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1. Methods 

We applied the quasi-analytic algorithm (Lee et al. 2002, 2005, 2009) to daily binned level-3 spectral remote 

sensing reflectance at ~9 km spatial resolution of multiple ocean colour sensors (OCTS, 1996-1997, version 

2014.0; SeaWiFS, 1997-2010, version 2014.0; MERIS, 2002-2012, ESA 2
nd

 processing; MODISA, 2002–

2016, version 2014.0). As output from QAA we obtained the spectral absorption and backscattering 

coefficients at 440 and 490 nm wavelengths. We then merged the absorption coefficient at 490 nm (a490), 

coefficient of particulate backscattering (bbp490) and absorption coefficient due to phytoplankton at 440 nm 

(aph44) from different sensors and composited over 5-day periods.  

Daily average photosynthetically active radiation (PAR, Frouin et al. 2003) was derived by merging binned 9-

km datasets from all available sensors (OCTS, SeaWiFS, MODIS-Terra, MODIS-Aqua, VIIRS) and 

additional filling of gaps and extending coverage poleward using an empirical relationship between PAR and 

surface incoming shortwave (SIS) irradiance (Fig. 1) from geostationary and polar orbiting satellites (Mueller 

et al., 2009, Müller et al., 2015). SIS data were obtained from the Satellite Application Facility on Climate 

Monitoring (CM SAF, http://www.cmsaf.eu/EN/Products/AvailableProducts/Dataset/Dataset_node.html). 

While daily estimates of the merged PAR (Fig. 2) typically reached full coverage of the ice-free ocean area, 

in-water estimates were often limited by clouds. Even the 5-day composites of a490, bbp490 and aph440 had 

large areas of missing data. The relative proportion of valid data was increased by binning the ~9-km data to a 

grid of 0.25 degrees (~27 km). Temporal interpolation between neighbouring 5-day composites was used to 

fill some of the missing pixels. Spatial interpolation was used to fill remaining missing neighbouring pixel 

values. The interpolation and extrapolation operations were applied only if the corresponding 5-day mean ice 

fraction was below 15%. Sea-ice coverage was obtained from NASA Team algorithm datasets (version 1.1, 

http://nsidc.org/data/nsidc-0051.html) derived from passive microwave data. 

As PAR conditions can change rapidly, even during the day, merging PAR estimates from multiple sensors 

with different measurement times increases the representativeness of the estimates of the mean daily PAR. In-

water properties are expected change slower than PAR. Therefore, daily estimates of NPP were created from 

daily PAR and 5-day composites of in-water bio-optical properties. As input to the Vertically Generalized 

Production Model (VGPM, Behrenfeld and Falkowski 1997) we used Chla derived from phytoplankton 

http://www.cmsaf.eu/EN/Products/AvailableProducts/Dataset/Dataset_node.html
http://nsidc.org/data/nsidc-0051.html


 

absorption at 440 nm (Bricaud et al 1998), merged PAR, depth of the euphotic zone calculated from a490 and 

bbp490 (Lee et al. 2007) and daily sea-surface temperature (SST). SST is known to have only a weak 

influence on NPP, therefore we used the optimally interpolated sea-surface temperature (Reynolds et al. 2007) 

that has no gaps. Daily NPP estimates were further composited into 5-day periods by averaging valid data 

during each 5-day period.  NPP for pixels that had valid PAR, no ice (Cavalieri et al. 1996) but no ocean 

colour data after interpolation and extrapolation was calculated assuming a low Chla value (0.1 mg m
-3

) with 

the estimated PAR. The effect of this assumption on the total annual NPP was very small (<1%) due to the 

typically very low PAR (due to low sun elevation and short period of daylight) at these high latitudes. 

 

 

Figure 1. Empirical relationship between PAR and surface incoming shortwave (SIS) irradiance (SARAH 

dataset) from geostationary satellites (Mueller et al., 2009, Müller et al., 2015). 
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Figure 2. Example of merging PAR data for January 1, 2016 using PAR estimates of MODIS-Aqua, MODIS-

Terra, VIIRS and additionally from Meteosat. Areas of missing data between the swaths of each sensor are 

filled by data from other sensors. 

 

2. Processed satellite data 

Processed satellite data used in this analysis are available online in 2 separate zipped files, respectively for 

periods 1997-2012 and 2013-2013. These files have series of 5-day global NPP datasets in HDF4 format 

(Kahru et al., 2016) and are available from the Dryad Digital Repository 

(http://dx.doi.org/10.5061/dryad.34f4q). 

 

3. Validation 

Limited validation of the combined methods involving both the NPP model itself and the process of 

interpolation and extrapolation has been done by comparing the derived NPP data with in situ data collected 

by the Palmer LTER program (Fig. 3). As a comparison, we also extracted match-ups from the well-known 

http://dx.doi.org/10.5061/dryad.34f4q


 

NPP datasets produced by Oregon State University (M. Behrenfeld): the Carbon-based Productivity Model 

(CbPM, Behrenfeld et al. 2005, Westberry et al. 2008) and the Vertically Generalized Productivity Model 

(VGPM, Behrenfeld and Falkowski 1997), both using MODIS-Aqua 8-day composites as input. These 

datasets were downloaded from http://www.science.oregonstate.edu/ocean.productivity/. This limited and 

preliminary comparison shows that our model performs reasonably well while the CbPM has the lowest R
2
 

that is probably due to problems with some of its input variables, e.g. the mixed layer depth. 

  

 

 

Figure 3. Match-ups of satellite-derived NPP versus in situ measured NPP by the Palmer LTER program 

using (a) Carbon-based Productivity Model (CbPM, Behrenfeld et al. 2005, Westberry et al. 2008), (b) 

Vertically Generalized Productivity Model (Behrenfeld and Falkowski 1997) and (c) NPP model described in 

this work. Red line shows the one-to-one relationship, blue dots are the satellite means for 3x3 pixel windows 

cantered at the nearest pixel and the vertical lines show the extent to variability inside the satellite 3x3 pixel 

area.  

 

4. Results 

Annual NPP as well as the summer monthly maximum as well as the summer mean NPP per area are 

summarized in Table 1.  

 

Table 1. Summary of the estimated NPP in the Arctic Ocean between 66 ˚N and 84 ˚N for 1998-2015. 

Period Year 
Annual 

NPP, 
PgC 

Maximum 
monthly 

NPP, Pg C 

NPP/area, 
mgC/m2/day 

Period 1 1998 0.347 0.082 622 

http://www.science.oregonstate.edu/ocean.productivity/


 

  1999 0.369 0.093 559 

  2000 0.385 0.092 565 

  2001 0.384 0.093 514 

  2002 0.436 0.110 522 

  2003 0.444 0.105 731 

  2004 0.477 0.106 671 

  2005 0.488 0.120 561 

  2006 0.492 0.108 614 

Period 2 2007 0.566 0.149 601 

  2008 0.512 0.133 632 

  2009 0.528 0.137 608 

  2010 0.611 0.147 447 

  2011 0.675 0.154 469 

  2012 0.698 0.154 499 

  2013 0.691 0.160 487 

  2014 0.656 0.151 461 

  2015 0.669 0.152 463 
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