
[
Cd(ααα) O

]︸        ︷︷        ︸
C(ααα)

ξ̄ξξk + Dd(ααα)︸︷︷︸
D(ααα)

fk + Nd(ααα)︸︷︷︸
N(ααα)

dk + rk (8b)

In Eq. 8a the quantity wξ,k denotes zero mean Gaussian process noise of covariance matrix ΣΣΣξξ, uncor-
related with wa,k, that has been superimposed to Eq. 5a. The process noise pk of the augmented state
equation is in turn characterized by zero mean and covariance matrix ΣΣΣpp = diag{ΣΣΣξξ,ΣΣΣaa}. In Eq. 8b the
quantity rk denotes zero mean Gaussian measurement noise of covariance matrix ΣΣΣrr.

Observe that, per definition of the augmented state vector, the state matrix of Eq. 8a includes bilinear
products between the original state ξξξk and the unknown parameter vector. This results into a nonlinear
problem treated through implementation of the UKF, the successive steps of which are indicated in
Table 1 [23, 24, 20]. The functions f (·) and g(·), which appear on the table correspond to the state and
the output parts of Eq. 8, respectively, that is

ξ̄ξξk+1 ≡ f (ξ̄ξξk, fk,dk) + pk (9a)

yk ≡ g(ξ̄ξξk, fk,dk) + rk (9b)
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Table 1: The initialization, measurement update and prediction steps of the UKF.

INITIALIZE
1. Set initial values for the augmented state vector: ξ̄ξξ0 and P0

2. Set UKF parameters (nξ the size of the augmented state vector) [25]:

- α = 1, β = 2, κ = 0, c = α2(nξ + κ), λ = c−nξ,

- W0
m = λ/(nξ +λ), W i

m = 1/2(nξ +λ), i = 1,2, . . . ,2nξ
- W0

c = λ/(nξ +λ) + (1−α2 +β), W i
c = W i

m, i = 1,2, . . . ,2nξ

- µµµξ = [W0
m . . . W2nξ

m ]T

- W =
(
I− [µµµξ . . . µµµξ]

)
×diag(W0

c . . . W2nξ
c )×

(
I− [µµµξ . . . µµµξ]

)T

UPDATE at time k (when yk, fk and dk are available)

1. Calculate sigma points: Ξ̄ΞΞ
−

k =
[
ξ̄ξξ
−

k . . . ξ̄ξξ
−

k
]
+
√

c
[
000

√
P−k −

√
P−k

]
2. Propagate sigma points through the output equation: D̂−k = g

(
Ξ̄ΞΞ
−

k ,k
)

3. Calculate output mean and covariance:

ŷk = D̂−k µµµξ
Pyy

k = D̂−k WD̂−T
k +ΣΣΣrr

4. Calculate cross covariance between state and output: Pξyk = Ξ̄ΞΞ
−

k WD̂−T
k

5. Calculate state gain: Pyy
k Kk = Pξyk

6. Update state mean and covariance:

ξ̄ξξk = ξ̄ξξ
−

k + Kk
[
yk − ŷk

]
Pk = P−k + KkPyy

k KT
k

PREDICT at time k

1. Calculate sigma points: Ξ̄ΞΞk =
[
ξ̄ξξk . . . ξ̄ξξk

]
+
√

c
[
000
√

Pk −
√

Pk
]

2. Propagate sigma points through the state equation: ̂̄ΞΞΞk = f
(
Ξ̄ΞΞk,k

)
3. Predict state mean and covariance for k + 1:

ξ̄ξξ
−

k+1 = ̂̄ΞΞΞkµµµξ

P−k+1 = ̂̄ΞΞΞkŴ̄ΞΞΞT

k +ΣΣΣpp
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4 THE CONTROL STRATEGY

The calculation of the control action combines the use of LQR and clipping and it is has been de-
signed for hard real-time execution. In more detail, the conventional LQR proceeds by solving the
optimal control problem

J =

∞∑
k=0

(
ξξξT

k Qξξξk + fT
k Rfk

)
, s.t. ξξξk+1 = Aξξξk + Bfk, ξξξk=0 = ξξξ0 (10)

with Q and R designating positive definite weighting parameters [26, 18]. The control force that mini-
mizes J is given by fk = −Gξξξk, where(

BT SB + R
)
G = BT SA (11)

and S corresponds to the solution of the discrete-time algebraic Riccati equation (DARE)

S = AT SA + AT SB
(
BT SB + R

)−1BT SA + Q (12)

As Eqs. 10-12 imply, the conventional LQR formulation requires knowledge of the state and input ma-
trices, which for the problem addressed herein is not possible, due to their dependence on the unknown
parameter vector ααα (Eq. 5a). In solving this problem, one way is to formulate the state and input matri-
ces using the initial guess ααα0 [20], which, clearly, is not an optimal approach. An alternative way is to
solve the LQR problem in every iteration, as soon as estimates of αααk become available by the UKF. Yet,
corresponding non-iterative and numerically efficient algorithms involve the solution of an eigenvalue
problem [21], which is prohibitively time-consuming for hard real-time operations.

A third option can be applied, if it is assumed that the structure undergoes small changes from time
k to time k + 1, which in turn implies small variations of the optimal solution of the LQR problem [22].
Then Eqs. 11-12 can be used in a recursive form for propagating the solution of the currently available
Riccati matrix S to the next time instant, namely(

BT
k Sk+1Bk + R

)
Gk = BT

k Sk+1Ak (13)

for

Sk+1 = AT
k SkAk + AT

k SkBk
(
BT

k SkBk + R
)−1BT

k SkAk + Q (14)

Taking under consideration the advantages of semi-active control [4, 27, 19], it is herein assumed that
the set of available actuators consists of semi-active devices. Thus, the aforementioned real-time LQR
strategy must be accordingly adapted, in order to eliminate the active control forces. This is accomplished
using clipping, which suppresses all components that are contra-directional to the velocity of the DOF,
at which the actuator is located. This implies that the jth entry of the applied control force fsemi,k is
calculated as

[fsemi,k] j =

[fk] j , [ẋk] j[fk] j ≥ 0
0 , [ẋk] j[fk] j < 0

(15)

where [fk] j is the jth entry of the LQR calculated control force fk and [ẋk] j the estimated velocity of the
jth DOF.
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Table 2: Adopted numerical values for the associated parameters of the numerical simulation.

Quantity Value Notes
mi (kg) [11.615,10.926,10.926,10.926,10.693] storey mass
ki (N) [9308,9435,10677,10045,10721] storey stiffness
fi (Hz) [1.32,3.95,6.24,8.07,9.33] natural frequencies
ζi (%) [0.83,0.16,0.13,0.12,0.22] damping ratios
ξξξ0 01×10 initial value for the state vector of Eq. 5a
ξξξ0 01×10 initial value for the state vector of Eq. 5a
ξξξ0 01×10 initial value for the state vector of Eq. 5a
ξξξ0 01×10 initial value for the state vector of Eq. 5a
ααα0 [11.5 10.5 10.3 9.8 11.9]T ×103 initial value for the parameter vector ααα
ξ̄ξξ0 [ξξξ0,ααα0]T initial value for the augmented state vector

P0,ξ 10−15× I10 initial values for the covariance matrix of ξξξ0
P0,α diag(30,2,1,8,2)×10−5 initial values for the covariance matrix of ααα0
P0 diag(P0,ξ,P0,α) initial values for the covariance matrix of ξ̄ξξ0
ΣΣΣξξ 10−12× I10 process noise covariance matrix associated with ξξξ
ΣΣΣα 1.49×10−8× I5 process noise covariance matrix associated with ααα
ΣΣΣpp diag(ΣΣΣξξ,ΣΣΣα) augmented process noise covariance matrix
ΣΣΣrr diag(40,1,1)×10−4 measurement noise covariance matrix

5 NUMERICAL APPLICATION

The proposed method is now applied and assessed on the simulation of a five-story shear structure
that is amenable to earthquake-induced vibration and described by

Mü(t) + Cu̇(t) + K(ααα)u(t) = P1f(t)−M1ẍg(t) (16)

where u(t) corresponds to the DOFs’ displacements relative to the base, ẍg(t) to the earthquake acceler-
ation and 1 = [1,1,1,1,1]T . The structural and modal properties of the frame are shown in Tab. 1. The
unknown parameter vector is selected to be the stiffness of every story and hence ααα = [k1,k2,k3,k4,k5]T .
A resonating harmonic earthquake of the form ẍg(t) = −0.2751sin(2π f1t) is selected as the disturbance
source, where f1 = 1.32 Hz corresponds to the first natural frequency of the frame (Tab. 1). A single
actuator is assumed that is connected to the first story, thus P1 = [1/m1,0,0,0,0]T and noise-corrupted
vibration acceleration measurements from the first, the second and the fifth story are available. Under
this setting, a 30s simulation is performed at a sampling period Ts = 0.001s, using the numerical values
of Tab. 2.

The results displayed in Figs. 1–4 confirm the effectiveness of the proposed approach. The controlled
states have resulted on order of magnitude suppressed, in respect to the uncontrolled ones, while the
presence of control force has introduced a slight phase shift. This is apparent in the 2s simulation window
of Figs. 1–2 (right part). The robustness of the UKF is further validated by the performance of the
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Figure 1: Uncontrolled (black) and controlled (red) relative displacements.

stiffness estimates, displayed in Fig. 3; all quantities have converged to the true values within the first
5s, except from the fifth one, which exhibits a slow convergence rate. However, this does not affect the
accurate estimation of the states. In regards to the performance of the real-time calculation of the control
gain, it is reflected to the behavior of the force–to–displacement and force–to–velocity curves displayed
in Fig. 4, with clipping being more obvious in the latter curve.

6 CONCLUSIONS

A novel semi-active vibration mitigation method for structural systems with uncertainties is presented
in this paper. Taking into account the partial knowledge of the structural dynamics, as well as the limited
sensor information, the proposed scheme couples UKF, LQR and clipping, and requires considerably
lower cost and specifications in comparison to active solutions. The illustrated simulation of the numeri-
cal shear frame under harmonic disturbance confirmed stability of the algorithm, especially in regards to
the stable calculation of the states and the LQR gain matrix in every time step. The encouraging results
suggest further investigation towards this direction. These include an in–depth investigation of the online
calculation of the LQR gain, the examination of disturbances with diverse statistical characterization, as
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Figure 2: Uncontrolled (black) and controlled (red) relative velocities.

well as the experimental verification of the proposed methodology in structural control applications.
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